MBA -3.54

Master of Business

[3 Administration
Uttar Pradesh Rajarshi Tondon
open University

Database
Management System

Database Management System

Block - 1 Basic concepts of DBMS 3
Unit-1 Introduction 6
Unit - 2 Relational Data Model 16
Unit-3 ER Model 25

Block - 2 Query Language and Database Design Concepts 41

Unit-4 Relational Algebra 44
Unit-5 Structured Query Language 59
Unit-6 Functional Dependency Theory 74
Unit-7 Normalization 89

Block — 3 Transaction Management & Emerging Databases 103

Unit-8 Transaction Processing Concepts 106
Unit-9 Emerging Trends in DBMS 129

MBA-3.54
Master of Business
[Administration

Uttar Pradesh Rajarshi Tondon
open University

Database
Management System

Block

Basic concepts of DBMS

Unit-1 Introduction 6
Unit-2 Relational Data Model 16

Unit-3 ER Model 25

MBA-3.54

Course Design Committee
Prof. Ashutosh Gupta

Chairman
Director (In-charge)

School of Computer and Information Science, UPRTOU Prayagraj
Prof. Suneeta Agarwal Member

Department of CSE

MNNIT, Prayagraj

Dr. Upendra Nath Tripathi Member

Associate Professor, Department of Computer Science
Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare Member

Associate Professor, Department of Computer Science

University of , Prayagraj

Ms. Marisha Member
Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Course Preparation Committee

Mr. Manoj Kumar Balwant Author(Block 1: Unit 1, 2, 3)
Assistant Professor (computer science)
School of Sciences, UPRTOU Prayagraj

Dr. Abhay Sexena Editor
Professor and Head, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer & Information Sciences, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Course Coordinator
Assistant Professor (computer science)
School of Sciences, UPRTOU, Prayagraj

UPRTOU, Prayagraj-2022
MBA-3.54- Database Management System
ISBN —

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

Printed and Published by Prof. P.P.Dubey, Registrar, Uttar Pradesh rajarshi Tandon Open
University, 2022.

Printed By.- M/s K.C.Printing & Allied Works, Panchwati, Mathura -281003.

BLOCK INTRODUCTION

This block is organised into 3 unite. The fitst unit introduces basic concepty of
datebase and database management system. [t starts with the need of DBMS over
traditional file processing systems, After that, it presents the architecture and the data
models on which they are designed. Then it briefly describes database language to
create and maintain databases on the computer, Finally, it explaing various components
of DBMS such as query optimizer, DDL compiler, DML compiler, runtime database
processor and stored data menager. The second unit presents entity-relationship
diagram to represent a database. This ER diagram is then used to synthesis relational
schemag and identify their attributes along with primary key and foreign key. The third
unit illustrates the bagic building blocks of relational data model which inchndes
attributes, tuples and relations. It explains various types of constraints in a relational
database table such as domain constraints, key constraints entity integrity constraints
and referential integrity constraints. It gives understanding of what are the constraints
that violate during insertion, deletion and updation operation. It describes how DBMS
handles when these constraints violate.

UNIT-1 Introduction

Structure

1.1 Introduction

1.2 Objectives

1.3 Examples of database approach

14 Characteristics of database approach

1.5 Advantage of using database approach

1.6 Schemas and Instances

1.7 DBMS architecture and database independency
1.8 Data model

1.9 Database languages and interfaces

1.10 Database system environment

1.11 Summary
1.12 Terminal Questions

1.1 Introduction

A Database is a collection of interrelated data. The data here refers to some known
facts with implicit meaning. For example, congider you want to maintain the names,
phone numbers, and addresses of your friends and relatives. You may store these data
in computer software such ag MS Excel or MS access. Thig collection of similar data
with implicit meaning is called ss datebase. Large commercial companies such as
Flipkart and Amazon maintain theit own large databases that contain data of over
millions of books, movies, games, DVDs, electronics and other items. For example,
the Fliplart database takes over many terabytes of spaces which is stored on varied
computers (called servers). Around millions ofpeople daily visit Flipkart and use the
database to make their purchase. The databage is updated every time whenever a new
item is purchased to reflect the updated stocks in the database. A softwarewhich store
interrelated data into the database and access themwhen requited is called database
management system (DBMS). The primary goal of a DBMS is to conveniently store
data and efficiently access it. The datais most important for many organizations, the
DBMS systern mmust ensure the safety of stored data against system crash or
unauthorized access to the data.

1.2 Objectives

After studying this unit you will able to

a Differentiate between database and database management gystem,
Explain advantages of DBMS over traditional file processing systems.
Describe the architecture upon which DBMS i3 designed.
Explain various data models on which database is designed.
Learn Database language to create and maintain databases on the computer.
Describe different interfaces to DBMS,

1.3 Examples of database approach

Congider a Univetsity databagse which maintaing data related to its students, their
courses and their grades. The databasc organises student data into several tables, each
of which stores data as data records. Figure 1.1 showsz database struchare and a few

data records for each database table.
siD 3 _name Contact_no Data_of_Birth Branch
5003 Dinesh 8915633342 03-03-1805 IT
8004 Anil 28915633987 07-03-1893 EC
S005 Pankaj 9915633325 05-03-1984 CS
a Student Teble

[+{]0] Course_nama siD Crodh
o1 Algorithm s003 4
co2 DBMS S004 3
03 Java S005 4

b. Course Table
cip 3ip GRADE
Co1 S003 B
=02 S004 A
co3 005 A

. Gruds Tabls.

Figure 1.1: A nniversity databsse to store student’s details, enrolled courses and

faculties information of a university.

Here, the student table stores student details. The course table stores details of each
subject being taught and its associated department. The grade table grades of each
student, Each record in a table stores different types of data elements. For example, the
student table's record contains student name, student id and branch (such as IT for
information technology, CS for computer science or EC for electronics &

communication}. Each data record in the course table contains course name, course id,
credit and student ID{a student which enrols this course). Each data record in the grade
table containg gtudent id, course id, and grade (from a set {*A’,'B’,°C*,'D’,'F’,‘T’}.).
You notice that the records in various files are interrelated. For example, data records
of Dinesh and Saukat ate related to their corresponding data records in the grade table.
Similarly, the course table contains data records correspending to C8 and [T branches.
The database can be manipulated whenever is rexuired. The databage manipulation
involves querying and updating which include:

Querying

Retrieve a list of all courses and grades.
Retrieve names of students who have taken data structures courses.

Updating

Add a new student to the student table.

Enter grade A to Dinesh in data structure course,

Delete record of Sandeep from student table.

Change the grade of Shaukat from B to A.

These are informal queries which nmst be specified precisely in & query
language (which we will discuss later) so that the DBMS can process it.

1.4 Characteristics of Database Approach

The main characteristics of database approach over traditional file processing
approach are ag follows:

1

Supports multiple views of the data:A database presents different views of the
database for different types of users. A view is a subset of a database or may be
derived from the database and it is not separately stored in the datsbase. For
example, staffs working in the account department require different views (parts)
of data than the staffs working in the sales department.

Multi user and comcwrrent access: DBMS allows several users to access a
database at the same time. DBMS supports concurtency control whichfacilitate
simultaneous updates on the same data item by several users in a controlled
manter. For example, when multiple users are booking a geat in a train, it should
not be allotted to more than one person.

Self~describing nature of a database system:A database gystem containg a
database but along with descriptions of the database structure and its constraints
in DBMS catalog. The information stored in the database catalog is called
metadata.

Prograns and data independency: DBMS approach allows changing data
storage structures without changing DBMS access programs,

1.5 Advantage of using database approach

In carlier days, the traditional file processing system was an alternative to DBMS, In
traditional file processing systems, all the dain and information related to an
otganization are stored in different files. For example, the univerzity's admission
department maintaing details of its students in ome file while the examination
department maintaing results of students in another file. Similarly, the library unit
maintaing books issued to differemt students in different files. This way, cach file
carrics information specific to a department or unit. This needs different application
programs to extract records from appropriate files. The DBMS software has a number
of major advantages over traditional file processing systems.

1.

Data redundancy: In a traditional file processing system, cach user group
guch as admigsion, examination and library maintain different files for
studeniz as per their needs. This causes data redundancy because the same
information may be placed at several files. For example, the admizssion
department stores the name, student ID, age, date of registration, which are
also present in the file maintained by the examination department. Thig
redundancy of data leads to higher storage and access cost. In DBMS, all user
groups store information in only one single place.

Data inconsistency: In a file processing system, since there are various copies
of the same data present over different files, a change in the data in one file
will not reflect the change in all other places. For example, a change in student
address in one file maintained by the admission section will not reflect the
change in the address of the same student in another file maintained by the
library department. This causes data incomsistency which is eliminated in
DBMS,

Data dependency: The file processing system requires the user group to
know the physical details of a file such as name of the file, the format of the
file and location of the file in order to access data. DBMS hides these low
level physical details from the user group and offers a mwre convenient
approach to access data from the databage,

Integrity constraints: DBMS offers integrity constraints to a database where
the uger group may specify a type of data or condition on data to be entered
into the database. For example, in a banking database, cach account number
must be positive integers and should be exactly 12 digits. Such integrity
constraints are not possible in & file procesging system.

Concurrency comtrol: To improve overall system performance and faster
response time, multiple users are allowed to simultancously access and update
data. But, this concurrent update results in inconsistent data. The file
processing systems may overcome this problem by locking a whole file even
if only a amall piece of data is needed. DBMS provides locks at record level to
allow concurrent updates without resulting inconsigtent data.

Atomicity problem: Atomicity means either executes an operation entirely or
not at all. For example, if a program ig transferring Rs 5000 from account A to
account B, but meanwhile during the execution of the program a system
failure ocecurs. Due to this, Rs 5000 was debited from account A but it was not
credited to account B, So, we mmst ensure either both debit and credit occur or
none of them occur. It is difficult to provide atomicity in a file processing
system,

10

Check your progress

1. Why do the big commercial companies like Flipkart need database?
2. What are the capabilities provided by a DBMS?

3. What do you mean by data inconsistency and data redundancy?

1.6 Schemas and Instances

A database changes over titne as we insert and delete information but its data types
and constraints are generally fixed A collection of records gtored in a relation (or
table) at any particolar time is known as an instance of the relation. The description of
the overall design of the relation which includes its name, data type of cach attribute
and constraints is called schema. The schema is considered as a template for
describing data to be stored in the relation and it changes infrequently. For example,
Figure 1.2 shows the schema for a student database which specifies the structure of
cach relation in the database but not the actual records. When we store student records
in the schema, it will be referred to as its instances,

Data Item Name Starting Position in Record Length in Characters (bytes)
Name 1 30
StudentNumber 31 4
Class 35 4
Major 39 4

Figure 1.2- Internal storage format for student record.

1.7 DBMS architecture and database independency

Now, we will discuss three-schema architecture of DBMS which achieves three of the
four important characteristic as discussed in section 1.4. Most DBMS including the
modern DBMS are based on this architecture. The major goal of this architecture is to
separate user applications from physical databases. This architecture describes data
stored in a databage at three levels of abstractions as shown in Figure 1.1. The data
description at conceptual and external are defined by data definition language (DDL)
of SQL. The three-schema architecture contains following are three levels:

1. Logical schema or Conceptual level:It describes stored data in 2 database in
terms of the data model of a DBMS, For example in a relational model, it
describes all relations in a database in terms of their data types, constrainis
andl user operations. It describes relationships between different relations as
separate relations, The Logical schemna hides physical storage structure details
of the database from the user and provides physical data independence. The
process of designing a good logical schema is a part of conceptual database
design.

2. Physical schemaor internal level:Physical schemadescribes how the
relations described at conceptual level are actually stored on storage devices
{e.g. digk). It specifies what file organisations and data struchires (indexes) are
used to speed up data access from the database. The process of designing a
good physical schema is a patt of phygical database design.

3. External schema or View level:lt is the highest level of abstraction which
provides only a part of a database as per the need of the external user because
ANy USErs require some parts of information from the database.Each database
hag only one logical and physical schema because it has only one set of
relations in the database, But, it has many external schemas and each is
designed for a particular uger. Bach external schema ig not actually stored in
the database, rather it is computed on demand for each type of usersusing
gxisting relations in the databasge.

View Level

view 1 view 2 LR view n

Conceptual Level

|

‘ Physical Level ‘

Figure 1.1- Three schema architecture”

The important benefit offered by three-schema architecture of DBMS is data
independency which provides the ability for DBMS to modify schemas at one level
without modifying schemas at the next higher level. This architectureprovides two
types of data independency:

1. Logical data independemcy:It provides the ability for DBMS to modify
logical schemnas of a database without modifying its external schemas, The
logical schemas are gencrally modified to incorporate new data types and
constraints to a database.For example,changes in logical schemas include:
adding a record type or data item, reduce the database size by removing record
type or data item or changing constraints. The change in logical schemasonly
results in change in view defmitions and mappings. After the reotganization of
the logical schemas, the external schemas that refers to the user group works
ag before.

2. Physical data independency:It provides ability for DBEMSto modify phygical
schemas of a datebase without modifying its logical schemas.Changes to
physical schemas such as reorganization of files are required to improve

11

12

retrieval and update performance. For example, recrganization of files helps in
improving retrieval performance of zome sections of records, while query to
access these records remsin unchanged. However, the query will execute
faster in this scenario.

1.8 Data model

One fundamental characteristic of a DBMS approach is to hide data organization and
storagefor providing an improved view of data. This is referred to as data abstraction.
Data model is a high-level description of the overall structure of a databage to achieve
this data abstraction and provide how to store and access the data. The structure of the
database refers to the data types, relationships and constraints that apply to the data to
be stored in its relation. Today, several data models exist which are categorized below
based on the type of concepts used for describing thestructure of the database.

Relationzl data model: Relational data model iz the most popular data model which
stores data in tablez consisting of rows and celumns. Each column has an atiribute
such as student ID and student name. Each row which iz also called a tuplecontaing
data related to attributes. Majority of current database systems are based on relational
data models. Throughout this book, we will discuss relational data models. The
relational data model was givenby E.F. Codd in 1970.

Object orlented data model: It iz developed to store audio, video, graphics files in 2
relational database. This data model uses tables to store data, but it is not only limited
to table, This data mode] is sometimes also called a hybrid data model.

Hicrarchical data model: organizes data in a tree like structure where each record
has a single parent. This model was goed for describing many real world entities. This
data model was initially used by IBM in the 60a. But due to the operational efficiency,
it is rarely used now.

Networked data model: Network data model is built on the top of the hierarchical
data model which allows many to many relationships between linked records. This
allows multiple parents to record. Thig data model consists of sets of related records.
Each set has one patent record and one or more member or child records. A record can
be a member or child in smitiple sets. It was popular in the 708, but rately used now.

1.9 Database languages and interfaces

Databage language provides ability to users to design and maintain databases on
computers. There exist 2 mumber of database languages which includes Oracle,
MySQL, MS Access, dBase and FoxPro. However, SQL is the most widely used
database language for both commercial and experimental purposes. We will study
SQL in more detail in ynit V, A database language broadly consists of two parts; Daln
definition language (DDL) and Data manipulation language (DML). DDL ig used to
specity schema of a database. Once the database schema is specified, the database i3
stored with data. DML offers insertions, deletions, retrievals and modifications of the
data stored in the database.

Data Definition Language: Data definition language is used to create modify and
remove the structure of database tables.

Data Manipulation Langnage: Data Manipulation Language provides access and
manipulation of data organised in the database. DML offers four types of operations
on the data;

Insertion of new information in the database
Deletion of existing information from the database.
Modification of stored information in the database.
Retrieval of stored information from the database.

DML is further classified as procedural and non-procedural DML.

Procedural DML: The procedural DML trequires a programming langnage construct
such as looping and conditional statements to retrieve and process each record fiom a
set of records. A user needs to specify bothwhat type of data is needed and how to get
thoze data?

Non procedural DML or high level DML: Thig can be used to specify complex
database operations congisely, The non-procedural DMI. can be issued from monitor
ar terminal. A uger is only required to specify what data is needed and there is no need
to specify how to get those data.

DBEMS provides a number of uger friendly interfaces which are the following:

1 Menu-Based Interfaces for Web CHents or Browsing:These interfaces offer a
list of options called menu to users that help them in formation of requests. A
quety is formed by a step by step process of picking options from the merm.
Here, users do not need to memorize the command and Syntax of the query
language.

2 Fornu-Based Interfaces:These interfaces offer a form to users where they can
fill all entrice to add new data or only some enfrics to retrieve matching data.
These interfaces are degigned especially for naive users.

3 Graphical User Interfaces:They display database schema in diagrammatic form

on screen where users specify a quety by manipulating the schema diagram.
Users use pointing devices like a mouse to gelect a part of the schema diagram

4 Imterfaces for the DBA:Most DBMS provide special commands such as
creating an account, granting account anthorization, changing schema and
changing system parameters. These commands are enly used by DBA staff.

Check your progress

1. How a database schema differs from a databaseinstance?
2. What ig the purpose of three schema architecture of DBMS?
3. Which database language is commercially and widely used for DBMS?

1.10 Database system environment

DBMS is & complex software which consigts of several software components. Figure
1.3 shows these software components in simple form, The top portion of the figure
shows various users and interfaces with which they interact with DBMS. The DBA

13

staff designs database schema using DDL and other special commands. The casual
users uge interactive interfaces such as menu based and form based interaction to
generate queries automatically. These queries are parsed by the query compiler to
check their cotrectness as pet the query syntax. These queries are then optimized by
query optimizer which rearrange the possible operations of the queries and eliminates
the redundancies. [t consults with system catalog for phyzical information about stored
data and generates executable queries. The parametric users who are responsible for
data entry supply parameters through predefined transactions. The lower part of the
figure shows the internal components that are responsible for data storage and
transactions processing. The database is usually stored on disk which is controlled by
the operating system through disk read/write operation, A stored data module of the
DBMS controls access to information stored in the databage. The DDL compiler is
responsible for processing of schema definitions (as specified by DDL language} and
storing schema descriptions into DBMS catalog. The DBMS catalog algo holds other
information such as names and datatypes of data items, constraints, mapping
information among schema, names and size of files. Application programmers write
application programs in high level languages such ag ¢, ct+ and Java. A precompiler
then exiracts DML commands from these application programs. Finally, these
commands are converted into object code by the DML compiler. In the lower part of
the figure, the runtime database processor is responsible for the execution of special
commands, executable queries, and transactions with runtime parameterz. The runtime
databasge processor during itg working interacts with the gystem catalog and stored data
manager. The stored data manager uses basic operating system services to perform
rcad/write operation between disk and main memory. In the Figure 1.3, Concurrency
and backup and recovery are integrated into a single module which helps in
transaction management by tuntime database processor.

Users: DBA Stafl Caspal Usars A lcation Parametine Users
N, | Pr Ters
/ \ l UQ[BIT mers
7 *
»
- 7 F. " . ’
Do Privileged [Interactive | Application
Siatements | Commands Chiery J Programs
T e el - T
. '
oDL] - | | Host
. gy B —_»| Languapge
~ = 3 Procompiler | ;
Compiler | Compiler | } Compilor
— L il
: ¥ Y I
! Ouery | DL Compiled |
| ‘ Optimizer Compiler Transachons |
e 1 ey < . i v
| i T
i ’
@=-—
v T.»
o / o DEA Commands,
L o= | Queries, and Transactions
=458 P - e Runtime Btored
.. s e - - -
Syslem F - 4] f‘juhe'b“-' VD-‘(‘,
Catalog/ « S bt b Concurrency Contral/ bl il
Data Pt B Backup/Recovery
Dictionary Y Subsystams
= sz L |
Stored Databaze InputfOuipul
Query and Transaction from Database

Execution:

Figure 1.3- Component modules of DBMS and their interactions™

1.11

Summary

In summary, you have learned

L]

1.12

ok b

go M &

9.

About databage and database management system.

Advantages of DBMS over traditional file processing gystems.
Different interfaces of DBMS which varies from menu and form based
interfaces to commands and query based interfaces.

Various software components of DBMS such a8 query optimizer, DDL
compiler, DML compiler, umtime databaze processor and stored data
manager.

Terminal Questions

What are various advantages of DBMS over traditional file processing
systems?

What do you understand by database and database management system?
What do you mean by atomicity?

Explain the Three-Schema Architecture.

What are the putposes of phygical data independence and logical data
independence?

What do you understand about data models?

Briefly explain various types of data models?

How doeg databage definition language differs from database manipulation
language?

What is the purpose of database language? Explain types of database
Language.

10. Describe the database system environment with appropriate diagrams.

11.

What are the characteristics of the DBMS approach?

BIBLIOGRAPHY

1-I

2a

R Elmasri, 8 Navathe, Fondamentals of Database Systems, 6th edition,
Addivon-Wesley, 2010.

R Ramunlarishnam, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002.

A Silberschatz, H Korth and 8 Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

15

16

UNIT-2 Relational Data Model

Structure

2.1 Imtroduction

2.2 Objectives

2.3 Basic Relational data model Concepts

2.4 Relational Databages and Relational Database Schemas
2.5 Relational Model Constraints

2.6 Update Operations and Dealing With Constraint Violations
2.7 Summary

2.8 TeminalQuestions

2.1 Introduction

Earliernetwork and hierarchical data models were quiet popular in 70%s
decade. However, today telational data model is used as the primary data model in
almost all commercial data processing applications. The relational data model
represents a database as a group of one or more relations where each relation is a table
with rows and colomns. This simple database representation allows even nave petson
to understand the content of the database and allows us to cagily express even complex
data access operations in a high level language. This chapter will give you basic
concepts of a relational data model. In this chapter, we will discuss how to represent
the relational data model and what are relational constraints, Later, we will describe
how the relational data model handles the violation of integrity constraints.

2.2 Objectives

After studying this unit you will able to:

o Undetstand bagic concepts of relational data model which includes attributes,
tuples and relations, domain of attributes.

» Analyse various types of constraints in a relational data model: domain
constraints, key constraints, entity Integrity constraints and referential integrity
constraints.

s Know which constraints violate during insertion, deletion and updation operation.
And how does DBMS handle when one or more constraints violate.

2.3 Basic Relational data model Concepts

Relational data model represents & datsbase as 8 collection of tables. Each table is
given a wnique name and each row of a table representy a collection of related data
values. The row represents a real world entity or relationship. A table name and
column name help in interpreting meaning of data values of a row. For example,
consider a STUDENT table which containg atiributes: SID, Age, Branch and Marks.
The deta values of any row can be interpreted with its corresponding column names.

SID Age Branch Marks
501 19 IT 68
802 20 EC 66
503 18 EC 67
S04 22 cs 73
505 23 IT 74
506 19 cs 76

Figure 2.1- A STUDENT table.

In the relationsl data mode] terminology, a table is called a relation, a row is called a
tuple, and a column is called an attribute. Each attribute can teke values from its
domain. A domain D i a set of allowed individual values by its attribute and it can be
gpecified by a data type. For example, a domain of an attribute Age is a set of all
possible ages of students and cach age can take integer value between 18 and 30.

2.4 Relational Databases and Relational Database Schemas

In the previous section, we have leamnt about a single relation and its characteristics. A
relational database consists of many such relations and cach relation contains many
tuples. A relational database schema S={RI1,RZ..Rn} is a set of relational schema
RLLR2.Rn and a set of inteprity constraints IC. A relational database state
DB={rlx2...m} of a relational database schema § is a set of relational states rl,r2..m
of relational schemas R1,R2..Rn respectively such that each ri satisfies inteprity
congtraints specified in IC. For example, figure 2.2 shows a relationsl database schemna
UNIVERSITY={STUDENT, COURSE, TEACHERS} of a univervity. The primary
keys are underlined attributes. The STUDENT schema contains attributes SID which
ig unique to each student, S name refers to namesg of students, Contact no refers to
telephone number of students, Date_of Birth symbolizes the birth date of students and
Branch refers to the name of the department. Attribute STD ig the primary key of the
relation. The SID uniquely idemtifies each tuple of the STUDENT table. The
TEACHERS schema consists of attributes FID which contains faculty identifiers of
each faculty, F name refers to name of faculty, Course _id refers to the course taught
by a faculty, Salary refers to monthly salary of a facility. In this relational schema
attributes {FID,Cowrse id} ig a candidate key of the relational schema.

SID S_name Contact_no Date_of Birth Branch

a) STUDENT relational schema

CID 8ID Course_mame FID

17

18

b) COURSE relational schema

=

F name Conrue id Salary

¢) Teachers relational schema

Figure 2.2- A database schema TUNIVERSITY={STUDENT, COURSE,
TEACHERS} of a university.

Generally, when we refer to a relational database, we mean beth its database schema
and itz current database state. The figure 2.3 shows a database state of the
UNIVERSITY database which containg relational states corresponding to each
relational schema STUDENT, COURSE and TEACHERS. Most DBMS provides
SQL to define database schema and various integrity constraints.

SID S_name Contact_no Date_of Birth Branch
5002 Sharad 9915633565 07-04-1994 IT
8003 Dinesh 9915633342 03-03-1996 EC
S004 Anil 9915633987 07-03-1993 EC
5005 Nikhil 9915633325 05-03-1994 Cs
5006 Vikash 9915633127 23-08-1993 IT
5007 Pankaj 9915633675 27-09-1993 Cs
5008 Krighna 9915633872 07-12-1995 IT
5009 Sanjeev 9915633971 17-04-1993 EC
g) Relational states of STUDENT schema

CID SID Course_name FID
Col1 S003 Algorithm Fo01
co2 5004 DBMS F02

Co3 8005 Java Fo3

Cld S006 Bagic Electronics FO4

Co5 5003 Mathematics F01

b) Relational states of COURSE schema,

FID F_name Coorge_id Salary
F01 Anm col 70,000
F02 Anmupma co2 80,000
F03 Pradeep Co3 75,000
FO4 Denesh Co4 90,000

¢) Relstional states of Teacher schema

Figure 2.3- A database state for database schema UNIVERSITY={STUDENT,
COURSE, TEACHERS] of a unfversity.

2.5 Relational Model Constraints

During the datsbase design, we put several restrictions on the values to be inserted and
what types of modification and deletion to be allowed. Constraints are a set of rules
that ensures accuracy and reliability of data stored in a database table. Generally there
are four types of constraints in 2 relational database: Domain Constraints, Key
constraints, Entity Integrity Constraints and Referential Integrity Constraints.

1. Domain Constraints
It states that each attribute's value of a relation should be individual (not multiple
values) and should belong to its valid set of values. A domain constraint of an attribute
is specified by its data type. The data type can be numeric (such 8s integer, long
integer), real numbers (such as float), characters, Booleans, date, time etc.

2. Key constraints
The key constraints include super key, candidate key and primary key.
Super key: A relation consists of many tuples and no two tuples can contain the same
combination of values for all atiributes. A set of attributes of a relation which ensures
no two tuples can contain the same combination of values cotresponding to these
attributes is called a super key. For example, consider two tuples t] and 12 of a relation
R with a super key SK= {Al, A2_. An}as some set of attributes, then

tl [Al, A2...An] #£12 [Al, A2.. An]
There may exist multiple gets of attributes (or subset of attributeg) which hold this

property. For example, {SID, Age}, {SID, Branch} are two super keys of the Student
relation shown in Figure 2.1,

1%

Candidate key:A set of minimum number of attributes of a relation that uniquely
identifies each tuple of the relation is called candidate key.The values of these
attributes of the candidate key are different for their corresponding tuples of the
relation and there exists no subset of these attributes such that their values are different
forallthehxplesofﬂ:erelahon.[tmoneofthesq:erkeysnfare.lahnnthathasa
minimum set of atiributes. In any relation, every candidate key is a super key. For
example, {SID} and {Age, Branch} are two candidate keys of Student relation shown
in Figure 2.1.

Primary key: A primary key is one of the candidate keys of a relation which is
chosen by the databage administrator. Similar to the candidate key, the values of
aftributes of a primary key are different for all tuples of a relation and hence it
uniquely identifies sach tuple of the relationThe primary key is generally shown
underlined in ER diagram and database schema. It is chosen from any ons of the
candidate keys but generally it is one of the candidate keys with single attribute or
minimum atiributes. The other remaining candidate keys are called unique keys or
alternate keys.

3. Entity Imtegrity Constraints
It ensures that a value of & primary key of a relation cannot be NULL. If two or more
tuples of a relation contain NULL values in their primary key, then it cannot uniquely
identify these tuples, And it is not possible to access these tuples,

4. Referential Integrity Constraints
So far we have seen constraints such as key and imtegrity constraints that are
applicable on a single relation. A get of attributes FK of a relation Rl is called a
foreign key of R1 which references ancther relation R2 (or same relation R1) if it
gsatisfies two properties:
1. The foreign key FK must reference the primary key PK of relation R2 and
both keys have the same domaing.
2. Each value of FK in & tuple t1 of R1 either ocours as & value of PK in a tuple
t2 of R2 (e t1[FK]=t2[PK]) or is NULL,

In the above definition of foreign key, the relation R1 is called referencing relation and
the relation R2 is called referenced relation, A referential integrity constraint from R1
te R2 holds if the above two properties. For example, consider the SUBJECT and
STUDENT relation shown in Figure 2.4,2.1. The primary key for SUBJECT relation
is {SID,Subject_code}.

SID Subject_code Subject_name
S02 co1 Operating System
S0z co2 DBMS

S04 C03 Algarithm

804 co2 DBMS

805 co1 Operating System

Figure 2.4- A SUBJECT relation.

The attribute SID of SUBJECT relation refers to the student in STUDENT relation
who opted subject in SUBJECT relation. The SID atiribute in SUBJECT relation
gerves as foreign key which references the primary key SID of STUDENT relation. A
referential integrity constraint from SUBJECT to STUDENT hold if the values of
foreign key SID of SUBJECT for each tuple in SUBJECT should have a matching
vaelue in primary key SID of STUDENT relation for some tuple. Otherwise, the value
of the foreign key SID of SUBJECT relation should be NULL.

Mustrative Question:Given a relation R(ABCDE) with A and BC are its candidate
keys. How many super keys are possible for the relation?
Solution:
Total mumber of super keys = number of super keys with candidate key A
+ number of super keys with candidate key BC
- number of super keys with both A and BC.
= number of subsets of attributes of R which contain A
+ number of subsets of attributes of R which contain BC
- number of subsets of attributes of R which contain ABC
=700 4 753 _ (53
=16+8-4

=20

Check your progress

1. How many super keys are possible for a relation R with n attributes?

2. Which of the following is NOT a superkey in a relational schema with
attributes VW, X,Y,Z and primary key VY?
a) VXYZ
b} VWXZ
c) VWXY
d) VWXYZ

3. 'Which one is correct with respect to RDBMS?
a) primary key C super key C candidate key
b} primary key © candidate key < supet key
c) super key < candidate key S primary key
d) super key S primary key S candidate key

21

22

2.6 Dealing With Constraint Violations in Relational
Database

There are three basic operations i.e. insert, delete and update that cause constraints
violation in a database. Whenever thege operations are performed, DBMS must ensure
that they should not lead to constraints violation. In case of constraints violation,
DBMS must perform the necessary actions.

On Insert Operation: When we insert a new tuple into a relation, we provide a list of
values for each attribute. An insert operation can violate one or more constraints i.e.
domain constraints, key consiraints, emtity integrity constraints and referential
integrity constraints. If an ingert operation violates one or more constraints, a default
action is to reject the insert operation. The domain constraint violates if an attribute
value provided during insert operation does not belong to its domain, The key
constraint violates if an attribute value given during an insert operation already exists
in another tuple for the same attribute. The entity Integrity constraintviolates if a
NULL wvalue iz given to a primary key during a tuple insertion. The referential
integrity constraint viclates during a tuple insertion if the value of foreign key of 2
relation does not refers to any value of the primary key of ancther relation.

On Delete Operation: A delete operation removes a one or mwore tuple from a
relation. The delete operation can violate only referential integrity conatraimts when a
deleted tuple is referenced by some value of foreign key. If a referential inteprity
constraint violates with delete operation, we can choose several options. The first
option is to reject the delete operation. The second option is to perform cascade
(propagate) delete operation which removes all thoge tuples also that reference to a
deleted tuple. For example, congider again STUDENT and SUBJECT relation shown
in Figure 2.1 and 2.4, If we delete a tuple containing SII» S04 from the STUDENT
table, this violates the referential integrity constraints because this tuple is referenced
by other two tuples of SUBJECT relation which contain foreign key values 504. So
we need to delete these two tuples also from SUBJECT relation which contain 04
vahue in its foreign key.

On Update Operation: An update operation changes values of one or more attributes
of & rclation. We handle constraints violation during update operation by following
ways:

» 'When the value of an atiribute which is neither primary key nor foreign key
modifies, the DBMS only ensures that the new value belongs to the domain of
the attribute.

o If an attribute is being modified is pritmary key of a relation, then DBMS
ensures that the new value is not NULL and unique.

* [f we modify a value of foreign key, then DBMS ensures that the new value
refers to some tuple in the referenced relation or it i=s NULL.

e [f the update operation violates referential integrity constraints, then DBMS
has all those options which we digcuszed in the delete operation.

Mustrative Question: The following table has two attributeg A and C where A is the
primary key and C is the foreign key referencing A with on-delete cascade.

o | 3 fn] | L b
e ea e ba| o]] ™

‘What are the tuples that must be additionally deleted to preserve refarential integrity
when the tuple (2,4) is deleted.

Solution: We are given that C is a foreign key which references to primary key A
within the same table with delete on cascade. Therefore when the tuple (2.4) is
deleted, all those tuples which contain 2 ag the value of attribute C are also be deleted.
Hence tuples (5,2) and (7,2) are deleted The tuple (7,2} do not result to any other
tuple which contain 7 as the attribute value of C, o this does not cause deletion of any
other tuple. But when the tuple (5,2) is deleted, only tuple (9,5) is deleted because it is
only tuple which contain value 5 for the attribute C. Therefore, tuples (5,2), (7,2) and
(9,5) must be additionally deleted to preserve referential integrity when the tuple (2,4)
is deleted.

Check your progress

1. LetRl1 (a, b, ¢} and R2 (x, y, Z) be two relations in which a is the foreign key
of R1 that refers to the primary key of R2. Consider following four operations.
a) IngertintoR 1
b) InsertintoR 2
¢) DeletefromR 1
d} Delete from R 2

Explain which of the above operations violate the referential integrity
constraint.

2. Match the following with respect to RDBMS.:

(a) Entity integrity (i) enforces some specific business rule that do not fall
into entity or domain

(b) Domain integrity (i) Rows can't be deleted which are used by other
records
(c) Referental integrity (ii) enforces valid entries for a column
(d) Userdefined integrity (iv) No duplicate rows in a table
2.7 Summary

« We understand basic building blocks of a database which inclhudes attributes,
tuples and relations, domain of attributes.

¢ We explained key constraints: primary key, candidate key, super key and
foreign key.

23

24

s We discussed various types of consiraints in a database relation such as

+ We illustrated which constraints violate during insertion, deletion and
updation operation. And how does DBMS handle when one ot more
constraints violate.

2.8 Terminal Questions

1. What are the constraints, whichviolate when a tuple is inserted in a relation?
2. How does DBMS deal when a deletion of a tuple causes violation of
referential integrity constraints?
3. 'What are the constraints viclated during the update operation and how does
DBMS handle it?
Explain referential integrity constraints with a suitable example.
Explain the vatioug constraints of database relations.
Briefly explain the following terms:
a. Super key
b. Candidate key
¢. Primary key
d. Foreign key

o o

BIBLIOGRAPHY

1. R Klmasrl, S Navathe, Fandamentals of Database Systems, 6th edition,
Addiyon-Wesley, 2010.

2. R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002.

3. A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

UNIT-3Entity Relationship model

Structure

3.1 Introduction

3.2 Objectives

3.3 Basic ER Model Concepts

3.4 Initial conceptual design of the company dataget

3.5 Relationship Types, Relationship Sets, Roles, and Structural Constraints
3.6 Weak Entity Types

3.7 Refining ER Design for the company Database

3.8 Summary of ER Diagram

3.9 Conversion of ER Diagram to tables (or Relational Schema) Summary

3.10 Summary
3.11 Terminal Questions

3.1 Introduction

In the last unit, you studied database schema. Now, in this unit you will learn how to
design database gcherma, We will discugs Entity Relationship (ER) Model which helps
in identifying entities to represent a database and relationships among these entities.
ER model is a tool to model conceptual design of an organisation's databage in terms
of objects and their relationships. It allows us to develop the initial database design of
an organisation and describe what the user wants from his database in a formal and
precise way. In this unit, we will discuss relational database design and associated set
of constraints, We will see how we can transform an entity relationship design to a set
of relational schemas along with an associated set of constraints.

3.2 Objectives

After studying this unit you will able to:
s Understand each component of an ER diagram for any application.

* Draw an ER diagram for any database application.

¢ Transform any ER diagram to relational schemas and identify their attributes,
primary key and foreign key.

3.3 Basic ER Model Concepts

Consider the database of NTPC limited company to illustrate basic concepts of ER
model. Assume the database designers after collecting requirements and petformming
detailed analysis, provide the following description of the database:

1. The commpany has several departtments and each department ie identified by its
unique name and number. There is an employee in each department who
manages it and we need to keep track of when the employee starts managing
the depariment.

25

2. A department manages several projects and each project is idemtified by a
unique name and number and hag a single location.

3. We need to store each employee's name,sex, date of birth, social security
nmumbet, address and salary and. An employee is appointed to only one
department but may work for several projects. In addition to this, there iz 8
need to keep track of each employee's supervisor and mumber of hours per
week an employee works on cach project.

4, There is 2also a need to maintain dependant of each employee for insurance
purposes. Bach dependent includes name, sex, date of birth and relationship
with the employes.

In the subsequent sections we will discuss the step by step process to detive schemas
from above requirements. The Figure 3.1 shows final schemas for the above company
database through .ER Diagram Fach component of the ER diagram will be explained
gradually as we introduce the concepts of the ER maodel.

{ Frame 3 Minit 3¢ Loamse)

o ., e .

, 9 -

. Bdate i Namg > Agdrees ad
o S e VAR e ;

C Ssn 3™ s U Sex o (¢ Loestiong 0
- 7 \ X i Vd e : - a1 e =
o N\) A T WIORKS FOR ==
oMo % T P e = = 3
S L / o ., d . Mama 3 { NMumber
Wi, ey - o

EMPLOYEE 1. (Siwtdate) : Number of employess—| DEPARTMENT |
S W s - = Aty = 1
B omeee < CONTROLS >
(T

w -
e M b

ST WORKS ON PROIECT

| \ ;
t-:upr--rrf.nr.‘.' ot \ Supenisee %\ 4

SRR A, ot
| o E R i —
| P " e S i i e W S A
| &7 SUPERMISION H N o (. Hame)
I.--. _\"l o f'J e .l'__ e -
-

EPENDENTS_OF >

':.._l_-_I‘IL-'I'I|'J[“- e ———

-\?E-_
| DEPEMNIENT

C Mame 10 Sex 10 Bith_date O Relationship

Figure 3.1 - An ER schema for the COMPANY database’l,

Entity: An entity is a real world object or thing that is different from other objects. For
example, each employes in accompany is an entity. Attributes:Each entity is degcribed
by agset of properties called attributes. A set of values (one for each aftribuie)
corregponds to an entity. Or example,an employee entity elcan be described by values
of its attributes name, sex, date of birth, mobile as Raghav ,male,

06/08/1986,6765436785. While, another entitye 2 can be described with its atiribute
values Vishal, male, 02/04/1985, 5643345678, An atiribute is represented in the ER
diagram with an oval containing the name of the attribute. The values of the acen tities
corresponding to itz attributes become part of data in the database.

There are several types of atiributes present in ER model:

Simple and Composite atiributes: So far we have discussed simple atiributes in our
examples such ag sex, date of birth and mobile. But, some attributes can further be
divided into sub parts (or two or more attributes). For example, the attribute name can
be further divided into three atttibutes: first name middle name, last name.
Similarly, the address attribute can be divided into four subpatts or attributes: - Street,
city, state, postal code. In the ER disgram, a composite attribute is attached to its
component attributes with straight lines as shown in Figure 3.2.

Address

& " ="
Py - ~
Street_address Gity State Zip
e \\
// \
Mumiper Street Apartment_number

Figure 3.2- Address is a composite attribute of employee entity set™,

Single valued and multivalued atirfbutes; We have scen that each atiribute hag
gingle value for its entity, For example, the attribute name and sex can have only
gingle values. Such attributes are known as gingle valued attributes. But, there are
many cages where an attribute can have several values possible for a specific entity.
For example, an employee entity el may have one or more than one phone numbers.
Such types of attributes are known as multivalued attributes. As another example, an
attribute colour for a car entity ¢l may have one or more colours. In an ER diagram a
multivalued atiribute is shown by & double oval containing the name of the
multivalued attribute.

Derived attributes: The value of thiz attribute can be derived from the value of
another atiribute. For example, an atiribute age for employee entity el can also be
determined from its date of birth attribute. The date of birth attribute is referred to
as base attribute or stored attribute.

An attribute may take nnll vahie, if an entity doecs not have a value for it. The mull
value may be treated as "not applicable”, as the value does not exist for some entity.
For example, some employees may not have middle name. A null value may also
indicate "unknown value" or "missing value" for its attribute. For example, if the
date of bitrth atiribute of an employee is null, then it is treated as missing value
because every employee must have 8 date of birth.

Entity Types, Entity Sets: A collection of entities with the same attributes is called
entity type. For example, an "employee” entity type will have the

same attributes for each of its employee entitics but have different attribute's values.
Each entity type in a database iz described by its name and attributes. In the ER

27

28

diagram, an entity type is represented by a rectangular box contain in gentity type
name as shown in fgure 3.3.An entity set is a set of the same type of entities that have
the same attributes. In other words,an entity set iz a collection of all entities that
correspond to the same entity type in a database, For example,a set of all departments
in a cormpany it known as an entity set department. Simidlarly,a get of all employees in
a company form an entity set employee.

EMPLOYEE
Name, Age, Salary

el: Denesh Singh, 32, 49000
¢2: Vikash Kamal, 31, 42000

en: Sharad\vhrsimey, 30, 45000

r
—

Figure 3.3- An EMPLOYEE entity type has an entity set with entities el, e2...en
23 elements of the entity set.

Key sttributes of an entity type: Anaffribute in an entity type that has district
values foreachemityinananﬁtyset i called key attribute. There can be one or more
key attributes in an emntity type. In an ER diagram, a key attribute is denoted by its
underlined name inside an oval The key attribute is capable of uniquely identifying
each entity in an entity set.For example, department name is a key attribute for entity
type departments since not we department shave the same narme Similatly,social
security number attributes no iz a key atiribute for employee entity type.Some
times. acombination of sgeveral atiributes serveasa key atiribute.This type of
key attribute is called composite key. The composite key is also capable of uniquely
identifying each entity in an entity set.

3.4 Initial conceptual design of the company database

We can now start ER. diagram with initial design of the company database which will
be further refined after introduction of relationship concept. Based on the requirements
described in in section 3.3, we have identified four entitics for the company databasge:

1. Department: The entity type department has several attributes. These
atiributes are Name, Number, Locations, Manager, and Manager start date.
Here, the attribute name and mumber are key attributes while, Locations is a
multivalued attribute as shown in Figure 3.4.

o S A
L NarnD Numb(irj)
28 2
R >] /“__“‘)
Quocatons)~{ DEPARTMENT | ansger

f::hManage-" ,start_datgf:)

Figure 3.4- A Department entity type!™.

2. Project: The entity type Project has atiributes: Name, Number, Location, and
Controlling_department. Here, both Name and Number are key attributes as
ghown in Figure3.5.

PROIJECT

Controlling_department

Figure 3.5- A Project entity type’.

3. Employee: The entity type Employee has Name, Ssn, Sex, Address,
Salary,Birth date, Department, and Supervisor as attributes (as shown in
Figure3.6). Here, the Name attribute is a compogite attribute. While, the
attribute Ssn is the only key attribute in it.

Fname @ Lname)f @
iy T i (\

Name ECi \ ‘J
(E.Is C‘S—aieﬂr) - =
Department _@;@

—

— EMPLOYEE
Flgure‘:lG-AnEmphyeeentltytypem

4, Dependeni; The entity type Dependent has aftribytes; Employes,
Dependent name, Sex, Birth date, and Relationship as shown in Figure 3.7,

@!e’ Employee
Relationship Dependent name

DEF'ENDENT
Figure 3.7- A Dependent entity type™.

Check your progress

1. Given the basic ER and relational models, which of the following ix
INCORRECT?

a) An attribute of an entity can have more than one value

b} An attribute of an entity can be compogite

¢) In 2 row of a relational table, an sttribute can have more than one
value

d) In a row of a relational table, an sitribute can have exactly one value
or a NULL value

3.5 Relationship Types, Relationship Sets,Roles, and
Structural Constraints

In the previous section, we noticed several relationships which exist among different
entity types.These relationships exist whenever one entity type is associated with
another entity type in some way. For example, there exists a relationghip that
associates an employee Vikash Kamal as the manager of the HR Department.
Similarly, we can specify a relationship that associates a project "e-training"” that is

29

30

controlled by the IT department. In the ER. model these associations among different
entity types are represented through relationships. Each relationship is formally called
a relationship type R that shows association among in entity types E1, E2, ...

En. A relationship set is a set of the same type of relationships. Formally,

a relationship set R congists of a get of tuples where each tuple consists of entities (el,
£2, ..., en) representing a relationship such that el,e2.....en €E1,E2, .. En respectively
.In other words, the relationship set R is a subset of the Cartesian product of entity set
E1xE2,....xEn Each tuple in the relationship contains exactly one entity from each
participating entity type and they all are related to each other in some way.

EMPLOY EE WORKS _FOR DEPARTMENT
- e e
.'/ \'\ P & 4 \\ . \'_
oy e —'.\— = T_’ A
1 Iz) ‘I e
Nt \ 7,
| e | " = ;
| | Ill_ B A -
F . — o
1 o s ¥ |--/
25 . | = < /_/,/xl g / I'.
[| = o |/ \
l o -I 5 ”/ ;
\ - .-i',-" 1 ,—/:' - 3
A |
- ’
b e TR
-

® &)

Figure 2.8- (8) A relationship set WORK FOR between two entity types
EMPLOYEE and DEPARTMENT. (b} A relationship set SUPPLY among three
entity types SUPPLIER, FROJECT and PART!",

For example, the Figure 2.8 shows a relationship set WORK FOR between two entity
types Employee and Department. In this relationship set, employee entities el,e3 and
et works for the department dl; employee e and o4 work for department d2;
employee &5 and 7 work for departtment d3. In BR diagrams, the relationship types
are represented with diamond shaped boxes which are conmected to participating entity
types by straight lines. A relationship name is shown ingide the diamond shaped box.

Structure Constraints on Binary Relationship Types

Degree of a Relationship Type: The degree of a relationship type R is the number of
entity types participating in the relationship type R. A relationship type of degree 2 is
called binary relationship and a relationghip type of degree 3 is called ternary
relationship.

For example, the WORK. FOR relationship type shown in Figure 2.8(a) is a binary rel

ationship because it involves two entity types EMPLOYEE and DEPARTMENT.
The relationship type SUPPLY as shown in Figure 2.8(b) involves three entity types
SUPPLIER, PROJECT and PART iz a termary relationship. The relationships can be
of any degree but, binary relationships are most cotrmon.

Cardinality Ratip for Binary Relationship: The cardinality ratio for a binary
relstionship is the number of entities of an entity type to which another entity of
another entity type can be associated via a relationship type. For example, the binary
relationship type WORK. FOR involving entity types DEPARTMENT: EMPLOYEE
i8 one to many {1:N) because each department employs many employees, but an
employee works for only one department, Similarly, the relationship type MANAGES
(as shown in Figure 3.9) between entity types DEPARTMENT and EMPLOYEE is
one to one (1:1) because a department is manaped by only one employee called
manager and an employee as a manager manages only one department. Likewise, the
relationship type WORK._ON (as shown in Figure 3.9) between two entity types
EMPLOYEE and PROJECT has & cardinality ratic many to many (M:N) becanse an
employee works for several projects and a project has several employees. This way,
the posgible cardinality ratios for binary relationship types are one-to-one,one to many,
many to one and many to many. In the ER diagram, the cardinality ratio between twao
entity types related by a relationship is written on their respective lines connecting to
each other by the relationship,

Participation Consiraints: A participation of an entity set E in a relationship set R
can be cither total or partial participation. The participation ig said to be total if cach
entity in B participates in at least one relationship in R. Otherwise, the participation is
said to be partial, if only some entity in E participates in relationship set R. For
example, the participation of an EMPLOYEE entity set in a relationship set
WORK FOR (as shown in figure 3.9) is total because every employee works for a
department. There i8 no employee who does not work for any department. But, the
participation of the entity the set Employee in relationship set MANAGES (2s shown
in Figure 3.9) is partial because every employee iz not a manager who manages a
department. In the ER diagram, a partial and a total participation i represented by a
gingle solid line and double solid lines respectively. The cardinality ratio and
participation constraints together are called structural constrainte of 1 relationship get.

3.6 Weak Entity Types

An entity type that does not comtain sufficient attributes to form a primary key
is kmown as a weak entity type. Onthe other hand, an entity type that has a primary
key is called as strong entity set. The entities of a weak entity type cannot be uniquely
identificd by their own So, it must be associated with a strong entity
type. The strong entity type associated with the weak entity type is calledan
identifying or owner entity set. The relationship type that associates the weak entity
type with the identifying entity type is called an identifying relationship. For example,
consider Figure 3.9 where a weak entity set DEPENDANT is associated with a strong
entity set or identifying entity st EMPLOYEE with an identifying relationship
DEPENDANT_OF.

31

32

A weak entity set always has a total participation with its idemtifying relationship
becauge the weak entity set cannot be identified without its identifying entity set. So,
the participation of the weak entity set DEPENDENT with ite identifying relationghip
DEPENDENT OF is total (indicated by double lines) ag shown in figure 3.9, This
means that every dependent entity must be related to some employee entity.
Although, a weak enfity type does not have a primary key, it has a partial key or
dmcrmnﬂurahchcand:ﬁarmﬂateamnngaﬂthuseenﬂﬂesthﬂmdspmdﬁntona
strong entity, It is a set of one or mere atiribuytes which can yniquely identify each
weak entity for a given owner entity. In our example, the dependent name is unique
for every employee, however it is not unique for dependent entities. In ER diagram,
weak entity type and identifying relationship are represented by double rectangle and
double diamond respectively. The partial key of a weak entity type is denoted by a
dashed line.

1.7 Refining ER Design for the company Database

We can now refine the ER. diagram shown in Figure 3.1 by removing some attributes
from entity types that are refined into relationships. The following relationship types
along with its cardinality ratio and participation constraint are identified from the
requirements specified in section 3.3.

1. MANAGES: It is 2 one to one relationship between EMPLOYEE and
DEPARTMENT. The EMPLOYEE participation in the relationship
MANAGES is partial because every employee cannot be manager for some
department. However, DEPARTMENT participation is total because every
department must have a manager. WORKS FOR: iz a one to many
relationship between DEPARTMENT and EMPLOYEE entity types. The
participation of both department and employee entitics are total because every
department must have some employees and each employes must be associated
to a department,

2. CONTROLS: It iz a one to many relationship between DEPARTMENT and
PROJECT entity types. The participation of DEPARTMENT is partial
becauge some depﬂ.rtmr.ms may not control any pro_]ects While, the
participation of PROJECT in CONTROLS relationghip type is total because
each project must be controlled by a department.

3. SUPERVISION: It is & one to many relationship between EMPLOYEE (as
supervisor role) and EMPLOYEE (as supervisce role). The participation of
both side entity types in the SUPERVISION relationship is partial becanse
every employee cannot have a supervisor or can be a supervisor.

4, WORKS ON: It is 2 many to many relationship between EMPLOYEE and
PROJECT becanse a project can have several employees working on it and
vice versa. There is total participation for both EMPLOYEE and PROJECT
becauge every employee must work on some project and every project must
have some employees.

5. DEPENDANTS OF: It is a one to many relationship between EMPLOYEE
and DEPENDANT. The participation of EMPLOYEE is partial, while that of
DEPENDANT ig total in the DEPENDANT_OF relationship type.

Figure 3.9 shows a refined ER Diagram after including the above refinement process.

—

{fm\ f-’-h?mt_uh‘ Lnama

Namo @

DEPARTMENT

(0,N} | Cantroling
Depariment

WORKS_FOR !
£ “‘pl‘:’?"“e Departmv nt

CONTROLS
Controlled

/‘{r’\m‘)
e
(1,1) | Project

WORKS_ON s PROIECT

DEPENDENTS_OF

{1,1)] | Depandant

DEPENDENT

Figure 3.9- Refilned ER Diagram of the company database!!.

Check your progress

1. Inan Entity-Relationship (ER} model, suppoge R is a many-to-one
relationship from entity set El to entity set E2. Assume that E1 and E2
participate totally in R. and that the cardinality of E1 is greater that the
cardinality of B2. Which one of the following is true about R?

a) Every entity in E1 is associated with exactly one entity in E2.
) Some entity in Bl is asgociated with more than one entity in E2,
¢) Every entity in E2 is associated with exactly one entity in E1.
d} Every entity in B2 is associated with at most one entity in El.

38 Summary of ER Diagram

The set of various notations of ER diagram that we have used so far are summarized in
Figure 2.10.

33

34

Swrmibal Meaning

Enisy

el Enviaty

—
—
O

Indenityng Eelasonshio

—C_) Adiirbaiter
..@ Koy Adiritwits

= ! Mubineelued Atinbute
-

Cosmposies Aftribuds
e Dlarved Afinbuie

Tetal Partiecipateon of £, in K

Cardinadty Ratio 1- MW for E:2_m R

5 {rmir, max)
‘.I_E Stuctural Congtraint {min, max)
on Pardicipaton of £n 7

Figure 2,10- Summary of notation of ER dlagram!”,

Naming Conventions: In the ER Diagram, wa choose names of entity types and
relationship types that convey meaning of them. Singular nameg are given to cach
entity type because this name represents to each individual entity of the entity type.
The name of cach entity type and relationship type is written with capital letters and its
attributes name is written with capitalized letters. The role names in the relationships
are written with lowercase letters. Commonly, entity types atiributes names are nouns,
while relationship types names are verbs. The relationship types names are chosen in
such a way that the ER diagram is readable from left to right and top to bottom.

Design Choices for ER Diagram:

The gchema degign in the ER Diagram is an iterative refinement process. Initially, an
initial design of schema is proposed which is then refined iteratively until the desired
design iz achieved. This refinement process I8 described through following
considerations:

1. A concept is first modelled as an attribute and then it is refined into 2
relationship. Often, two complementary attributes are refined to a relationship
type and these attributes are then removed from respective entity types.

2. An attribute which exists in several entity types is refined as a new entity type.
For example, if an atiribute Dependent occurs in multiple entity types
STUDENT, INSTRUCTOR and COURSE, then we will make 8 new entity
type DEPARTMENT.

3. An entity type which relates to only one entity type is refined ag an sttribute of
the other entity type. For example, if an entity type DEPARTMENT relates to
another cnotity type STUDENT, then it is refined as a new attribute in
STUDENT entity type.

3.9 Conversion of ER Diagram to tables (or Relational
Schema)

In this section, you will learm how an ER Diagram can be converted to relational
schemas. The relational schemas algo incorporate various consiraints ag represented in
ER Diagram.

Representation of strong entity set:
1. Strong Entity Set with simple attributes-

A strong entity se¢t E containing only simple descriptive attributes al,a2......... an can
be converted into a relational schema E with attributes al,a2......an. The primary key
of the strong entity set serves as the primary key of the relational schema. For
example, consider the entity set PROJECT of the ER diagram in Figure 3.9, which
comtains three atiributes: Name, Number and Location. This entity set can be mapped
to a relational schema PROJECT with the attributes:

PROJECT{Name, Number, Location)

Any one of the atiributes: Name or Number (as chosen by database administrator) can
Rerve as a primary key for the relational schema. Here, Name i8 the primary key for
the relational schema PROJECT.

2. Reprezentation of Strong Entity Set with complex attribmtes-
An entity Set E containing composite attributes is transformed to a relational schema
by separating each compogite attribute to its component attributes. For example, the
entity set EMPLOYEE in Figure 3.9contains a composite atitribute Name and its
component attributes are FName, Mname and Lname. The relational schema derived
from the entity set EMPLOYEE includes atiributes Fname, Mname and Lname along
with other simple attributes.

EMPLOYEE (88n, Bdate, Fname Mname,Lname, Address, Salary, Sex)

Representation of weak entity set: Consider a weak entity set A with
attributes a1,82,..am and its identifying entity set B consists of atiributes
bl,b2.....bm The weak entity set A is transformed into a relational schema A with its
primary key as a combination of its discriminator attribute and the primary key of B
along with following attributes:

{ala2........ am} Union {b1,b2...bn}
While creating the primary key of the weak entity set, we also create a foreign key

constraint on A. The attributes bl,b2....bn reference the primary key of another
relation B.

35

36

For example, consider the weak entity set DEPENDANT and its identifying entity set
EMPLOYEE in Figure 7.15. The weak set DEFENDENT is transformed to a
relational schema DEPENDANT with the following attributes:

DEPENDANT (Natne, Sen, Sex, Birth_date, Relationship)

Here, the primary key is Name, Sgn and the foreign key Ssn references the primary
key of the EMPLOYEE relation.

Representation of Relationship set: Consider a relationship set R with
attributes al,a2,....am formed from union of primary keys of participating entity gets in
R and b1,b2....bn are its deceptive attributes {if any). We can represent the schema of
relational 3¢t R with following attributes:

{ala2........ am} Union {bl1,b2.,.bn}

A.}:olillmnryKey:ThepﬁmrymoftherelaﬁmschemaRmbechmenas
OWE:

1. Inabinary one to many of many to one relationship set, its primary key
ig the same ax the primary key of the patticipating entity set from many
gide of the relationship set.

2. The primary key of a binary one to one relationship set is taken from
the primary key of cither of the participating entity sets.

3. The primary key of a many to many relationship set is the union of
the primary keys of cach participating entity set.

B. Foreign Key:We can also create a foreign key constraint on the relationship
set R. The attributes of R which are the primary key of its participating
entity set act as a foreign key of the relational schema R. For example
consider the relationship set MANAGES (gshown if Figure 3.9} which involves
two participating entities EMPLOYEE and DEPARTMENT. The primary keys of
the EMPLOYEE and DEPARTMENT entity sets are Ssn and Name respectively.
Start data is a descriptive attribute of the relationship set R. The primary key of
the relation schema R will be the union of the primary keys {Ssn, Name}. We can
create Sgn attribute as the foreign key of relation schema R which referencing the
primary key of EMPLOYEE entity set.

Redundancy of schemas: A relational schema of a relationship set R will be
redundant and does not present in the database, if the relational set R links a weak
entity set to a strong entity set (i.e. one of the participating entity set is weak).For
example, consider the relationship set DEPENDENTS OF which involves
EMPLOYEE and DEPENDENT as the participating entity sets. Since, the
DEFENDENT is a weak entity set, its relational schema contains atiributes: Name,
Ssn, Sex, Birth date, Relationship. The relational schema of DEPENDENTS_OF
comtaing attributes: Name, Ssn. So every tuple which present is DEPENDENTS OF
relation would also be present in DEPENDENT relation. Hence, DEPENDENTS OF
schema is redundant and should not be presented in the database.

Combination of schemas:

Consider a relationship set AB involving entity set A and B. As discussed earlier, we
require three schemag A, B and AB to represent these entity and relationship sets. In
order to reduce redundancy further, we can combine the schema of relationship set as
follows:

1. Many to one relationship set: If the relationship set AP is many to one from
entity set A to entity set B and participation of entity set A in the relationship
get AB ig total (i.c. every entity in the entity set A participates in the
reletionship zet AB). Then we can combine the schema of relational set AB
with the schema of entity set A and its attributes are the union of atiributes of
both schemas A and AB.

2. One to one relationshdp set: If the relationship set AB is one to one from an
entity set A to entity set B, then we can combine the schema of relationship
get AB with cither entity set A or B. The primary key of the combined schema
iz the primary key of the participating entity set schema into which the
relationship set schema is merged.

We remove the foreign key constramt of the relationship schema, if it references to the
primary key of the entity set schema into which the relationship schema is merged We
add other foreign key consiraint to the combined schema which referencing to other
remaining entity set schema.

Reprezentation of Composite and Multi valued Attributes: If en entity
get congigts of a compogite atiribute, then cach component atiribute ig included asa
separate attribute in the entity set schema. We discards the composite attribute itself in
the schema. For example, the EMPLOYEE entity st containing a composite attribute
“Name™ will contain attributes in its schema: Fname, Minit and Lname.

If an entity get E containg a multivalued attribute M, then a separate schema is created
for M, which contains an attribute M along with the attributes of the primary key of
the entity get E. All the attributes of the new relation M serve as its primary key. The
attributes of schema M that aciz as the primary key of entity set E serve as foreign key
referencing to primary key of the entity set E. For example, consider the multivalued
attribute Locations of DEPARTMENT entity set. We create a relation Locations with
following attributes:

Locations{Locations, Name)
The primary key of the relation Locations is Locations, Name. The Name attribute of

Location schema is the foreign key referencing the primary key Name of the
DEPARTMENT schema.

IMustrative Question: Consider the following ER diagram.

37

38

b) What is minimum mumber of tables needed to represent M, N, P, R1,
R2.
¢} What are the atiribute set for these tables?

Solution:

Entity set: In the above ER diagram M and P are strong entities set, while N is 8 weak
entity zet. We require 3 tables to represent each entity set. The weak entity set when
mapped to relational table, its discriminator attribute N1 along with the primary key
P1 of entity set P act as the primary of table N, The relation schemas of these three
tables are:

M(M1,M2,M3)
P(P1,P2)
N(N1,P1,N2)

Relationghip set: The above ER diagram contains two relationship sets R1 and R2.
Algo, the participation of the entity set M and N are from many side of relationghip set
R1 and R2 respectively. The participation of entity set M and N are total which are
indicated by double lines without arrow. So the relational schema of R1 and R2 can be
merged with relation schema of entity sets M and N respectively. The primary key of
the combined schema is the primary key of the entity set schema into which the
relationship set schema is merged. Each combined schema M and N also requires an
additional attribute P1 as a foreign key. Therefore relationship set R1 and R2 do not
require any table separately but the table M and N will now comain additional
attribute P1 which iz the foreign key.

M(M1,M2,M3,P1)

N(N1,P1,N2,P1)

P(P1,P2)

Therefore the sbove ER diagram requires minimum 3 tables.

Check your progress

1, 'What ig the min and max number of tables required to convert an ER diagram
with 2 entitics and 1 relationship between them with partial participation
constraints of both entities?

2. Let Bl and E2 be two entities in an B/R diagram with simple single-valued
attributes. R1 and R2 are two relationships between E1 and E2, where R1 is
one-to-many and R2 is many-to-many. R1 and R2 do not have any atiributes
of their own. What is the minimum rmmbet of tables requited to represent this
gituation in the relational model?

3.10

Summary

In summary;

3.11

W

“oe

10.
11.

12
13.
14,
15.

Entity type, entity set, weak entity set and strong entity set in ER diagram.

We explained different types of aftributes in ER diagram which includes:
Single valued attribute, multivalued attribute, simple attribute, composite
attribute, derived attribute.

We discussed Relationship Types, Relationship Sets, Roles, and Structural
Constraints of ER diagram along with total and partial participation in a
relationship set.

We illustrated how the cardinality ratic and participation constraints of a
relationship set are represented in the ER diagram.

We learned various notations and naming convention in ER diagram.

We explained how an ER diagram can be reduced to relational echemas and
how their attributes, primary key and foreign key are determined.

Terminal Questions

Differentiate between the following:

a. Single valued attribute vz multivalued attribyte

b. Simple attribute vs composite attribute

What is the derived attribute?

Explain briefly the following terms,

a, Entity

b. Attribute

c. Key attribute

d. Composite key

. Degtree of a relationship type

Describe the purpose of ER modelling,

How do the cardinality ratio and participation constraints of a relationship set

are represented in the ER diagram.
How does the total participation differ from partial participation im a
relationship get?
What is & weak entity set? How a weak entity set is represented in the ER
diagram?
‘What do you mean by partial key or discriminator of a weak entity set? How i8
it represented in the ER diagram?
How any entity sef in an ER diagram can be fransformed into a relational
schema.
Mlustrate with an exarmple how the primary key of a relational schema derived
from a weak entity set is chosen.
Explain with a simple example how an entity set containing a composite
attribute is transformed to a relational echema.
What are various narming conventions in ER Diagram?
‘What are Design Choices for an ER Diagram?
How ig a primary key and forcign key of a binary relation schema determined?
Briefly explain redundant schema during reduction to relational schema from
ER diagram,

39

16. Explains the scenaric when a relational schema can be combined with one of
its participating entity sets.

17. How do we represent compogite and multivalued attritrutes in the schema of the
entity set?

BIBLIOGRAPHY

1. R Elmasri, § Navathe, Fundamentaly of Database Systems, 6th edition,
Addison-Wesley, 2010,

2. R Ramakrishnan, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002,

3. A Sliberschatz, H Korth and 8 Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

MBA-3.54
Master of Business
Administration

A 1 T = e T
Uttar Pradesh Rajarshi Tondon

open University Database
Management System

Block

2

Query Language and Database Design Concepts

Unit-4 Relational Algebra 44
Unit-5 Structured Query Language 59
Unit- 6 Functional Dependency Theory 74

Unit-7 Normalization 89

41

42

MBA-3.54

Course Design Committee
Prof. Ashutosh Gupta

Chairman
Director (In-charge)

School of Computer and Information Science, UPRTOU Prayagraj
Prof. Suneeta Agarwal Member

Department of CSE

MNNIT, Prayagraj

Dr. Upendra Nath Tripathi Member

Associate Professor, Department of Computer Science
Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare Member

Associate Professor, Department of Computer Science

University of , Prayagraj

Ms. Marisha Member
Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member
Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Course Preparation Committee

Mr. Manoj Kumar Balwant Author(Block 2 : Unit 4, 5, 6, 7)
Assistant Professor (computer science)
School of Sciences, UPRTOU Prayagraj

Dr. Abhay Sexena Editor
Professor and Head, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer & Information Sciences, UPRTOU, Prayagraj

Mr. Manoj Kumar Balwant Course Coordinator
Assistant Professor (computer science)
School of Sciences, UPRTOU, Prayagraj

UPRTOU, Prayagraj-2022
MBA-3.54- Database Management System
ISBN —

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or

any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open

University.

Printed and Published by Prof. P.P. Dubey, Registrar, Uttar Pradesh rajarshi Tandon Open
University, 2022

Printed By.- M/s K.C.Printing & Allied Works, Panchwati, Mathura -281003.

BLOCK INTRODUCTION

The second block is organized into four units. The fourth unit gives a basic idea of
relational algebra upon which the database language SQL is designed. This unit
explaing uge of unary relational operations (Select, Project and Rename), binary
relational operations (CROSS PRODUCT, JOIN, DIVISION) and relational algebra
operation from Set Theory (union, intersection, set difference). The fifth unit starts
with similarities between SQL and relational algebra. It illustrates the order in which
any SQL query evaluates, After that it explaing nested query and correlated nested
query and demonstrates how these queries are evaluated. Finally, it introduces various
SQL commands for defining schema, changing schema and specifying basic
constraints. The sixth unit presents the concept of functional dependencies. It
illustrates how to determine these functional dependencies of any relational instance.
It introduces attribute clogure which helps in finding candidate keys of a relation from
its fonctional dependencies. It presents functional dependency set closure,
minimization of a functional dependency set and determining when two functional
Dependency Sets are said to be equal. The last umt discusses various anomalies which
arige due to the redundancy of data and the concept of normalization to get rid of
anomalies and the data redundancies. It explains decomposition of a relational schema
to different normal forms to ensure lossless amd dependency preserving
decompogition. Finally, it discusses multivalued functional dependency and join
dependency upon which the fourth and fifth normal form are based.

43

UNIT-4 Relational Algebra

Structure

4.1 Introduction

4.2 Objectives

43 Unary Relational Operations: Select, Project and Rename

44 Binary Relational Operations: CROSS FRODUCT, JOIN and DIVISION
4.5 Relational Algebra Operation from Set Theory

4.6 Summary

47 Terminal Questions

4.1 Imtroduction

SQL is considered ag major reason for success of the relational database. It is a
database language for data definitions, manipulations and updates. SQL is based on
relationsl algebra and tuple relationsal calculus because it borrowed concepts from
them. The relational algebra provides & basis for implementing and optimizing query
languages such as SQL. In this unit, we will discuss various relational algebra
operations such as o(Segma), x (pi) and p{tho). The result of any relational algebra
expression always gives a Relation. The operations o(Segma), z (pi) and p{rho) are
unary opcrations because they work on the single relation while others are binary
operations,

4.2 Objectives

After study of this unit you will able to

Understand basic ideas of relational algebra.

Use unary relationa] operations: Select, Project and Rename,

Analyze binary relationsl operations: CROSS PRODUCT, JOIN, DIVISION.
Explain relational algebra operation from Set Theory: union, intersection, set
difference.

4.3 Unary Relational Operations: Select, Project and
Rename

Selection: The SELECT operation chooses only those tuples from a relation R that
satisfy a selection condition. In other wards, it picks some of the rows of a table and
discard so there rows baged on a gpecified condition. A general syntax of the selection
operation is:

Here, the symbol o called as segma represents selection operstion. The selection
condition is specified with an expression that puts a condition on the attributes of
relation R. The R can also be any relation algebra expression whose result is a relation.
For example, consider the two statements given below.

Z pan Ne=2(STUDENT)

O marks rERcENTAGE-80(S TUDENT)

The first statement retrieves the tuple of STUDENT telation where student roll
number ig 2. The second statement selects those tuples from STUDENT relation

whose percentage of marks is greater than 0. The result of these statements are shown
in Figure 4.1.

Roll no Name Stream Percentage Marks
1 Sharad Mathematics 77
2 Anil Mathematics 76
3 Dinesh Biology 82
4 Panksj Commerce 81

{s} STUDENT Table

Roll noe | Name | Stream Percentage
Marks
2 Anil Mathematics | 76
{t) ool Nz STUDENT)
Roll no | Name | Stream Percenta
ge Mark
5
3 Dinesh | Biology 82
4 Pankaj | Commmerce |81

{t) © manks rErcaNTAGE-80(STUDENT)
Figure 4.1 — Regult of yelection operator on STUDENT Table.

The general sttucture of <gelection condition™> of gelection operation consizts of
following clauses:

<attribute name><comparison op><constant value>
or
<atiribute name><comparison op>-<attribute name>

Here <attribute name™ can be any attribute of relation R, <comparison op> can be any
one of the operators {=, <, %, >, >, #}, and <constant value> is a constant value from

45

the attribute domain. The multiple selection conditions can also be combined by the
standard Boolean operators {and, or, and net} or {A, v, —}. For example, to retrieve
students from STUDENT relation who opted for mathematics and their percentage of
marks less than 40 with the following SELECT operation:

(Bubject="mathematics' AND Percentagn Marke<40} (STUDENT)

A sequence of SELECT operations can also be applied and this can be done in any
order. The sequence of SELECT operations can be specified with AND conjunctive as
shown below:

o<cond]l>(o<cond2>(...(o<condn>(R)) ...)) = a<condl> AND<cond2> AND...AND
<condn> (R)

In SQL query, the SBELECT condition is specified with WHERE clause. For example,
the SQL query for the relational algebra expression “O(spyer-mabemsi AND
Percentage Markeay (3 TUDENT)" would be:

SELECT *
FROM STUDENT
WHERE Subyject="mathematics' AND Percentage Marks<40;

Projection: The PROJECT operation retrieves tuples with certain atiributes as
speoified in the operation and discards others. In other words, if we want to select
tuples containing only certain column so fatablethen we use the PROJECT operation.
A general gyntax of the PROJECT opetation is:

Tcoetribane tier-(R)

Here, = (pi} symbol is the PROJECT operation, and the <attribute list> is a set
of desired attributes of the relation R that we want to include in the final relation.
The R can be any relational algebra expression whose result is a relation. The
result of the PROJECT operation is 8 new relation which contsins all tuples of the
specified relation but corresponding to attributes specified in the <attribute list> and
they will appear in the same order. For example, the following statement as
shown in Figure 4.2 will give ftuples with student's Name and Percentage Marks
from STUDENT relation.

Name Percentage Marks
Sharad 77
Anil 76
Dinesh 82
Panksj 81

If <attribute list> contains only nonkey attributes of R then duplicate tuples are
possible. The PROJECT operation removes duplicate tuples so that it results in a set of
distinet tuples to form a valid relation.

In SQL query, the attribyte list is specified with SELECT clause, For example, the

SQL query for relational algebra expression "Mome md Percemtags Madks(S 1T UDENT)" would
be:

SELECT DISTINCT Name, Percentage Marks FROM STUDENT;

Rename(p): Rename operatar p(tho) is used to give & new name to a relation, A
general syntax for rename operation ig:

p(Relation2, Relation])

For example, to rename a STUDENT relation to ALUMNIL we can use rename
operator ag follows:

p(ALUMNI, STUDENT)

We can algo use rename operator o create a relation STUDENT NAMES with
Roll no amd Name from STUDENT relation and this can be done as follows:

p(MATHSTUDENT, Tgor1, K0 Nane{O(subjec=mathemusicay(S TUDENT)))

In SQL query, the rename operation is specified with an AS clause. For example, the
SQL query for above relational algebra expression would be:

SELECT DISTINCT Roll No, Name FROM STUDENT AS
MATHSTUDENT WHERE Subject="mathematics'

Check your progress

1. Supposge Ri{(A, B} and Rs(C, D) are two relation schemas. Let »y and r» be the
corresponding relation instances. B is a foreign key that refers to C in Ro.
Consider the relational alzebra expresgion given below:
ma(r1)-—mc(r2)=0
If data in r; and r; satisfy referential integrity constraints, Explain is the above
expression ALWAYS TRUE?

2, What is the optimized wversion of the relation algebra
expression Ta(Taz (o (or(r)))) where A1, A2 are sets of attributes in » with A1
€ A2 and F1, F2 are Boolean expressions based on the atiributes in r?
28) RailEFiam)
b) Rar(Sgvi ([T))
) Ma{Ogine ()
d) maxOEve(n)

4.4 Binary Relational Operations: CROSS PRODUCT,

JOIN and DIVISION

CARTESIAN PRODUCT (CROSS PRODUCT) Operation: The cross
product operation is denoted by X, For two relation R(Al, A2, ..., An} and S(B1, B2,

47

..., Bm), the cross product operation R(Al, A2, ..., An) x §(Bl, B2, ..., Bm) joins these
two relations to give 8 new relation @ such that tuples in the r¢lation Q is combination
of each tuple from relation R with every other tuples from relation 8. The new relation
Q(Al, A2, ..., An, Bl, B2, ..., Bm) containg n+m atttibutes and in the same order ag
they appear in the product operation. If the relation R has nR tuples and the relation S
hag nStuples then R % 8 give nR * nS tuples. The general syntax of product operation
is:

Relationl X Relation2

For example, consider the relations STUDENT and SPORT shown in Figure 4.3. The
result of crogs product operation STUDENT X SPORT is shown in Figure 5.4.

Roll no Name Stream Percentage Marks
1 Sharad Mathematics 77
2 Anil Mathematics 76
3 Dinesh Biology 82
4 Pankaj Commerce 81

a) STUDENT relation

Roll_no Sporty

1 Badminton
3 Chess

5 Chess

7 Cricket

b) SPORT relation

Figure 4.3- a2} STUDENT relation b) SPORT relation

Roll ;0 | Name Stream Percentage Marks Roll a0 | Sports

1 Sharad Mathematics T 1 Badminton
1 Sharad Mathematics T 3 Chess

1 Shared Mathematics 77 5 Chess

1 Sharad Mathematics 77 7 Cricket

2 Anil Mathematics 76 1 Badminion

2 Anil Mathematics 76 3 Chess

2 Anil Mathematics 76 5 Chess

2 Anil Mathematics 76 7 Cricket

3 Dinesh Biology 82 1 Badminton
3 Dinesh Biology 82 3 Chess

3 Dinesh Biology 82 5 Chess

3 Dinesh Biology 82 7 Cricket

4 Pankaj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess

4 Panksj Commerce 81 5 Chess

4 Pankaj Commerce 81 7 Cricket

Figure 4.4- Result of cross product operation STUDENT X SPORT

In SQL, the query for cross product operation of two or more relations is specified
with relation names after FROM clause. For example, the SQL query for relational
algebra expreggion "STUDENT X SPORT" would be:

SQL> SELECT STUDENT.Roll no, Name, Stream, Percentage Marks,
SPORT.Roll no, Sports FROM STUDENT, SPORT;

Join Operation: The join operation or Conditional Join X is used to join two or
more relations based on some condition. The general structure of a JOIN operation on
two relations R{A1, A2, ..., An}and 5(B1, B2, ..., Bm) is given as:

R#4a<join condition>5

The result of the JOIN operation gives a new relation Q{Al, A2, .., An, B1, B2,,..,
Bm) with n + m attributes and in the order of attributes of R followed by 8. The
relation Q has all possible combinations of tuples from R and §, which satisfy the join
condition. The tuples of Q containg each tuple from relation R combined with every
other tuples from relation S but the tuples combinations for which the join condition
evaluates to true are included in relation Q. While, the CARTESIAN PRODUCT give
all combinations of tuples included in the result. A general form of join condition can
be expressed as:

<gondition> AND <conditions> AND... AND <condition>

Here, each <condition™ is of the form Ai 6 Bj where Ai and Bj are attributes of R and
S heving the same domain, and 0 {(theta) i3 one of the comparizon cperators {=, <, &,
>, 2, #}

49

For example, consider the relations STUDENT and SPORT shown in Figure 4.3. The
result of conditional join operation STUDENTM srupeNTROLL o= SPORT Rell s SPORT is

shown in Figure 4.5.
Roll no Name Stream Percentage Marks Roll ne Sport
2 Anil Mathernatics 76 1 Badminton
3 Dinesh Biology 82 1 Badminton
4 Pankaj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess

Figure 4.5 Result of conditional joln operation
STUDENTs1upenNTROLL_ne~5PoRT.Ro0 wed P ORT.

The conditional join operation iz gimilar to cross product followed by selection and
projection operation, For example, the above join operation can also be specified as
given below:

O(ETUDENT. Rell no=SPORT Rall No){S 1 UDENTXSPORT)

Eqljoin: An equijoin is a special type of the conditional join operation where the only
join condition allowed is the equality condition between a pair of atiributes. The result
of eqiijoin contain game values for the two atiributes, but atill both atiributes appeats
in the final result.

Natural Join: A natural join is a special type of equijoin where the join condition
equality i imposed on only those attributes that appear in both relations andthe
common attributes appear only one time in the final regult.Since, the result of natural
join contains the same values for the two aftributes, only one of the two attributes
appears in the final result. For example, consider the relation STUDENT and SPORT
shown in Figure 4.3. The result of natural join operation STUDENT & SPORT is
ghown in Figure 4.6.

Roll_ne | Name Stream Percentage Marks Sports
1 Sharad Mathematics 77 Badminton
3 Dinesh Biclogy 82 Chess

Figure 4.6- Result of the natural join operation STUDENT 04 SPORT.

The join condition for above relational expression is equality condition on common
attribute i.e. Roll no. If the join attributes have the same names then there is no need
to specify equality of attributes explicitly as the join condition.

Inmer and Outer Joln: The join operations that we have seen so far ignore the tuples
that do not match the join condition. These join operations are gencrally called as
inner joins. If we want a join operation to alse include all tuples of R or all tuples of 8
ar all tuples of both R and § that do not match the join condition is called as oyter join,
There are three outer joins: Left outer Join, Right Outer Join and Full outer Join.

Left outer Join: The left outer join on two relation R and 8 containg all tuples of
inner join R4S along with the tuples of left side relation R that fail the join condition.
The tuples of R that fail the join condition will have null values for corresponding to
values of attributes of relation S. For example, consider the relation STUDENT and
SPORT shown in Figure 4.3. The result of left outer join operation STUDENT

Roll no | Name Stream Percentage Markx | Roll no | Sports

2 Anil Mathematics | 76 1 Badminton
3 Dinesh | Biology 82 1 Badminton
4 Pankaj | Commerce 81 1 Badminton
4 Pankaj | Commerce 81 3 Chess

1 Sharad | Mathematies |77 Null Null

Figure 4,7- Result of the left outer join operation STUDENT
PAYTUDENTROLL, noeAPORTR 20 PORT.

Right Outer Join: The right outer join on two relation R and S containg all tuples of
inner join RS along with the tuples of right side relation R which fail the join
condition. The tuples of S that fail the join condition will have null values for
attribuies values of relation R, For example, consider the relstion STUDENT and
SPORT shown in Figure 4.3. The result of right outer join operation STUDENT

Roll no | Name Stream Percentage Marlks | Roll no | Sports

2 Anil Mathematics | 76 1 Badminton
3 Dinesh | Biology 82 1 Badminton
4 Pankaj | Commerce |81 1 Badminton
4 Pankaj Commerce 1 | 3 Chess

Null Null Null Null 5 Chess
Null Null Null Null 7 Cricket

51

Figure 4.8 Result of the right outer join operation
STUDENT b<gruneNTROLL ne-sPoRTRa_n SPORT.

Full outer Join: The full cuter join on two relation R and S contains all tuples of
inner join Red4S along with the tuples of left and right side relation which fail the join
condition. The tuples of R which fail the join condition will have null values for
attributes of relation S and vice-versa. For example, consider the relation STUDENT
and SPORT shown in Figure 4.3. The result of full outer join operation STUDENT

PLSTUDENT ROLL no>SPORT Rall e PORT is shown in Figured.9,

Roll no | Name Stream Percentage Marls | Roll no | Sporis

2 Anil Mathematics | 76 1 Badminton
3 Dinesh | Biology 82 1 Badminton
4 Panksj Commerce 81 1 Badminton
4 Pankaj Commerce 81 3 Chess

1 Sharad | Mathematics | 77 Null Null

Null Null Null Null 5 Chess
Null Null Null Null 7 Cricket

Figure 4.9- Result of the full outer join operation
STUDENT »4groneNT.ROLL sc>8PORTRe nnSEORT.

Check your progress

1. Consider two relations R1{A,B} with the tuples(l, 5), (3, 7) and R2(A, C) =
(1, 7), (4, 9). Assume that R(A,B,C) is the full natural outer join of R1 and R2,
‘What are the tuples present in R(A,B,C)?

2. Congsider the relations 1{A, B) and s(B, C), where relation s contains B ag a
primary key and B of relation r i a foreign key referencing B of relation s, Let
4 denote the natural left outer-join operation. Assums that r and s contain no
null values. Congider the query given below:
rd(op5(5))

Op<s(r™S)
Sac{1PE)
Iv. Ops(r) P 8

Explain why do the above four queries are equivalent?

Division Operator: The division operation is denoted by /. Consider the relations

SUBJECT and COURSE shown in Figure 4.10. Suppose we want to refrieve names of

52 gubjects which are taught in all courses. We can get this result by using division

operation / between names of subjects taught in some courses and names of all courses
running. Thig can be expressed with relational algebra shown below:

Wabject NamelS UBJECT) / Acams Nl COURSE)

The result of full cuter join operation Tauyee Nume{ SUBJECT) / omume Neme{ COURSE) i
shown in Figure4.11,

Subject Name Course_Name
Mathematics BCA
Database BCA
C language BCA
Datsbase MCA

8) SUBJECT relation

Course_Name

MCA

BCA

b) COURSE relation

Figure 4.10- a) SUBJECT and b) COURSE relation

Subject Name

Database

Figure 4.11- Result of division operation ftyyys N SUBJECT) /
oouree_Namel COURSE),

In general, the division operation on two relation A(X,Y) / B(Y) retrieves values of X
for which there exist <X,Y> tuples for all Y values of relation B, The operation will be
only valid if attributes of relation B are subset of relation A. The division operation
can also be expressed by a sequence of &, %, amd — operations as follows:

A(X,Y) / B(Y) = mx(A) —nx (2x(A) X B— A)

IMusirative Example: Consider the following relations:
Supplier (Sid, Sname, rating)

Parts (Pid, Pname, colour)

Catalog(Sid, Pid, cost)

53

'What are the relaticnal alzebra expressions for following queries?
a. Retrive Sid of all suppliers whose rating greater than 7.
Solution: xgi(Oming-7{Supplier))

b. Retrive Sid of all suppliers who supplies some red part.
Solution;
Tg1a{0 cotor—rea'(PaTts 04 Catalog))
or
T Ocotor—rea(Parts) s Catalog)
ot

i Foolor—ma{PArtS) PAgiapia (Catalog)

¢. RetriveSname of all suppliers who supplies some red patts
Solution Agnume(Contamma{Parts b4 Catalog) pa Supplier)

d. Retrive Sid of suppliers who supply some red parts or some green parts.
Solution: g G ooiomd" voula—"grooc{PATLS) WX 53 p:a (Catalog)

¢ Retrive Sid of suppliers who supply some red parts and some green parts.
Solution:mei(Geom="1ea"A cular="greec (PRI1S) MK gapia(Catalog)

f. Retrive Sid of suppliers who supply most expensive part.
Sclhution:
p (T1, Catalog)
p (T2, Catalog)
Tsid(Ksig pia(CatBlog) — ryaig, 11 pid (Or1.comera con(T1 x T2))

Check your progress

1. Consider the relational schema given below, where eld of the relation
dependent is a foreign key referring to empld of the relation employee.
Employee (empld, empName, empAge)
dependent (depld, eld, depName, depAge)

Assume that every employee has at least one associated dependent in the
dependent relation. Consider the following relational algebra query:

Tranpia{ SIOPloYee)} Rempra{ eMPloyee Mueprasinivempagecamaps D ependent

The above query cvaluates to the set of emplds of employees whose age is
greater than that ofall of his/her dependents. Is this statement true?

2. Congider a database that has the relation schema CR (Student Name, Course
Name).An instance of the schema CR is as given below.

StudentName CourzeName
SA CA
SA CB
SA CC
SB CB
SB CC
5C CA
SC CB

SC CC
SD CA
SD CB
SD CC
SD CD
SE CD
SE CA
SE CB
SF CA
SF CB
SF CcC

The following query is made on the database.

T+ RoumeNume{ Camiempiame=s4{CR))
T2—CR~+T1
What are the rows in the result of T2?

4.5 Relational Algebra Operation from Set Theory

Union{U), Interaction () and set difference (-) are relational algebra operations from
get theory. These operations can be applied cn binary relations which are union
compatible. Two relations R(A1, A2, ..., An) and S{B1, B2, ..., Bn) are said to be
umion compatible if’

1. They have the same mumber of attributes.
2. Bach cowresponding pair of similar atftributes has the same domain or
datatype,

For example, relations S1(Roll no, Name) and S2(Roll_no, Name , Percentage Matk)
are not union compatible because S1 has 2 attributes while S2 has 3 attributes, Also,
52 (Roll no, Name) and S2(Roll no, Percentage Marks) are not union compatible
because datatype of Name is string while that of Percentage Marks iz inteper
numbers. But, relations S5(Roll no, Name) and S6(8 _ID, S_Name) are UNION
COMPATIBLE because both have 2 attributes and their domains are also same which
are integer and string respectively.

¢ Union(UJ): The union cperation of two relations RUS is a relation which
inclhudes all tuples of relation R, all tuples of relationS and removes duplicate
tuples. For example, congider the relations SUBJECT1 and SUBJECT?2 shown
in Figure 4.12.The result of SUBJECT1 U SUBJECT2 is shown in Figure
4,13,

« Intersection ((): The intersection of two relation R and S is represented by
RS and it is & relation which includes all tuples that are present in both
relations R and 8. For example, the result of SUBJECT1 MNSUBJECT? is
ghown in Fipure 4.14.

« Set Difference (-): The set difference of two relations R and § iz represented
by R-8 gives 8 new relation which includes all tuples that are present in R but
not in S, For example, the result of SUBJECT1 - SUBJECT2 iz shown in
Figure 4.15.

55

Subject Name Course Name
Mathematics BCA
Database BCA
C language BCA
Database MCA

a) SUBJECT1
Subject Name Course_Name
Mathematics BCA
Operating System MCA
Computer Network MCA

b} SUBJECT2

Figure 4.12- Relations SUBJECT1 and SUBJECT2 stores subjects and courses
information.

Subject Name Course Name
Mathematics BCA
Database BCA
C language BCA
Database MCA
Opezating System MCA
Computer Network MCA

Figure 4.13- Regult of SUBJECT1USUBJECT?2 operation,

Subject Name Course Name

Mathematics BCA

Figure 4.14- Result of SUBJECT1NSUBJECT2 operation.

Subject Name Course_ Name
Database BCA
C language BCA
Database MCA

Figure 4.15- Result of SUBJECT1-SUBJECT2 operation.

Check your progress

1.

2.

4.6

4.7

b

Al

Given two union compatible relations R;(A,B) and R(C,D), The result of the
operation Ry a-capn Ry is equivalent to which one of the following.

2) RiUR;

b) RiXRe

¢) Ri-R;

d RiNRx

Let R(P,Q.R1,R2,R3) and 8(P,Q,51,52) be two relations schema, where
{P,Q} is the key for both schemas. Congider the following two relational
algcbra expressions:
L xp {R b4 S)
IL 7p (o (R) N7 g, of8))
Explain whether the above two expressions are equivalent or not?

Summary

We acquired basic ideas of relational algebra.

We illustrated how to use unary relational operations: Select, Project and
Rename work.

We explained Binary relational operations: CROSS PRODUCT, JOIN,
DIVISION andl saw their applications,

We discussed relational algebra operators from Set Theory: umion,
intersection, set difference.

Terminal Questions

Differentiate between entity Integrity constraints and key constraints,
What do you mean by union compatible relations?

Explain the differences between inner join and outer join.

Explain differences between left outer join, right outer join and full join with a
suitable example,

Diigcuss divigion operation with a suitable example.

Write short notes on following relational algebra operations:

i. Selection

ii. Projection

What is the condition that the set operations must satisfy before it can be
applied on any binary relations?

57

BIBLIOGRAPHY

1. R Elmasri, § Navathe, Fundamentals of Database Systems, 6th edition,
Addizon-Wesley, 2010.

2, R Ramakrishnan, J Gehrke, Database Management Sywtems, 3rd Ed.,
McGraw-Hill, 2002.

3. A Siiberschatz, H Korth and 8 Sndarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

UNIT-5 Structure Query Language

Structure
5.1 Introduction
5.2 Objectives
5.3 Similarity between SQL and Relational Algsbra
54 Set Operations
5.5 Nested Query and Correlated Nested Query
56 Comparison with NULL
5.7 SQL Commands
5.8 INSERT, DELETE, and UPDATE
5.9 SQL Data Definition and Data Types
5.10 Attribute Data Types and Domaing in SQL
5.11 Schema Change Statements in SQL
5.12 View and Trigger in SQL
5.13 Terminal Questions
5.14 Summary

5.1 Imtroduction

SQL is a standard language designed for accessing and manipulating data in relational
databases. Generally, we refer to SQL as a query language. But, it can perform more
than just querying a databasze. It can be used for defining structure of database,
modifying data in database and specifying security constraints. SQL is based on
relational algebra and tuple relational calculus becausge it borrowed concepts from
them for implementing and optimizing query. All relational databases such as Oracle,
MySql and MS access use SQL as their standard language. This ymit gives you basic

concepts for understanding SQL and its working.

5.2 Objectives

After study of this unit, you will able to:

s« Understand similarity between SQL and relations] algebra and the order in which

any SQL query evaluates.

+ Apply the set operators and check union compatible condition that mmst be

gatisfied by set operators.

s Use nested query and correlated nested query and understand how these queries

are evaluated.

¢ Apply various SQL commands for different operations: Schema Change
Statementz, Specifying Basic Constraints in SQL, Data Definition and Data

Types, INSERT, DELETE, and UPDATE.

59

5.3 Similarity between SQL and Relational Algebra

SQL uscs the termg table, row, and column for relation, tuple, and attribute,
respectively. There are lots of similarities between SQL and relational algebra
expression because SQL borrows many concepts from relational algebra. This
gimilarity can be illustrated with the following basic structure of SQL and its
equivalent relational algebra expression,

SELECT DISTINCT Ay A;...A, FROM Ry,R:...R; WHERE P

[
Tasa2...An(Op (Ri,Ro.. Ra))

The SQL performe relational algebra product operation (x) with FROM clause,
performs selection operation (o) with WHERE clanse and projection operation (ir)
with select clause.

Basic Structure: The result of any SQL query is not a relation because duplicate
tuples are possible in the result. A general structure of an SQL expression contains
basic clauses select, from and where along with optional clauses. The optional clauses
can be used with the SQL to get desired results. The general struchure of an SQL query
has following form:

SELECT [DISTINCT] AjAs...A, FROM R,R;. R, [WHERE P] [GROUP BY
attribute] [HAVING condition] [ORDER BY attributes [DESC]]

HereA,As...Aqmare attributes from relationsR;,Rs...R.and P is predicate condition on
attribuates of relations. The order of execution of each clange 18 as follows:

1. FROM Clanse: In the SQL query, FROM clause is evaluated first. The FROM
clause gives relationsal algebra product operation X of relations in the SQL claunse.
For example, consider the relations Book and Book Price shown in Figure 5.1.

11 Thile Author Publisher
001 Operating System Galvin Wiley India
002 Algorithm Sahani Universities Press
003 Computer Network Forouzan Tata MeGraw-Hill
004 DBMS Navathe Pearson
¢) Bookrelation
1D Price Quantity
001 669 50
002 595 70
004 B85 60

d) Book Price relation
Figure 5.1- The details of books are stored in relations Book and Book Price.
The SQL query to retrieve the publisher of all books which are present in Library:

SELECT Publisher FROM Book, Book Price WHERE Book ID= Book Price.ID

Publisher

Wiley India

Universities Press

Pearson

Figure 5.2- Result of SQL query when applied on Book and Book Price
relations.

Result of the above SQL query iz shown in Figure 5.2, Similar to Relational Algebra,
SQL also uses relation name.atiribute name to avoid ambiguity if a same attribute
name appears in more than one participating relations. For example, BookID=
Book Price.ID are used to differentiate between ID atiribute of Book and Book Price
relation.

2. WHERE clause: The WHERE clause is executed next after FROM clause in SQL
query, WHERE clause performg gelection operation o (segma) on atiributes of
participating relations. For example, the SQL query to retrieve title and author of
all books whoge price is greater than Rs 600 is given by:

SELECT Title, Author FROM Book, Book Price WHERE Book ID= Book PriceID
AND Price>604).

The result of the above SQL query is shown in Figure 5.3, SQL uses the logical
comnectives AND, OR, NOT in WHERE clause to combine more than one predicate
conditions. SQL allows us to compare strings and arithmetic expressions in predicate
conditions with comparison operators <, <=, >, >=, = and<>.

Title Author
Operating System Galvin
DBMS Navathe

Figure 5.3- Result of SQL query when applied on Book and Book Price relationa.

61

62

3. GROUPF BY:

Apgregation Operations: SQL offers several aggregate functions which take a set of
values as input and produce a single value as cutput. SQL supports five aggregate
functions which can be applied on any attribute of a relation. These functions are
following:

SUM{[DISTINCT] attribute-name}: It finds the sum of values in the specified
attribute of a relation.

COUNT([DISTINCT] attribute-name):It finds the number of values in a
gpecified attribute.

AVG({[DISTINCT] sttribute-name): It finds the average of all values in the
specified attribute of a relation.

MAX(attribute-name): It finds the maximum value in the specified attribute of
a relation,

MIN(attribute-name): It finds the minimum value in the specified atitibute of
a relation.

The DISTINCT clause is optional in all these functions. For example, consider the
STUDENT relation shown in Figure 5.4,

SID Branch Marks
S01 IT 68
S02 EC 66
503 EC 67
S04 Cs 73
805 IT 74
806 Ccs 76

Figure 5.4- STUDENT relation containing branch and mark detadls of each
student,

The SQL query to find average marks of CS branch of the relation is given by:

SELECT AVG{Marks) from STUDENT where branch = "C5”

Result of the above SQL query is shown below.

Marks

74.5

Sometimes, we want to apply aggregate operation to multiple groups instead of &
gingle group. We can specify this by using GROUP BY clause. The SQL GROUP BY
clause is used to form groups which place the attribute entries with the same values

into one group. For example, the SQL query to find average marks of sach branch is
given below:

SELECT Branch, AVG (Marks) from STUDENT GROUP BY Branch

The result of above SQL query is given in Figure5.5.

Branch Marks
Cs 74.5
IT 71

EC 66.5

Figure 5.5- Result showing average marks of each branch of the STUDENT table.

If we wish to apply some condition on groups rather than tuples, then HAVING clause
can be used after the groups are formed. For example, the SQL query to find only
those branches whose average marks are greater than 70 is given as:

SELECT Branch, AVG (Marks) FROM STUDENT GROUP BY Branch HAVING
AVG (Marks) > 70

The result of above SQL query is given below:

Branch Marks
CS 745
1T 71

If a SQL query contains both WHERE and HAVING clause then it applies WHERE
clause first. The tuples which satisfy WHERE predicate condition are then placed into
groups by GROUP BY clause. SQL then applies HAVING clause which removes
groups that do not satisfy HAVING condition. In the end, the SELECT clause
refrieves tuples from remaining groups. For example, the SQL query to display only
those branches which belong to CS or EC and their average marks are greater than 70
is given as:

SELECT Branch, AVG (Marks) FROM STUDENT WHERE Branch=CS' OR
branch="EC’ GROUP BY Branch HAVING AVG (Marks) > 70

The result of above SQL query is given below:

Branch Mark

Cs 74.5

63

4. HAVING clauge: Ag discussed above, the HAVING clause evaluates afier the
GROUP BY clauze. The HAVING clause applies a predicate condition on each
group and selects only those groups which satisfy the predicate condition.

5. SELECT: The asterisk symbol “ * ™ after SELECT clause gives result from all
attributes. The SELECT may also contam arithmetic operations on attributes of a
relation. For example congider the STUDENT relation shown in Figure 5.4. The
SQL query to find detail of all students with Mark attribute is added 10 for each
tuple in the result is given by:

SELECT SID, branch, Marks+10 FROM STUDENT

We can also specify desired atiributes to be displayed ag tuples in the result. This is
specified with attribute names after the SELECT clause as given in above SQL
query.

6. DISTINCT: This clause is optional and it is used to remove duplicate tuples in the
result of SQL query. The DISTINCT clauge comes after the SELECT clauge. For
example consider the STUDENT relation shown in Figure 5.4. The SQL query to
list all Branches in the college is given as:

SELECT DISTINCT Branch FROM STUDENT

7. ORDER BY: SQL offers ORDER BY clause which is executed in the end and it is
used to control the order in which the tuples are displayed in the result. For
example consider the STUDENT relation shown in Figure 5.4. The SQL query to
display the details of student in ascending order of branch is as follows:
SELECT * FROM STUDENT ORDER BY Branch
By default, the ORDER BY clayse lists the result in ascending order. We may
gpecify sott order ASC for ascending order and DESC for descending order. For
example, SQL query to list the tuples of student details in descending order is:

SELECT * FROM STUDENT ORDER BY Branch DESC

Check your progress

1. Which of the following is aggregate function in SQL?
a) Avp
b} Select
¢) Ordered by
d) Dist

2. The employee information in a company is stored in the relation
Employee (name, sex, salary, deptName)
Consider the following SQL query:
select deptNamefrom Employee
where sex = 'M'
group by deptName
having avg (salary) > (select avg (salary) from Employee)

The above SQL query returng the names of the department in
which e i

5.4 Set Operations

SQL offers UNION, INTERSECTION and EXCEPT operations to petform relational
algebra v, N,and—. Similar to relational algebra set operation, the participating
relations in SQL query nust also be union compatible for applying these operations,
The SQL UNION operation between two relations gives a set of all tuples from both
relations and removes duplicate tuples. The SQL Intersection operation between two
relations gives all tuples that are present in both relations. The Except operation
between two relations R-S gives all tuples that are present in R but not in 8. For
example, consider Book and Book Price relations shown in Figure 3.1. The SQL
query to display all book IDs of both Book and Book Price relations is given as:

(SELECT ID FROM Book) UNION (SELECT ID FROM Book Price)

UNION operation automatically removes duplicate tuples from the result. But if we
want to retain duplicates in the result, then the UNION ALL clause can be used as
given below.

(SELECT ID FROM Book) UNION ALL (SELECT ID FROM Book Price)

The SQL query to display all book IDs that are present in both Book and Book Price
relations is piven as:

(SELECT ID FROM Book) INTERSECTION (SELECT ID FROM Book_Price)

The first part of the above SQL query gives SID of books 001,002,003 and 004.
While, the second part gives 001,002 and 004. So the final regult of the above
INTERSECTICN query gives SID 001,002 and 004. As discussed earlier, if we want
to retain duplicates in the final resylt then INTERSECTION ALL and EXCEPT ALL
can be used in place of INTERSECTION and EXCEPT. One important thing to note
that UNTION, INTERSECTION and EXCEPT can be used on any two tables which are
union compatible. This means the mumber of columns in both tables should he equal
and when columms of both tables considered in an order both should have the same

data types.

5.5 Nested Query and Correlated Nested Query

Nested Query: A nested query is a query which has another query ingide it. The inner
query fetches exigting values from a table and then it iz used as a compatison
condition for execution of outer query. The Nested query executes from innermost
query to cutermost query. The execution of cach inner query is independent of its
subsequent outer query. But, the result of each inner query is used 88 a comparison
condition for execution of ity subsequent outer query. The "IN" and "NOT IN"
keywords are used to combine cach outer query with its subsequent nested query. For
example consider the Book and Book Price table shown in Figure. The SQL query to
refrieve IDs of books whose quantity is either 50 or 60 is given as.

SELECT ID from Book where ID

65

IN
(SELECT ID from Book Price where Quantity = 50 OR Quantity=60)

In the above SQL query, the inner query will give a set with IDs 001 and 004 because
their quantities are 50 and 60 respectively. The outer query will return IDs of books
which are equal to any member of the set with IDs 001 and 004 (as returned by inner
query). So, the final result will contain the ID of books 001 and 004.

If we wish to find Title of books whose quantity is neither 50 nor 60, its SQL query is
given by:

SELECT Title from Book where ID
NOT IN
(SELECT ID from Book Price where Quantity = 50 OR Quantity=60)

In the above SQL query, the inner query will give a set with IDs 001 and 004 because
their quantities are 50 and 60 respectively. The outer query will return Titles of books
whose IDs are not the member of the set with IDs 001 and 004 (as returned by inner
query). So, the final result will contain Titles of books "Operations System” and
"DBMS".

« "IN" Equivalent to " =ANY": The IN" operator i3 equivalent to " =ANY",
So, both keywords have the same effect and give the same result when used in
SQL query.

¢+ "NOT IN" Equivalent to "<<>All": The "NOT IN" operator is equivalent to
"<>ANY". Both keywords have the same effect and give the same result when
used in a SQL query.

The keywords "ANY" and "ALL" can also be combined with >, >=, < <= and <
with nested query to get desired results. But, this will give different results ag
compared to "IN"and "NOT NOT" operators.

Correlated Nested Query: In nested query, we have seen that an inner query is
completely independent of its subsequent outer query. In Correlated Nested Query, the
inner query is dependent on its gubsequent outer query. More precisely, the inner
query executes every time for each tuple of the table in the outer query. The "EXIST"
operator ig nsed to compare for each tuple of the outer query table whether the result
of the itmer query is non empty, In the correlated quety, the where clause of the nested
query containg some attribute of the table of the outer query. For example, again
congider the tables shown in Figure. The correlated nested query to find Titles of
books whose price less than Rs 600 i given by:

SELECT Title from Book where
EXISTS
(SELECT * from Book Price where Book.ID— Book_Price.JD AND Price<600)

In the above SQL query, for each tuple of Book table, it finds a set of tuples from
Book_Price table where Bock.ID— Book_Price. ID AND Price<600 by executing the
inner guery. If the set containg at least ome tuple, then the inmer query retums true and
the book ID contains in the final result. This happens for each book ID of the Book
table. The final result of the above query contains book titles "Algorithm".

We can also use "NOT EXISTS" operator in the correlated nested query. For example,
if we want to find Book Titles whose price is not less than Rg 600, the correlated
nested query can be given as:

SELECT Title from Book where
NOT EXISTS
(SELECT * from Book Price where Book.ID— Book_Price.ID AND Price<600)

The result of the above SQL query contains book titles "Operations System" and
"DBMS".

Check your progress

1. Consider the table employee{empld, name, department, salary). Assuming that
department 5 has more than one employee. What is the output of following
SQL query:

Select e.empld From employee &
‘Where not exists

(Select * From employee s where s.department = “5” and s.salary >=e.salary)

2. Comngider the following relation
Cinema (theater, address, capacity)
‘What is the cutput of the following SQL query?
SELECT P1, AddressFROM Cinema P1
WHERE P1. Capacity> = All (select P2. Capacity from Cinema P2}

5.6 Comparison with NULL

SQL supports a special value called NULL. There are three different interpretations
of NULL in SQL.

1. Unkmown value (a value exists but not known): If a person docs not know
his date of birth then the Date of Birth attribute would be NULL for this

person.

2. Unavailable value (2 value exists but intentionally not shown):An attribute
Personal Mobile would be NULL for a person if he does not want to show his
personal mobile number in the databage.

3. Not applicable (a valne is undefined for some tuples under an
attribute):An attribute Spouse Name would be NULL for a person who is
unmatrried.

So each NULL value is different from other NULL values when used in a table. It is
impossible for SQL to determine which of the meanings of NULL is intended when
NULL is used in the database table. When SQL encounters any NULL walue in
comparison, the result is considered as Unknown. The SQL uses three logic values:
TRUE, FALSE, and UNKNOWN. The result of any comparison in SQL can be TRUE
or FALSE or UNKNOWN when logical cormectives AND, OR, and NOT are used

67

SQL offers "IS" and "IS NOT" operators to check whether an attribute value is NULL.
For example, the SQL query to find Book ID whose quantity is not NULL is:

SELECT ID from Book Price where Quantity IS NOT NULL

5.7 SQL Commands

SQL offers various commands to interact with relational databases. These commands
are broadly classified into three groups based on their nature: DDL - Data Definition

Language, DML - Data Manipulation Language, DCL - Data Control Language

Command Description
CREATE Creates a new table, a view of a table,
or other object in the databage.
DDL - Data
Definition
Langusage ALTER Modifies an existing database object,
such as a table.
DROP Deletes an entire table, a view of a table
or other objects in the database.
SELECT Retrieves certain records from one or
mare tables.
INSERT Ingerts 2 new tuple in a table.
DML - Data
Manipulation
Language UPDATE Modifiez tuples of a table.
DELETE Deletes tuples.
GRANT Gives a privilege to users.
DCL - Data
Cantral Lsngnsge REVOKE Takes back privileges granted to users.

5.8 INSERT, DELETE, and UPDATE Statements in SQL
SQL offers three commands to modify a database: INSERT, DELETE, and UPDATE.

INSERT: This command is used to add single tupleg in an existing table. The Insert
command takes the table name and a list of values for all attributes in the same order
in which attributes appear in the table. For example, the SQL query to insert 2 new
book in the Book table is;

INSERT INTO Bock
VALUES (005, 'Let Us C', 'yashwanikanctkar’, BPB Publication')

DELETE: The delete command is uged to delete tuples from a relation. The where
clause in delete command iz used to specify tuples to be deleted. Based on the
condition specified with where clause, zero or more tuples are deleted by a single
delete command. For example, the below statement removes gll those tuples from the
Book table in which author is “Galvin™.

DELETE FROM Baok
WHERE Author='Galvin’

If the WHERE clause iz not specified in the delete command, it will delete all tuples
from the table. For example, the below statement deletes all records from the Book
table.

DELETE FROM Book

However, the table still remaing in the database with empty tuples. If we wish to delete
table definition, DROP command can be used. For example, the below statement
completely removes the Book table from the database.

DROP TABLE Beok

UFDATE: The update command is used to modify atiributes values of a table. A
WHERE clause is used in an update command to select tuples to be modified in a
table. For example, the following command modified values of a book tuple with ID—
00s.

UPDATE Book
SET Title = *C Programming Language’, Aiuthor = Dennis Ritchie'
WHERE ID=005;

The update command can also be used to modify several tuples with a single update
command. For example, the below SQL query modifies several tuples from the Book
table that contain Publisher as ' PHI Learning',

UPDATE Book Price
SET Quantity = Quantity + 50
WHERE Publisher = ' PHI Learning'

5.9 SQL Data Definition and Data Types

In SQL, a new table is created with CREATE TABLE command by specifying table
name, its attributes and initial constraints. Each attribute is specified with an atitibute
name, its data type and an attribute constraint (such as NOT NULL) which is optional.
The data type specifies the domain of values for an atiribute. The key, entity integrity,
and referentinl integrity constraints are specified within the CREATE TABLE
statement after all the attributes of the table are declared. The key and various
constraints can also be declared later using ALTER TABLE command. For example,
the following SQL statements create two tables, Book and Book Price.

CREATE TABLE Book (ID INT, Title VARCHAR(15), Author VARCHAR(15),
Publisher VARCHAR(15),

69

PRIMARY KEY ID}

CREATE TABLE Book Price (ID INT, Price INT, Quantity INT,
PRIMARY KEY ID,
FOREIGN KEY(ID) REFERENCES Book(ID))

5.10 Specifying Basic Constraints in SQL

1. Specifving Attribute Constraints and Attribute Defaults: We can specify
an attribute constraint on an attribute such as NOT NULL, if we do not want
NULL values for this attribute. For example, the primary key of any relation
can never be NULL value. An atiribute ID with INT data type can be set NOT
NULL with the following statement in CREATE TABLE command.

ID INT NOT NULL

Ancther constraint can be to restrict the domain of aftribute values. For
example, if we want to resirict integer values for an attribute Quantity between
50 to 100, then we can declare the attribute Quantity of Book Price table as
follows:

Quantity INT NOT NULL CHECK (Quantity > 50 AND Quantity<100)

We can also define a default value for an attribute with DEFAULT<value>
clause, if an explicit value is not provided for the attribute. For example,
consider we wish to specify a default valie of 1 to Price attribute of the
Book_Price table when price is not provided during tuple insertion. This can
be specify with following staternent:

Price INT NOT NULL DEFAULT 1

2. Specifying Key and Referential Integrity Constraints:
primary key: SQL offers a primary key clause to define one or more
attributes ag a primary key of a table. For example, consider the student table
with the following attributes and SID as a primary key.

Student (SID INT NOT NULL, § Name VARCHAR(15) NOT NULL,
Gender CHAR, Class INT,
PRIMARY KEY (SID))

Referential integrity constraints: It is a property of a data which states that
if a value of an attribute references another value of other attribute of either
same or different table, then the referenced value must exist and valid. A
referential integrity constraint is also specified with FOREIGN KEY clause.
For example, we can define SID as foreign key of Marks table that references
primary key SID of Student table with following statement;

Marks (SID INT NOT NULL, Subject VARCHAR(15), Marks FLOAT,
PRIMARY KEY (SID, Subject),

FOREIGN KEY(SID) REFERENCES Student(SID)

ON DELETE SET NULL ON UPDATE CASCADE)

When a tuple is inserted or deleted or a primary key or foreign key value is
modified in & table, then the referential integrity constraint is violated. Under
this scenario an action must be specified which includes SET NULL, or
CASCADE or SET DEFAULT for both ON DELETE and ON UPDATE
operations. For example, congider the previous SQL statement. The SET
NULL clause sets thoge values of foreign key to NULL that references the
deleted value of the primary key of Student table. 'We also use the SET
DEFAULT clause to sct the default value of foreign key if primary key value
of referenced tuple in the Student table is updated. ON UPDATE operation.
The ON DELETE CASCADE operation delctes all those tuples of the Marks
table that references the deleted value of primary key of Student table. The
ON UPDATE CASCADE operation changes the values of the foreign key in
Book relation with new value of the primary key of Student table.

5.11 Schema Change Statements in SQL

Even after a table is created, we can change the schema of the table i.e. adding and
dropping table, attributes, constraints and other schema elements. SQL offers DROP
and ALERT commands to petform these operations.

1. DROP command: DROP TABLE command is used to remove a table
including all its data and constraints. The table will no longer be available in
the database and it cannot be accessed. For example, the following SQL
statement permanently removes the Student table from the database.

DROP TABLE Student

2. ALTER command: The alter table is used to add, delete and modify columns
as well as constraints on an existing table. It can be used to perform following
operations:

2. Add columm: A peneral syntax of SQL statement to add a new
column in an existing table is:
ALTER TABLE table nameADD column_name data type

b. Drop column: A peneral syntax of a SQL statement to drop an
existing colurrm in an existing table is:
ALTER TABLE table nameDROP COLUMN colymn name

¢. Modify columm: A general syntax of a SQL statement to alter a
column in an existing table is:
ALTER TABLE table name ALTER COLUMN column name data
type

d. Add and Drop constraints:
The general gyntax of & SQL statement to add a check constraint to an
existing table is;
ALTER TABLE table name ADD CONSTRAINT Constraini_namg
CHECK (CONDITION)

The general syntax of a SQL statement to drop or remove a constraint
from an existing table is:

71

72

ALTER TABLE table name DROP CONSTRAINT
Constraint name;

e, Add and Drop primary key: The general syntax of a SQL statement
to add a new primary key constraint to an existing table is:
ALTER TABLE table name ADD CONSTRAINT MyPrimaryKey
PRIMARY KEY {columnl, colunn?...)

The general syntax of a SQL statement to drop a primary key
constraint from an existing table is.
ALTER TABLE table name DROP CONSTRAINT MyPrimaryKey;

Check your progress

1. Which SQL command is used to delete a table in SQL?
2. DBMS provides the facility of accessing data from a databage through
a) DDL
b) DML
¢) DBA
d) Schema
3. Select operation in SQL is equivalent to which one of the following:
a) the sclection operation in relational algebra
b) the selection operation in relational algebra, except that select in SQL
retaing duplicates
¢) the projection operation in relational algebra
d) the projection operation in relational algebra, except that select in
SQL retains duplicates

5.12 View and Trigger in SQL

A view in BQL 1is a virtual table, whose tuples are cormputed when needed from a base
table. The view does not physically exist while the base table physically exists and its
tuples are actually stored in a databage. A view is an alternate way of specifying a
table, which is accessed frequently during frequent issues of query on the view. For
example, consider a SQL query which takes a table that is a natural join of two tables;
Student and Marks. Every time when the query executes, it refrieves two basc tables
Student and Marks from the databage and performs natural join of these two tables,
Instead, we can use a view that holds the result of join operation of these two tables
and act as a single virtual table. A view can be used to store the result of 2 SQL query
and it can beused as a table in another SQL query.

Trigger: A trigger in SQL is a stored procedure which automatically invokes an
action when an event such as database update operation occurs. For example, consider
a Student table which has attributes age and date_of bitth along with other attributes.
We can create a trigger which automatically computes and inserts age whenever a new
tuple is inserted.

5.13 Summary

» Weunderstand similarity between SQL and relational algebra and the order in
which any SQL query evaluates.

s We learned the set operators and union compatible condition that must be
satisfied by set operators before applying on any two relations.

s We explained nested query and correlated nested query and how these queries
are evaluated,

* We see that how SQL treats NULL values.

s We illustrated how to use various SQL commands which includes: Schema
Change Statements, Specifying Basic Constraints in SQL, Data Definition and
Data Types, INSERT, DELETE, &nd UPDATE.

5.14 Terminal Questions

Briefly describe the order in which any SQL query evaluates.

‘What are the conditions that must be satisfied by set operators before applying
oft any two relations?

What do you mean by union compatible?

Explain with example how SQL evaluates nested query and correlated nested

b =

bl

query.
How does SQL treat NULL values?
Which of the following is/are true with reference to “view' in DBMS?
a) A “view' is a special stored procedure executed when certain event
ocours,
b} A ‘view' is & virtual table, which occurs after executing a pre-
compiled query.

How SQL checks NULL values of any particular atiribute?

What do you mean by view and trigger in SQL?

Explain with suitable examples how we change schemas of a relation

0. Describe the various constraints offered by SLQ which we can apply on
attributes of a relation?

11. Hlustrate how we can apply different constraints offered by SLQon attributes

of a relation.

& bh

bl e,

BIBLIOGRAPHY

1. R Elmasri, § Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010,

2. R Bamakrvishnan, J Gehrke, Database Management Systems, 3rd Ed.,
MeGraw-HilL 2002.

3. A Siberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

74

UNIT-6 Functional Dependency Theory

Structure

6.1 Introduction

6.2 Objectives

6.3 Functional Dependency

64 Trivial Functional Dependency and Properties of Functional Dependency
6.5 Attribute Closure (X+)

6.6 Functional Dependency Set Closure

6.7 Equality Between two Functional Dependency Sets
6.8 Minimization of a Functicnal Dependency Set

6.9 Propeties of Decompogition

6.10 Summary

6.11 Terminal Questiong

6.1 Introduction

So far, we have seen that a relation scheme contains a number of attributes and a
relational databage schema consists of many such relational schemes, We discussed
how to derive a database schema using the ER data model The model helps us to
identify enfity types, relationship types and their attributes in any real world database.
It provides us a tool for logical grouping of attributes into their regpective relations.
However, it still does not provide us any way to measure the quality of a relation
schema. We still need a formal way to measure goodness of a relation schema. In this
unit, we will discuss theories that have been developed to evaluate qualitics of a
relational schema. This includes information preservation and mininmm redundancy
that forms the ultimate goal of 2 good relation schema. The information preservation
means maintaining all ER model concepts inchuding entity types, relationship types
and aitribute type. Minimum redundancy means minimizing multiple copies of the
same data. We will start this unit with illustration of some good and bad relation
schemas. After that, we will introduce the concept of functional dependency which
forms criteria for decomposition of relation schemes. In the next unit, we will see
various types of decomposition in normal formsto reduce the redundancy of data.

6.2 Objectives
After study of thig wnit you will able to:

» Understand functional dependencies and how to determine these fimctional
dependencies from a given relational instance.

» Explain attribute closure and how we can use the attribute closure to find
candidate keys of a relation from its functional dependencies.

» Describe functional dependency set closure of any relation with given
functional dependency set and how to minimize any functional dependency
aet.

» Find when two functional Dependency Sets are said to be equal.

6.3 Functional Dependency

In the previous section, we informally discussed various issues and their solutions in
database design. Now, we introduce a tool called Functional Dependency (FD) to
formally digcuss all the above database design issues. This forme a basis for Normal
Forms of relation schemas.

Let us comsider a relation schema R = {Al, A2, ..., An}. Assume X and Y are two
subsets of attributes of relation schema R, A fimctional dependency from X to Y
represented by X-—>Y exists, if and only if for any two tuples tl and 2.

Iftl. X=X, then t1.Y=t2.Y

This means the values of atiributes set X of a tuple t1 uniquely determine the values of
attributes set Y. Or, the values of attributes set Y of a tuple is uniquely determined by
the values of attributes set X, The functional dependency is usually abbreviated as FD,
The set of attributes X iz called the left side of the FD and the set of attributes Y is
called the right side of the FD.

X Y

al bl

al bl

Figure 6.1 —XY1 table.

In the above relation XY1 shown in figure 6.1, a fimctional dependency X—>Y
exists because when values of attribute X for tuple t1 and 2 are equal, this implies
values of attribute Y for tuples t1 and 2 are also equal.

X Y

al bl

al b2

Figure 6.2 — XY?2 table.

In the above relation XY2 shown in figure 6.2, 2 functional dependency X—>Y does
not exigt because the values of attribute X for tuples t1 and t2 are equal but values of
attribute Y for tuples t1 and £2 are not equal.

W X Y ¥/
al bl cl dl
al b2 c2 d2
a2 b2 c2 d3
a3 b3 o4 d3

75

76

Figure 6.3 - WXYZ table.

Now consider the relation shown in Figure 6.3. Here, a functional dependency {W, X}
— Y exists because the attributes values corresponding to these attributes do not
violate the FD constraint. The FD Y — X also exists because if 12.Y=13.Y, then
12.X=t3.X and the atiributes values for other tuples also do not violate the FD
constraint. But the FD W— X does not exist because t1. W=t2. W but t1.X # 2. X
Similarly, the FD Z — Y also does not exist because here {3.Z=t4.Z but t3.Y #4.Y.

For convenience, an attribute set is simply represented with all attributes concatenated
together with removed parenthescs and commas. Now, consider the STUDENT table
ghown in Figure 6.4,

Student_ID Student Name Course ID | Course_Name Faculty ID | F_Salary
S01 Sharad 501 DBMS F03 30,000
802 Denesh Cs04 Algorithm F02 60,000
803 Vikash Cs01 DBMS F03 20,000
504 Saukat Cs04 Algorithm Fo02 60,000
805 Surender Cs04 Algorithm FoO2 60,000

Figure 6.4 - A STUDENT table,
We can verify that the following functional dependencies:

1. Stydent ID—> Student Name (This FD holds because the values of
Student 1D} attribute are unique)

2. Course ID, Course Name—->Faculty ID(This FD also holds because if
Course ID and Course Name are same for any two tuples in the table, the
values of omrespomhng Faculty ID ate algo gsame)

3. Faculty ID --->F_Salary(This FD also holds becanse any two tuples with
same Faculty ID will alzo have same valucs of F_Salary)

6.4 Trivial Functional Dependencyand Properties of
Functional Dependency

Trivial Functional Dependency:Consider two attribute sets P and Q over a relation
R. A functional dependency P—>(} is said to be trivial FD if Q is a subset of P (P2
Q). For example consider a relation R(ABC) with following FDs are trivial:

A-—>A (Ais already subset of A)
AB—>A (Ais asubset of AB)
AB—>B (B is a subset of AB)

But, the following FDs are not frivial:
A-—B (B is not gubset of A)
AB—>C (C is not subset of AB)

A-—>RC (BC is not subaet of A)

Inference Rules for Functional Dependencies: Given a relation schema R with
attribute gets x,y and z. The following properties of fimctional dependency are called
Armstrong’s axioms which hold true for any relation schema,

Reflexive: If x 2 y then x>y

Transitivity: If x—>y and y—->z then x—>z
Augmentation: If x—>y then xz—>yz

Union: If x—>y and x--—->z then x—>yz
Decomposition: If x—>yz then x—>y and x—>2

o b b

6.5 Attribute Closure (X+)

Attribute closure of a set X of attritutes of a relation R with FD set F is a set of all
attributes that are functionally determined from X uging the functional dependencies
present in F. The attribute closure can be determined by following procedure:

1. X=X
2. repeat
oldX' =X";
For each finctional dependency Y—Z in F do
ifYcX then X=X'UZ
until (X' ==oldX");

The above procedure starts with first assigning all atiributes of X to X'. Next, we use
the inference rules of FD and add attribute to X' recursively using each fiunctional
dependency in F, We repeat thig process unless no new attribute can be added to
X'.For example, consider a relation schema R{(ABCD) with functional dependency set
{A--->B, B—>C, C—>Dj}. The attribute closure of A and BC can be obtained as
follows:

(A'={A}

={A B}{using functional dependencyA--->B)
={A,B,C} (using functional dependencyB-—>C)
={A,B,C.D}{(using finctional dependencyC—>D))

(BCY'={B,C}
={B,C,D} (using functional dependencyC—->D)

Super keys: Let us congider a relational schema R with an attribute set X, If the
attribute closure of X (i.c. X) determines all attributes of the relation R, then X is
super key for the relation R.

For example, if R(ABCD)} is a relation schema with functional dependencies {A—>B,
B--->CD}, then AB is super key of relation R(ABCD) because (ABH={A,B,C,D}.

78

Candidate Key: A candidate Key is a minimum number of attributes whose closure
gives all the attributes of a relation. In other words, if a closure of any proper subset of
a super key does not give all attributes of the relation then the super key becomex the
candidate key for the relation. So, a candidate key is the minimal super key and all
candidate keyz are super keys but not all super keys are candidate keys.

For example, consider a relational schema R{ABCD)with functional dependencies
{AB--->C, C—>D, B-->EA}. Let us find the candidature key of R. Since, attribute B
iz not present on the right side of any functional dependencies. Start with B and find
itz attribute closure.

(BX={B,E,A,C,D}.

Because, attribute closure of B gives all attributes of the relation, it is a candidate
key.Since the attribute B cannot be obtained from any functional dependency, it is the
only candidate key of the relation.

IMustrative questlon: Consider a relation scheme R = (A, B, C, D, E, H) on which the
following functional dependencies hold: {A—-B, BC—=D, E—=>C, D—=-A}. What are
the candidate keys of R?

Solution; Since attributes E and H are not present in the right hand side of any

functional dependency, every candidate key must contain E and H. Start with EH and
find their attribute closure,

(BH)"= {EHC}

So it is not a candidate key. Add left side attributes of any functional dependency and
then find their atiributes clogure.

(AEH)'= {B,C,D,A,E,H}

(AY'= {A,B}

So AEH i the candidate key.

Attribute A can be obtained from D—>A.

(DEH)'= {D,A.B,EH,C}

So DEH is also a candidate key. Attribute D can be obtained from BC—>D
(BCEH)'={BCDAEH]}

But attribute C can be obtained from E->C. So, BEH is also a candidate key.

Check your progress

1. Consider the following table.
X ¥ 2

1 &£ 2

W
N oo
N W w

Which of the following finctional dependencies are satisfied by the above table?
@XY>ZadZ->Y
MYZ>XandY >Z
WDYZ>XmdX->Z
MXZ>YadY >X

2. Congider the relation X(P, Q, R, S, T, U) with functional dependenciesF —
{{P,R} — {8,T}, {P,8, U} — {Q, R}}, Which of the following is the trivial
functional dependency in F+ is closure of F?

(A} {(PR}-{8,T}
(B) {P.R}—{R,T}
(C) {P,5}—{5}

D} (P.S,U—{Q}

3. Consider a relation R(ABCDEF) with the following functional dependency set
{C~>F, E->A, EC->D, A->B}. Which of the following are false?
a) (CD)+={CDF}
b} (EC)+={E,CF.AD,B}
) (AE}+={ABJE}
d) (AC)+={AE}

6.6 Functional Dependency Set Closure

A closure of any functional dependency set is a set of all functional dependencies
logically implied from the original functional dependency set. Given a relation R with
functional dependency set F, a closure of F represented by F' can be determined by
following procedure:

1, TInitialize the functional dependency set closure with empty F'={},
2. For each subset X CR.
» Find attribute closure X*
s ForeachYCX
e Add a functional dependency X > Yto F'

To illustrate the above procedure, consider a FD set {A—>B, C—=>B} for a relation
R{ABC). Closure of the given FD set can be found by finding closure of all possible
gubsets of attributes of the relations.

1. Initialize an empty fimctional dependency closure set F'.

2, =0
It is also counted as a functional dependency. Add these functional
dependencies to F'.

3. A'=AB
This attribute closure gives 2 attributes, so it gives tota] 27 o @=) 4
functional dependencies which are as follows:
A

A->A

A—B

A—>AB

Add these functional dependencies to F'.

. B+=B

Now, this closure ulso contsing 1 attributes which gives total 2000 of
b)) functional dependencies:

B>

B—B

Add these functional dependencies to F'.

. C=CB

The atribute closure C™ contains 2 attributes, it gives tota] 2ber of aulluz) _y
functional dependencies which are as follows:

C—0

C—=C

C—>B

C—>BC

Add these functional dependencies to F'.

AB+= AR

This attribute closure gives 2 atfributes. It gives tota] 2Wwthber of auibuind) _y
functional dependencies which are az follows:

AB—>Q

AB—>A

AB—>B

AB—>AB

Add these functional dependencies to F*.

BC+=BC

This atiribute closure gives 2 atiributes. It gives total 25 of shbum)_y
functional dependencies which are as follows:

BC—>d

BC—B

BC—>C

BC—>BC

Add these functional dependencies to F*.

AC+= ACB

This attribute closure gives 3 atiributes. It gives total 20mbee of shbu)_g
functional dependencies which are as follows:
AC—>P

AC>A

AC—>B

AC>C

AC>AC

AC>BC

AC>AB

AC->ABC

Add these functional dependencies to F'.

8. ABCH= ABC
This attribute closure also gives 3 attributes. It gives total 20uube of sl _g
functional dependencics which are as follows:
ABC>@
ABC=A
ABC—R
ABC—C
ABC—AC
ABC—>BC
ABC—~AB
ABC—=ABC

So, the total number of functional dependencies logically implied from the given FD
getis 1+4+2-+4-+4-+H4-+-8+8=335.

Membership Test:

6.7 Equality Between two Functional Dependency Sets

Any two functional dependency sets F and G are said to be equal if closure of FD set F
(i.e. F+) iz equal to the closure of FD set G (i.e. G'). Alternately, we can also say the
two FD set F and (G are equal if
1. F covers G: This means all FDx of (7 are logically inmplied from the FD set F.
2. G covers F: This means all FDg of F are logically implied from the FD set G.

For example, congider two FD set F and (7 as follows:
F={A—>B, AB—>C, D>ACE}
G={A—>BC,D—>AE}
We can check whether the two FD sets are equal or not by applying following steps:
1. Check whether F covers (G: Take left side attributes of each FD of G and find
its attribute closure using FDs of F.
(AY'={A,B,C}
Since, the atiribute closure A* containg BC attributes, this implies that the
functional dependency A—>BC can be derived from existing FD set of F.

(Dy={D,A,C,E}

Since, the attribute closure D' contains attributes AE, this means the
functional dependency D—>AE can also be derived from existing FD set of F.
So, all FDs of G are logically implied from FD get F.

2. Check whether G covers F: Take left side attributes of each FD of F and find
its attribute closure using FDs of G.
(AH={AB,C}
So, the functional dependency A—>B, can be obtained from existing FDs of G.

(ABH={A,B,C}
So, the functional dependency AB—C, can be obtained from existing FDs of
G.

(Dy={D,A,E,B,C}
So, the functional dependency D—>ACE, can be obtained from existing FDz
of G.

81

82

Also, all FDs of F are legically implied from FD set G.

Therefore two FDs F and G are equal.

Check your progress

4, Consider following functional dependencies are given:
AB->CD, AF->D, DE->F, C-~G, F->E, G->A
Which one of the following options is false?
{a)CF+= {ACDEFG} (1BG+= {ABCDG}
{c)AF+ = {ACDEFG} {d)AB+= {ABCDFG}

5. Consider the relation scheme R—E,F,G,H,I,JK,L,M,N) and the set of
functional dependencies {EF—G, F—II, EH—KL, K—M, L—N}on R. What
is the key for R?
(a) {EF}
(b) {EFH}
(¢) {EHKL}
(@ {E}

6. Find closure of 8 functional dependency set F={A—>B, B—>A} of relation
R(AB}.

6.8 Minimization of a Functional Dependency Set

Minimal Functional Dependency Set:A set of functional dependencies F is said to
be minimal if it satigfies following conditions:
1. EachFD in F contains a single attribaute on its right hand side.
2. Any proper subset of X in FD X—>Y does not determine Y.
3, We cannot remove any FD from F which iz equivalent to the original FI) set
F.

A minimal set of functional dependencies sct F can be determined by following steps:

1. Replace eachFD X — {Al, A2, ..., An} in F by the n functional dependencies
X—AlLX—AL ... X— Al

2. Remove extrancous or redundant atiributes from the left hand side of each FD.
This can be found by finding attribute clogure of each attribute of LHS.

3. Remove the redundant functional dependency X—Y if any from the
functional dependency set obtained from step 2.

For example, assume that after applying step 1, we get the following FD: {A — C, AB
— C,C—D,C—E, CD — E}. Find attribute closure of each attribute on the LHS.
(i) A+ =ACDE

(i) B+=B

{iif) C+ = CDE

{iyD+=D

{(WE+=E

From (i}, the attribute closure of A gives the attribute C. So, the FD AB — C containg
redundant attribute B and it can be removed.

Similarly, from (iii), the attribute closure of C contains attribute E. This means the FD
CD — E contains D as a redundant attribute and o D can be removed from it.

Now, no more redundant attributes can be found in any FD. So the final result after
applying step 2 is as follows:
{A-CA—-C,C—o-D C—E}

Finally, remove redundant functional dependency if any present. For example, after
applying step 2, the FD set containg A — C as redundant FD which can be removed
safely.

Explanatory Question: Find the minimal FD set of F:
F= {A -->BC, B->C, A -->B, AB —>C}

Solution; Minimal get of FD can be found by following steps:

1. Rewrite the FD set F such that the Right Hand Side (RHS) of each FD should
comtain a single attribute.
{A—>B,A-->C,B-->C,A-->B,AB—>C}

2, Remove redundant attributes: Find attribute closure of each attribute of the
LHS of FD set F.
() A+=ABC
(i) B+=BC
(iii} C+=C
From (i}, the attribute closure of A gives attribute C. This means B is a
redundant attribute in AB— C, and so B c¢an be removed. Now, no more
redundant atiributes can be found. So the final result after applying step 2 is as
follows:
{A—>B, A --->C,B--->C, A --->B, A--->C}

3. Remove redundant functional dependency if any. The FD set we get after
applying step 2 containg A —> B two timesg and A--->C also two times. So
these FDs can be removed safely without loss of any FD in the given FI) set.
Now the FD set becomes {A > B, A ---> C, B—>C}. By transitive property
of FD, A --> C is logically implied from A -—> B and B--->C. So the final
minimal FI) set contains :{A ---> B, B--->C}.

Check your progress

1. Find the minimal cover of following functional dependency sat:
{A— B, ABCD — E, EF — GH, ACDF — EG}

2. 'What iz the minimal cover of following functional dependency set F?
F= {A—BC, B —CE, A—E}

6.9 Properties of Decomposition

We decompose a relation R into a set of sub relation {R1,R2,R3..Rn} if the relation R
iz not in appropriate normal form. When a relation R iz decomposed into a set of sub

relations {R1,R2,R3..Rn}, then the decomposition should be lossless as well as
functional dependency preserving decomposition.

1. Lossless Join Decomposition: Let a relational schema R is decomposed
into R1,R2,R3.. Rn. In general the natural join of among the decomposed relations R1
»d B2 pa R3 ... Rnis superset of R 1.e. R1 04 R2 04 R3...Rn 2 R. The decomposition is
said to be lossless if the natural join among decomposed relations is exactly equal to
original relation R i.e R1 &4 R2 M R3....Rn=R. This means & lossless decomposition
does not contain any false tuples after performing the natural join operation among
decomposed relations, The false tuples represent erroneous information If a
decomposition is not lossless decomposition, then it is called lossy decomposition.

s Decomposition is lossy if R1 W R2.Rn > R
s Decomposition is lossless if R1 M R2.Rn=R

For example, consider a relation R(ABC) is decomposed into relations R1{AB) and
R2(BC) as given below in figure 6.5 :

A B C

a) R{ABC)

b) RI(AB)

Lh
T I S

A B C
2 5 4
2 5 3
4 3 2
1 5 4
1 5 3
4 3 2

d) Result of R1 }R2

Figure 6.5-The decomposition of R(ABC) into R1{AB),R2(BC) iz lossy because
RiIMRISR

We can clearly see that the Result of R1 »¢ R2 = R, which mean the result, contains
falze tuples. So it is a lossy decomposition.

Consider the same relation R, but now it is decomposed into two relation R1(AB) and
R2(AC) as shown below in Figure 6.6,

A B
2 5
1 5
4 3
a) RI(AB)
A c
2 4
1 3
4 2
b) R2AC)
A B C

¢) Resuli of R1 e B2

Figure 6.6-The decomposition of R(ABC) into R1(AB},R2(BC) is lossleas becaunse
Rl w R2=R.

Ifwe are given functional dependencics of a relation We can use the functional
dependencies of the relation to show when a decomposition is lossless. Let a relation
R is decomposed into two relations R1 amd R2, The decomposition is said to be
lossless if it satisfy following conditions:

1. Atributes of R1 U Atiributes of R2 = Aftribuies of R

2. Atiributes of R1 N Atiributes of R2 £ @

3. Common atiributes of R1 and R2 must be a super key of at least one relation

(R1 or R2).

For example, consider the decompogition of R{(ABC) itto R1{AB) and R2(AC) as
shown in figure 6.6. We can clearly see that the common attribute A is super key of
both relations R1 and R2, So it is & lossless decomposition,

IMustrative question: Identify whether the following decomposition with given
functional dependencies are losgy or lossless.

a. R{ABCD) with FD={AB—->C, C—>A, C--->D}
Decomposition={R1{AB), R2(ACD}}

b. R{ABCD) with FD={A—>B, B—>C, C—>D}
Decomposition={R1(AB),R2(BCD)}

Solution;

a. The decomposition will be lossless if
1. AB U ACD = ABCD, which is true.
2. AB N ACD # @, which is true.
3. The common attribute between R1(AB), R2(ACD} i3 A. A is not the super
key of either R1 or R2 because

The attribute closure of A does not gives all attributes of either R1 and R2

At=A
So, the decomposition is lossy.

b. The decomposition will be lossless if
1. AB U BCD = ABCD, which i3 true,
2. AB N BCD # @, which is true.
3. The commen attribuie between R1{AB), R2(BCD) is B which is the super
key of R2. This is because the attribute closure of B gives all attributes of
R2 table :
B+=BCD

So, the decomposition ix logsless.

2. Dependency Preserving Decomposition: Let a relational schema R
with functional dependency set F is decomposed into R1,R2,R3..Rn with functional
dependency set F1,F2,F3..Fn respectively. In general the mnion of all fimetional
dependency set F1,F2,F3...Fn is subset of F Le F1 UF2 U F3._.U Fog F. If a union of
all functional dependency set F1,F2,F3..Fn ig proper subzet of Fi.e F1 UF2 UF3..U
Fnc F, then the decomposgition is dependency not preserving decomposition. But if,
the union of all functional dependencies set F1,F2,F3. Fniz equalto FieFI UF2 U
F3...u Fo=F, then the decomposition is dependency preserving decomposition.

Dependency preserving decomposition if F1 UF2 U F3..U Fn=F
¢ Dependency not preserving decomposition if F1 UF2 U F3,, .U Fnc F

IMnstrative question: Let R (A, B, C, D) be a relational schema with the following
fimctional dependencies: {A — B, B — C, C — D and D — B}. The relation R is
decompoged into

RI{AB), R%A(BC), R3(BD). Determine whether it iz dependency preserving or
dependency not preserving decomposition.

Solution: Let F1, F2 and F3 after functional dependency set of R1{AB), R2(BC),
R3(BD).

Find functional dependency set F1 by finding attribute closure of each combination of
attributes of R1(AB).

A+=ABCD

B+=BCD

AB+= ABRCD

F1={A—B} (only consider the attributes which are part of R1)

Now, find functional dependency set F2 from the attribute closure of cach
combination of attributes of R2(BC).

B+=BCD

C+=CDB

BC+=BCD

So F2= {B—C,C—B} (only consider the attributes which are part of R1).

Finally find functional dependency set F3 from the atiribute closure of each
combination of attributes of R3(BD).

B+=BCD

DH=DBC

BD+=BCD

80, F3= {B—D, D—B} which are the part of R3(BD).

In the functional dependency set of R(ABCD), A — B ig present in F1, B - C
presents in F2, D — B presents in F3, and C — D can be obtained indirectly from
C—B of F2 and B—D of F3. So this decomposition is functional dependency
preserving decomposition

Check your progress

1. Let R(XY,ZW) be a rclational schema with the following functional
dependencies:
{X-Y,YoZZ -WX-Y YZ 7 W and W YWY}

87

The decomposition of R into (X,Y),(Y,Z),(Y,W) is
a) Lossy join, but is dependency preserving
b} Losslessjom, but is not dependency preaa'vmg
¢) Lossless join and dependency preserving
d) Lossy join and not dependency preserving

2. Given R(A B,C,D,E)with the FD Set F(A->B, A->C, DE->C, DE->B, C>D).
Congider this decomposition ; R1(A,B,C), R2(B,C,D.E) and R3(A,E), Then,
which of the following iz true for this decompnsmom

a) Lossy join, but is dependency preserving

b} Lossless join, but is not dependency preserving

¢) Lossless join and dependency preserving

d) Lossy join and not dependency preserving
6.10 Summary

In summary;

¢ We learned Functional Dependencies and how to determine these functional
dependencics from the given relational instance.

s We understand attribute closure and how we can use the attribute closure to
find candidate keys of a relation from its functional dependencies.

¢ We illustrated to find functional dependency closure of any relational
instance.

¢+ We described equivalence of two functional Dependency Sets and learned to
find when two functional Dependency Sets are said to be equal.

s We learned to find minimization of a fimetional dependency set of a relation,

6.11 Terminal Questions

1. Explain the two properties that the decomposed relations should satisfy.

2. How do you determine whether the decomposed relations satisfy lossless and
dependency preserving decomposition or not?

3. What are the differences between attribute closure and functional dependency
closure?

4, 'When do any two functional Dependency Setg are said to be equal?

5. Find the minimal functional dependency set of {PQ-->R, PR-->Q, Q---
>8,QR--->P, PQ—>T}.

6. Explain with suitable example how you find candidate keys of a relation from
its functional dependencies.

7. What do you mean by Functional Dependencies of a relation?

BIBLIOGRAPHY

1. R Elmasri, 8 Navathe, Fundamentals of Database Systems, 6th edition,
Addison-Wesley, 2010,

2. R Ramnkrishnan, J Gehrke, Databage Management Systems, 3rd Ed.,
McGraw-Hill, 2002.

3. A Siberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 2010.

UNIT-7 Normalization

Structure

7.1 Introduction

7.2 Objectives

7.3 Problems Caused by Redundancy of Data

7.4 Normalization

7.5 Second Normal Form

7.6 Third Normal Form

7.7 BOYCE-CODD NORMAL FORM (BCNF)

7.8 Multivalued Dependencies and Fourth Normal Form
7.9 Join Dependencies and Fifth Normal Form

7.10 Summary
7.11 Terminal Guestions

7.1 Introduction

In this unit, we will discuss other database degign concepts that are used extengively in
commercial database design. The very first step in & database design involves
designing of an ER model which is later mapped to relational model. In the
subsequent step, functional dependencies are identified and then primary keys are
determined from these functional dependencies. Later, the undesirable functional
dependencies are removed through the normalization process. In the previous unit, we
discussed concepts of functional dependency, lossless join and dependency preserving
decomposition. Now based on these concepts, we will discuss normal forms such as
2NF, 3NF, and BCNF and use them to achieve desired decompositions, A good
database design should satisfy two properties: lossless join and dependency preserving
decomposition. Further, we will discuss the concept of mmltivalued dependency
(MVD) and explain fourth and fifth normal form.

7.2 Objectives
After studying this unit, you will able to:

« Explain various types of anomalies, which area rising due to the redundancy
of data,

¢ Understand normalization process and apply various normal forms on any
relational schema.

e Decompose a relational schema which is not in third normal form to a set of
decomposed relations in third normal form such that each decomposed
relation satisfies both lossless and dependency preserving decomposition.

s Perform decomposition of a relational schema which is not in BCNF into a set
of decomposed relations where each one is in forth normal forms.

» Explain mulii valued functional dependency and forth normal form along with
join dependency and fifth normal form.

89

7.3 Problems Caused by Redundancy of Data

Redundancy is multiple copies of the same data present in a database table. For
example, consider the STUDENT table shown in Figure 7.1. The attributes
Course_ID, Course Name, Faculty ID and Faculty Salary contain multiple entries of
cs-01, Java, F01 and 70,000. Thiz redundancy of data causes basically three

problems:

Student ID | Student Name | Course ID | Course Name | Faculty ID | Faculty Salary

001 Sharad cs-01 Java F-01 70,000

002 Dinesh cs-01 Java F-01 70,000

003 Anil cs-02 Python F02 70,000

004 Nikhil cs-01 Java F01 70,000
Figure7.1- A sample STUDENT table of a student database,

1. Update Anomaly: When a database table contains multiple copies of the
same data, an update of the data requires change at nmltiple places or all
copies of the data, This causes an update operation costly and results in update
anomaly. For example, consider the STUDENT table shown in Figure7.1.

Student ID | Student Name | Couwrse ID | Course Name | Faculty ID | Faculty Salary
001 Sharad cs-01 Java F-{1 20,000
002 Dinesh cs-01 Java F-01 80,000
003 Anil cs-02 Python F-02 70,000
004 Nikhil cs-01 Java F-01 £0,000

Figure 7.2- Result of npdation in salary of F-01 from Rs 70,000 to 50,000 in
STUDENT table.

If we want to change the value of one of the attributes, say salary of F-01 from Rs
70,000 to 80,000, then we must update all records of students who are taught by F-01,
In other words, we must update the salary of F-01 in all places (as shown in above
Figure7.2). Otherwise, if we make changes in some places, then it causes different
salaries of the same faculty. Updation of redundant copies of the same data makes the
update operation too costly.

2, Ingertion Anomaly: Redundancy of data canses insertion of some unexisted
dummy data when a new data is inserted. This causes insertion anomaly. For
example, consider again the STUDENT table shown in Figure7.1.

Student ID | Student Name | Course ID | Course Name | Faculty ID | Faculty Salary
001 Sharad cz-01 Java F-01 70,000
002 Dinesh c-01 Java F-01 70,000
003 Anil cs-02 Python F-02 70,000
004 Nikhil cz-01 Java F-01 70,000
NULL NULL cs-03 C F-03 35,000

Figure 7.3- Result of adding a new faculty F-03 in STUDENT table.

If we want to add a new faculty F-03 who is not yet teaching, we need to insert some
dummy value like NULL for other attributes as shown in Figure 7.3. This forces the
NULL values for Student]D atiribute also, but it cannot be NULL because it is a

primary key.

3. Deletion Anomaly:In delete ancmaly, deletion of some data causes deletion
of other useful data also. For example, inSTUDENT table shown in

Figure7.1.
Student ID | Student Name | Coursg ID | Course Name | Faculty ID | Faculty Salary
001 Sharad cz-01 Java F-01 70,000
002 Dinesh cs-01 Java F-01 70,000
003 Anil es-02 Python F-02 70,000
004 Nikhil ce-01 Java F-01 70,000

Figure 7.4- Result of deleting a student with Stedent Name Anil in STUDENT
table.

If we delete the record of Anil, this also forces the deletion of faculty information of
F-02. 3o, the deletion of one record results in the deletion of other useful imformation
algo.

Decomposition of a relation schema:We saw that the three anomalies cause
difficulties in mwintaining consistency of the data during updation, insertion and
deletion of some data. During updation and ingertion of new data, some redundant
work needs to be done. Sometimes, the deletion of & data causes accidental loss of
other data. There is algo wastage of storage space due to dummy data like NULLs. The
various problems arise due to these three ancmalies can be overcome by splitting the
original table into two or more tables. For example, consider the STUDENT table
ghown in Figure7.1 is decomposed into two scparate tables as given in Figure7.5. The
first table StudentDetail comsigts of atfributes: Student ID, Student Name and
Course ID. The Other table Course Detail consists of attribuies: Course ID,
Courge Name, Faculty ID and Faculty Salaty.

. |

Student_ID Student Name Course_ID
001 Sharad es-01
002 Dinesh cs-01
003 Anil cs-02
004 Nikhil cs-01
a) StudentDetall table
Course 1D Course_Name Facalty 1D Faculty Salary
cs-01 Java E-01 70,000
cs-02 Python F-02 70,000

b) Course Detail table

Figure7.5 - Decomposition of a student table into two tables.

We can eagily examine that:

1. An update will take place at only one place i.¢. in a gingle tuple. For example

if we consider the decomposed tables, a change in salary of a faculty requires
updating only one recerd.Butf, in case of STUDENT table, this requires

changes in several records.

2. Any insertion of a data does not insert an unexisted dummy data. For example,
in the decomposed tables, insertion of a new faculty does not require the
addition of dummy data for attributes Student ID and Student Name.But, in
case of STUDENT table, thig requires addition of NULL values corregponding

to other atiributes.

3. Deletion of any data does not cause removal of any other useful information.
For example in decompoged tables, if we delete the record of Anil, it does not

remove faculty information of F-02.

7.4 Normalization

Normalization is a process of structuring a relation based on normal forms to achieve

following properties:

1. Minimizing redundancy of data.

2. Minimizing the insertion, deletion and update anomalies.

A normal form is a condition which indicates the degree to which a relation is
normalized. The relation that does not satisfy the condition of normal form is
decompoged into smaller relations. The main goals of the normalization process are:

1. 0% redundancy
2. Lossless Join Decomposition

3. Dependency Preserving Decompogition
There are six normal forms: INF, 2NF, 3NF, BCNF, 4NF and SNF.

First Normal Form{INF}: A relation is in first Normal form if it comtaing only
gingle valied attributes. If a relation containg any multi velued sttribute, then the
relation is not in first normal form. For example, consider the STUDENT1 table with a
primary key S_ID shown in Figure7.6. It containg & multivalued attribute C_Name
which containg nmltiple values for C Name in each tuple. So thir table is not in the
first normal form,

S ID S Name C_Name

s01 Sharad Algorithm, DBMS
502 Denesh Algorithm, Java
803 Vikash DBMSE, Java

Figure?7.6 - STUDENT1 table.

We can convert STUDENT] table to first normal form in any one of the three ways:

1. If we remove the multivalued attribute C Name from STUDENT] table and
place it in a new table along with the primary key of the STUDENT]1 table.
Now, both STUDENT2 and STUDENT3 tables are in first normal form which

is shown in Figure7.7.
S 1D 8 Name
501 Sharad
502 Denesh
503 Vikash

a STUDENT2 table.

S ID C_Name
$01 Algorithm
501 DBMS
S02 Algorithm

93

502

Java

S03

DBMS

503

Java

b. STUDENTS table.

Figure7.7- STUDENT2 and STUDENT3 tables.

2, If we expand cach value of the attribute C_Name as 8 separate tuple, the table
becomes first normal form. The restructured table STUDENT4 is shown in
Figure 7.8 where {S_ID, C_Name} serves as its primary key. Since it containg

a]lsingleva]uedattrilmtes,?tishﬁrstformalfurm.

S ID S Name C_Name
S01 Sharad Algorithm
501 Sharad DBMS

502 Denesh Algorithm
S02 Denegh Java

803 Vikagh DBMS

S03 Vikash DBMS, Java

Figure7.8 - STUDENT4 table.

3. If we know the maximum number of courses any student can opt, let us say 2,
then we can replace the C_Name atiribute with two attributes: C Namel and
C Name2. The resulting table STUDENTS shown in Figure 7.9 is in first

formsl form,
5D S_Name C_Namel C_Name2
501 Sherad Algorithm, DBMS DBMS
502 Denesh Algorithm Java
803 Vikash DEMS Java

Fignre7.9 - STUDENTS table.

In the above three solutions, the first is the best solution because it does not suffer

from redundancy. The second solution suffers from redundancy of data.

7.5 Second Normal Form(2NF)
A relation R is in gecond normal form if it satisfies two conditions:
1. Itisin first normal form

2. It does not contain any partial functional dependency. The partial functional
dependency means if any proper subset of a candidate key functional
determines any non prime attribute (attribute which are not a part of the
candidate key) it is called pattial functional dependency.

For example, consider a relation R(ABCD) with & candidate key {BC}. The atiributes
B and C are prime attributes while A and I} are non-prime attributes. The functional
dependencies B—>D and C—>AD are¢ partial functional dependencies.

A relational schema that is not in second normal form can be decomposed into a set of
second normal form relations as follows:

1. Create a new relation for each partial functional dependency which contains
all the participating attributes of the partial functional dependency.

2. There should be a relation with the eriginal primary key and attributes which
are fully fimctionally dependent on the original primary key.

In & functional dependency BC—>> D, if neither B—>> D nor C-->D holds true, then the
attribute D is fully functionally dependant on the candidate key BC.The
decomposition by the above algorithm is both lossless-join and dependency-

preserving,

IMustrative questions: Consider a relation R{(ABCDE) with functional dependencies
{AB--->C, C--->D, B—>E}. Is this relation is in second normal form. If not then
decompoge it into second normal form.

Solution: First we need to find candidate keys of relation R(ABCDE). Since attributes
AB do not contam on the right gide of any functional dependency, every candidate key
must cortain AB. So, start with AB and find atiribute closure of it.

AB+= {ABCDE}

A'= {A}

B'= {BE}

Closure of attributes AB gives all attributes of relation R while closure of its subset A
and B does not gives all aftributes of the relation. So, AB is candidate key of the
relation. Since, attributes A and B camnot be obtained from anmy functional
dependencics, AB is the only candidate key of the relation.

The functional dependency B—>E i a partial fimctional dependency because B is a
proper subset of candidate key and E iz nonprime attribute (E is not a part of
candidate key). So, the relation i not in second normal form.

The relation R can be decomposed into a set of relations such that each of them is in
gecond normal form as follows:

1. Since, B—=>E is partial finctional dependency, create a new relation R1{BE)
with attributes B and E,

2. The other relation R2(ABCD) should contain original candidate key AB and

other attributes CD that are fully functionally dependent on it. The attribute E

is not fully functionally dependant on AB because the functional dependency
B—>E holds true, so E is not included in R2.

The resulting R1(BE) and R2{ABCD) are in second normal form.

Check your progress

1. Consider a relation R(ABCD) with functional dependency F:{ AD — B, AB
— C }. Is the functional dependency AB — C partial or total dependency?

2. Given the following relational schemes for a library database:
Book (Title, Author, Catalog no, Publigher, Year, Price)
The following functional dependencies hold in above relation:
a) Title Author -> Catalog no
b} Catalog no > Title, Author, Publisher,Year
¢) Publisher, Title,Year -> Price
If {Author, Title} is the candidate key for the above relational scheme. Is this
relational schema in second normal form?

3. Consider arelational schema R{AB,C.D.EP,G} with following FDs:
{AB->CD, DE->P, C->E, P->C, B=>(G}. Whether relation schema R is in
gecond normal form or not?

7.6 Third Normal Form(3NF)

A relational schema R with any non trivial functional dependency X--->Y is in third
normal form if either of the following conditions holds:

a) X iz asuper key of R
OR
b} Y is a prime attribute of R.

The redundancy of data on third normal form is less than second normal form. A
relation which is not in third normal form can be converted into third normal form by
decompogition of the original relation and set up a new relation for each fimctional
dependency that violates third normal form condition. The other relation contains
candidate keys of original relation along with candidate keys of each decomposed
relations. The resulting decomposed relations are in INF that satizfy bothlogsless-join
and dependency-preserving decomposition.

IMustrative Question: Consider a relation R(ABCDE) with functional dependencies
A-—>BCDE, BC--->ADE and D—>E. Check whether it ig in third normal form or
not. If not, decompose it into third normal form.

Solution; In order to check if the relation is in third normal form, first we need to find
its candidate keys. Since, all attributes of the relation are covered by the right side of
all functional dependencies. Take left side attributes of any functional dependency and
find its attribute closure.

(Ay+={BCDEA}

Since, closure of attribute A gives all attributes of the relation, o it is a candidate key.
The attribute A can alzo be obtained from functional dependency BC—>ADE. Check
whether BC is also the candidate key.

(BC)t= {BCADE}
(By+= {B}
(Cr={C}

S0, BC is also a candidate key of the relation.

The candidate keys of the relation are {A} and {BC}.The functional dependency D
— E violates the third normal form becanse neither D is a super key nor E is a prime
atiribute.

We can convert it to third normal form by decomposing the relation R(ABCDE) and
get up a new relation R(DE) containing participating attributes of functional
dependency D—>E. The other relation contains candidate key of original relation R
and the candidate key of decomposed relation R(DE). Now decomposed relations
R{ABCD) and R(DE) are in third normsl form.

7.7 BOYCE-CODD NORMAL FORM (BCNF)

A relational schema R is in BCNF if for each functional dependency X-->Y that holds
in R, X should be the super key of the relation.

BCNF normal form is stricter than third normal form. Every BCNF relation is also in
third normal form but every third normal form is not in BCNF. For example, consider
a relation TEACHER(Student, Course, Faculty) with functional dependencics
{Student, Courge}--->Faculty, Faculty--->Course and & candidate key {Student,
Course}. The functicnal dependency Faculty—>Course violates BCNF condition.
However, it satisfies the third normal form condition because Course is a prime
attribute.

A relational schema R with a set of functional dependencies F which is not in BCNF
can be decomposed into a set of BCNF relations ag follows:

1. SaD={R}

2, For each relational schema Q in I} that is not in BCNF do
s find a functional dependency X — Y in Q which violates BCNF;
s replace Q@ in D by two relation schemas R1(Q - Y) and R2(X.Y);

The resulting decomposition from the above algorithm islosslegs-join but may or may
not be dependency-preserving decomposition. If a lossless-join and dependency
preserving decomposition are not possible with BCNF, we may consider
decomposition with 3INF.

Iipstrative Question: Consider a relation R = (ABCDE} with functional
dependencies A—>B, BC—>D}. Is thig relation in the BCNF?

Solution: First we need to find the candidate keys of the relation. Aftributes ACE are
not present on the right side of any functional dependency. Start with the attribute
closure of ACE.

(ACE)'= {ACEBD}

The attribute closure (ACE)'gives all attributes of the relation, so ACE is a candidate
key of the relation. Since, we do not get any attribute of the candidate key from the
functional dependencies of R. So ACE is the only candidate key of the relation,

We know that all candidate keys are super keys. The fimctional dependencies A-—>B
and BC—>D viclate BCNF condition because Left side attributes of both FDs are not

the super keys.

We can decompose R = (ABCDE) into a set of BCNF relations as follows:

1.
2

3.

R{ABCDE)
Take the functional dependencyA-—>B which violates the BCNF condition
and decompose R into R1 and R2 by removing attribute B from R.

R1(ACDE) and R2(AB)

Now consider the functional dependencyBC--->D that violates the BCNF
condition. Itcan also be writien as AC—>=D because B can be obtained from
A—>B. Now, decompose R1 imto R11 and R12by removing attribute B from
R as follows:

R11(ACE), R12(ACD) and R2(AB)

Stop the further decomposition because all relations R11(ACE), R12(ACD)
and R2(AB) are in BCNF,

A binary relation which contains only two attributes is always in BCNF. This is
because there are only four scenarios possible:

2,

3.

R(AB) with furctional dependency A—>B and candidate key A. 8o it i in
E{Cg'with fursctional deperidency B—>A and candidits Ley' B, 8o it i i
EEANBI;' with functional dependency A—>B,R(AB) with functional
dependencies A--->B and B—>A with candidate key A and B, So it is in
E{ENFANBI;]-vdthm functional dependency with candidate key AB. So it is in

Check your progress

Consgider the relation schetna Student Performance (name, courseNo, rollNo,
grade) has the following FDs:

* name,courseNo-grade

& roliNo,courseNo->grade

» name->rollNo

» tollNo->name
What is the highest normal form of this relation scheme?

Let the set of functional dependencies F= {QR — 8,R — P, 8 — Q} hold on
a relation schema X = (PQRS). X is not in BCNF. Suppoese X ig decomposed

imto two schemas and Z where Y = (PR) and Z = (QRS). Congider the two
statements given below:

S1. Both Y and Z are in BCNF

52. Decomposition of X inte Y and Z is dependency preserving and a lossless.
Explain whether the above two staternents ate true or false?

3. Given the following two statements:
51: Every table with two single-valued attributes is in INF, 2NF, 3NF and
BCNF,
52: The FD set {AB->C, D>E, E>C} is a minimal cover of the set of
functional dependencies {AB->C, D->E, AB->E, E->C]}.
Explain whether the above two statements are true or false?

7.8 Multivalued Dependencies and Fourth Normal Form

In the previous section, we learned that in a fonctional dependency A -> B, each value
of attribute A corresponds to only a single value of B. In other words, in a finctional
dependency A->>B, each value of A determines exactly one value of B. But, if for
each value of A there exists multiple values of B then B is multivalued facts about A
and it is represented az A ->> B. A multivalued dependency exists if there exists at
least two multivalued facts A ->> B and A ->> C on the same attribute A within the
same table R and atiributes B and C are independent of each other. So, 8 mmltivalued
dependency requires at least three atiributes such that two attributes are dependent on
a third attribute. For cxample consider a relation STUDENT (S Name, Fhone,
C_name) as shown in Figure 7.10:

S Name Hobbies C_name
Sandeep Chess C+
Sandecp Badminton Python
Nikhil Table tennis Java
Krisna Badminton C+
Krishna Table tennis Python

Figure?.10- A STUDENT (S_Name, Phone, C_name) table.

The above table containg two rmultivalued facts: 8 Name->-> Hobbies and § Name-
>>C name. They are read as S Name multi determines Hobbies and S Name
multidetermines C name., So, there exists mmltivalued dependencies: 5 Name->>
Hobbies and 8 Name->>C name in STUDENT table.

Fourth normal form(4NF): A relational schema R with a set of functional
dependencies and mmltivalued functional dependencies is in fourth normal form, if
each non trivial nmlitivalued dependency X->>Y contains X as super key of the
relation R. A multivalued dependency X —— Y in R is called a trivial multivalued
dependency if Y € X, or X U Y = R. Otherwise it is non trivial finctional
dependency.

A relation which is not in fourth normal form can be converted to forth normal form
by creating a new relation for each non trivial multivalued dependency that violates

100

4NF condition. For example, the STUDENT table shown in Figure 4.14 is not in
fourth normal form because it contains non trivial functional dependencies: 8 Name-
>> Hobbics and S Name->>C_name and S_Name ig not a super key. It can be
converted to fourth normal form by decomposing it into fwo tables
STUDENT_HOBBIES(S Name, Hobbies) and
STUDENT COURSE(S Name,C name). Now, the non frivial functional
dependencies S Name->> Hobbies and S Name->>C name become trivial in their
respective tables.

7.9 Join Dependencies and Fifth Normal Form

We have seen the process of repeated decomposition during the normalization process

to achieve INF, 2NF, 3NF and BCNF relations. Every 4NF relation alzo satisfies all
the properties of BCNF. The relationship among these normal forms is shown in
Figure 7.11. These relations always follow the property of lossless join decomposition.
We can also achieve 4NF relation by removing each non trivial multivalued
dependency which violates 4NF condition by repeated binary decomposition
However, sometimes it is not possible to obtain a lossless join decomposition of R
by splitting into two relational schemas, but we can achieve by decomposition of R
into more than two relational schemas.

Join Dependency: A join dependency represented by JD (R1,R2,R3..Rn) of a
relational schema R exists if there exists lozsless join decomposition of R into
R1,R2R3..Rn such that natural join among these relations equals to original relation
R that is (R1xR2mR3...Rn)=R.

Fifth Normal Form(5NF): A relational schema R is in Fifth Normal with
respect to a set of functional dependencies including multivalued dependencies and
join dependency JD{R1, R2, ... Rn), if

1. ID(R1, R2, ... Rn} iz non irivial join dependency. A join dependency JD(R,
R2, ... Rn) is said to be trivial if any relational schema Ri is equal to R,

2. EachRiof ID(R1, R2, ... Rn) is a super key of R.

Most commercial applications us¢ normal forms up to BCNF. The fifth normal is
rarely used in practice because it is difficult to identify join dependency. If we
consider all the groups of relations in first, second, third, BCNF, fourth and fifth
normal form are represented by sets. Then, the relationship ameng various normal
forms can be analyzed by following diagram shown in Figure 7.11.

7.10

7.11

Ll ol

Figure7.11 - Rehﬂnl;ship among various normal forms,

Summary

We had seen various types of anomalies arise due to the redundancy of data,
We explained normalization process and how it helps to get rid of redundancy
of data through various normal forms.

We learned first and second normal form and how to determine a relational
gchema in first and second normal forms or net.

‘We understand about third normal form and learned to decompose a relational
schema which is not in third normal form to a set of decomposed relations in
third normal form which are both lossless and dependency preserving
decomposition.

We discussed BCNF normal form which is stricter than INF and performed
decomposition of a relational schema which is not in BCNF into a set of
decomposed relations all in forth normal forms. We scen that the decomposed
relations are lossless but may or may not be dependency preserving
decomposition.

We explained multivalued functional dependency and forth normal form along
with join dependency and fifth normal form.

Terminal Questions

‘What do you mean by redundancy of data? Explain various types of anomalies
arise due to the redundancy of data.

What do you mean by trangitive functional dependency?

When schemsa is said to be in second normal form?

Explain the third normal form with suitable example.

Is it possible to decompose a relational schema which is not in third normal
form to a set of decomposed relations in third normal farm? If possible, then is
this decompogition is both lossless and dependency preserving

decompogition?
‘What is the condition for a relational schema to be in BCNF?

11

7. Describe whether the decomposition of a relational schema which is not in
BCNF in to a set of decomposed relations all in forth normal forms is possible
which are both lossless and dependency preserving decomposition.

8. Explain multivalued finctional dependency with suitable examples.

9. What do you mean by ttivial multivalued functional dependency?

10. When & relation iz said to be in fourth normal form?

11. Describe join dependency and fifth normal form,

BIBLIOGRAPHY

1. R Elmsyri, S Navathe, Fondamentals of Database Systems, 6th edition,
Addison-Wesley, 2010,

2. R Ramakrishman, J Gehrke, Database Management Systems, 3rd Ed.,
McGraw-Hill, 2002.

3. A Silberschatz, H Korth and S Sudarshan, Database System Concepts,
6th Ed., McGraw-Hill, 20140.

102

MBA-3.54
: Master of Business
[Administration

Uttar Pradesh Rajarshi Tondon
open University

Database
Management System

Block

3

Transaction Management & Emerging Databases

Unit-8 Transaction Processing Concepts 106

Unit-9 Emerging Trends in DBMS 129

103

MBA-3.54

Course Design Committee
Prof. Ashutosh Gupta

Chairman
Director (In-charge)

School of Computer and Information Science, UPRTOU Prayagraj
Prof. Suneeta Agarwal Member

Department of CSE

MNNIT, Prayagraj

Dr. Upendra Nath Tripathi Member

Associate Professor, Department of Computer Science
Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur

Dr. Ashish Khare Member

Associate Professor, Department of Computer Science

University of , Prayagraj

Ms. Marisha Member
Assistant Professor (Computer Science)

School of Science, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member

Assistant Professor (Computer Science)
School of Science, UPRTOU Prayagraj

Course Preparation Committee

Dr. Parth Gautam Author(Block 3 : Unit 8, 9)
Assistant Professor, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Dr. Abhay Sexena Editor
Professor and Head, Department of Computer Science
Dev Sanskriti Vishwavidyalya, Haridwar, Uttrakhand

Prof. Ashutosh Gupta
Director (In-Charge)
School of Computer & Information Sciences, UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Course Coordinator
Assistant Professor (computer science)
School of Sciences, UPRTOU, Prayagraj

UPRTOU, Prayagraj-2022
MBA-3.54- Database Management System
ISBN —

All Rights are resurved. No Part of this work may reprouduced in any form, by mimeograpn or
any other means, without permission in writing from the Uttar pradesh Rajarshi Tandon Open
University.

Printed and Published by Prof. P.P.Dubey, Registrar, Uttar Pradesh rajarshi Tandon Open
University, 2022

Printed By.- M/s K.C.Printing & Allied Works, Panchwati, Mathura -281003.
104

BLOCK INTRODUCTION

Thiz block deals with Transaction Management and Emerging DBMS. Here firutly, we
are going to study about various iransaction management strategies and mechanism. In
the second phase, we will learn about emerging databages that are required to meet the
needs of the emerging software applications and to manage varied data.

In the next unit of Transaction management, the concept of transaction and its
properties along with states are discussed. We will understand, how concurrent
transactions execute in the database by using the cencept of serializability and other
concurrency comtrol techniques. Along with this we are going to cover recovery
management mechanism which helps in attaining atomicity and durability of the
database.

Further, in the unit of Emerging DBMS, we are poing to understand the basic concept
of some emerging databases. Here, our emphagis will be on discussing the design
rules, architecture and user needs of these databases. This unit will alse cover the
applications and advantages of each of the databases

105

106

Unit- 8 Transaction Processing Concepts

Structure

8.1 Introduction to Transaction Processing

8.2 Objectives

8.3 Transaction and System Concept

8.4 Desirable Properties of Transactions

8.5 Scheduling and Recoverability

8.6 Serializability of Scheduling

8.7 Tramsaction Support in SQL

3.8 Concurrency Control Techniques

8.9 Concarrency Technigques for Concurrency Control

8§10 Concmrrency Control Based On Timestamp Based Protocol
§.11 Validation Based Protocol

8.12 Deadlock Handling

£.13 Database Recovery Technigues Based On Immediate Update
§.14 Fallure Classification

§.15 Shadow Paging

8.16 Log Based Recovery

8.17 Failure with Loss of Nonvolatile Storage

818 Summary

8.1 Imtroduction to Transaction Processing

A user might see several operations on a database as a single umit. For
Example, a very basic example of transferring funds from one account to ancther
account looks like a single operation but from the view point of database it consgists of

several aperations.

So, the collections of operations that form a single logical unit of work are
called as Transactions, It is required here that every transaction that initiates mmist
ensure its proper execution, not leaving the gystem in an inconsistent state. It would be
unacceptable if one account is debited and another one is not credited.

Here, we will digcuss all the basic concepts of transaction processing, its
properties, state, managing concurrent trangaction processing and recovery strategies,

8.2 Objectives

After studying this unit, students can understand the concept of transaction its
properties and states. We also discuss how concurrent transactions execute in the
database by using the concept of serializability and other concurrency control
techniques. This unit is also going to cover recovery management mechanism which
helps in attaining atomicity and durability of the database.

8.3 Transaction and System Concept

A transaction is a sequence of read and writes operations on data items that
logically functions as one unit of work. It provides and —“all-or-noting” propogition
stating that each work —unitperformed in database must either complete in its entirety
or have no effect whatsoever. There arc some points to consider related with
transaction processing:

= All actions of transactions will take place or nong of all.

e [f it succeeds, the effects of write operations persist (comumit); if it fails, no
effects of write operations persist (abort).

s It ensures consistent state despite of concurrent activity in the system, and
despite failures that may occur.

After transaction

Database before processing | Database after
transaction] transaction

A transaction is initiated by a user program wrapped in high level data

manipulation language or programming language like SQL. Here, a transaction
consists of all operations between the begin transaction and end transaction.

8.3.1 Transaction States
The trangaction must be in one of the following states:-
1. Actlve:- Thig is a initial state, the transaction stays in this state while it is
executing
2. Partially committed: The transaction is in this state when it has executed
the final statement.
3. Failed: A transaction is in this state once the normal execution of the
fransaction cannot proceed.

107

108

4. Aborted: A trangaction is said to be aborted when the transaction has
rolled back and the database is being restored to the consistent state prior
to the start of the transaction.

5. Committed: a transaction is in this committed state once it has been
successfully executed and the datebase iz tramsformed in to a new
consistent

'Eransattinn‘ Partial |Y Comm Committed]
Transaction ENV committed | ‘

Begin .
[Active Abort

\'\.

“b°';'\‘ Failed ‘ kAborted]

Figure 6.1 Transaction States

8.4 Desirable Properties of Transactions

To maintain integrity of data, the database system must follow four key
properties of transactions.

8.4.1 Atomicity: It says “All or None “. This means either all operations of the
transactions are reflected properly in the database, or none are.

8.4.2 Consistency: it cnsurce correctness of the database. This is achieved by
execution of transaction in isolation i.e. No other transaction rminning concurrently.
This preserves the consistency of the database.

8.4.3 Isolation: it indicates actions performed by a transaction are hidden or isolated
from outside the transaction until it terminates. Suppose if two transactionsTi and Tj
are executing, then in this case it appears to Ti that either Tj finished its execution
before Ti started or Tj started execution after Tifinished In this way, each transaction is
unaware of the other transactions executing concurrently in the system

8.4.4 Durability: After successful completion of transaction, the changes that are
made by all transaction should persist in the database even if the system goes down or
crashes. All updates that done by transaction mmst become permsnent on disk after
commit action of transaction.

These properties are called as ACID properties. For better understanding of these
properties, congider a gitrple banking system which have several accounts and allow
get of transaction that access and make updates to these accounts. These transactions
access the date using two operations:

s Read(X), it transfers data item X from the database to a local buffer of the

transaction that call the read operation.

o Write(X), it transfers the data item X from the local buffer of the transaction

that call the write operation to the database.

Let’s assume Ti be 2 ttansaction that transfers 500 Rs from Account A to Account
B. At begin of transaction balance in account A= 2000/- and B=3000/-. these
iransactions can be defined as:
T read(A);
A= A-500;
Write(A);
Read(B);
B:=B+500;
Wiite(B);

Now, we will understand ACID properties by taking an example of banking
system.Suppose, during the execution of transaction Ti, any type of failure cccurs that
preventa the transaction Ti to complete successfully. it may also possible, that the
wiite(A) operation executes but write(B) operation doeg not occur due to some system
failure, in that case account A is debited but the account B is not credited,

A=1500;
B=3000;
Sum{A+B)=4500;

Here, the sum of A+B is not same a8 when the transaction Ti begina. This type
of situations can lead the database in an inconsistent state,

So, these types of inconsistencies are deal by the property of Atomicity which
ensures all operations of the transaction are reflected in the database or none are.

As consistency property of the database says, if the database is in consistent
state before execution of transaction, then or termination, the database will also be ina
consistent state.

Sum(A,B) == sum(A.B)
Before transaction beging after transaction terminates

So, to ensure consistency of the database, inteprity constraints are applied
which prevents database from an incongistent gtate,

109

110

In the same example we discussed above of transferring funds from account A
to B, we find the data base in an inconsigtent state and in the same situation any other
trangaction tunning concurrently tty to read the data of account A and B, it will find
the incorrect dats and may again leave the system in an inconsistent state.

So, avoid this type of problems, Isolation property of the transaction allows
concurrently executing transactions is to execute serially- that is one after another.

As in the above example, a system failure takes place after the amount is
deducted from the account A and not credited in account B. In this caze loss of data
takes place in main memery but data on disk is still present which guarantees
durability of transaction.

Durabllity ensures the all the updates carried out on the database will persist
even if there iz a system failure. These updates are made before the execution of the
transgaction or after the succesaful completion of the database.

Check your Progress

1. Describe the Transaction States.
2, Explain the Properties of Transactions,

8.5 Scheduling and Recoverability

As frangactions consists of set of operations and these operations make
updates in databage. These operations are executed in some order to make the
trangaction complete and to leave the system in a consistent state.

So, when nmltiple transactions are ninning concurrently then there is a need to
maintain some sequence in which these tramsactions will execute. This process of
sequencing transaction is termed ag Scheduling of transaction.

8.5.1 Scheduling: when several frangactions such as (T1, T2,...... Tn) are running
concurrently then the order of execution of cach operation is known as Schedule. This
can be understood by taking an example:

Suppose, there are two transactions T1 & T2 which are running concurrently
and each transaction hag own set of read and write operations on the database, then in
this case, schedules determines the exact order of operations that are going to be
performed on the datebase.

TL | T2
R(A)
R(B)

In the above table it is shown that operations of T1 are followed by T2.

However, this order of execution of operations of transactions may change. So, to deal
with this, there are various types of serial and non-serial schedules.

8.5.1.1 Serial Schedule: Serial Schedule are those where for each pair of trangaction
Tl and T2, if T2 followed by T1, then T2 can only initiates its operation after the

R(A)

R(B)

completion of T1.The given schedule is a serial schedule:

T1 T2

Read(A)

A:A+500;

Write(A)
Read(A)
A:A+500;
Wrils(A)

8.5.1.2 Non-Serial Schedule: In this type of schedules, interleaving of operations
takes place, Here, the order of operations of the trangaction can interleave the order of
operations of other transaction and that result leaves the database in consistent state.

T1 T2
Read(A)
A:A+S00;
Read(A)
A:A+500;
Write(A)
Write(A)

111

112

8.5.2 Recoverability

As in scheduling of transactions we have come across the order of execution
of operationg of transaction by maintaining the consistency of the database, assuming
that there will be no transaction failure.

Now, if in any case, a transaction may not complete its execution due to any
hardware failure, system crash or any software issue. So, in that case, system has to
roll back the failed transaction. Here, it may also possible that any other transaction is
dependent on failed transaction or used the data written by failed transaction type of
schedules that arc followed by the database system. So, there are schedules that are
then it iz also required to rollback those transactions too. To ensure this, we have to
determine the applied from the view point of recovery from transaction failure, These
schedules are discussed below:
8.5.2.1 Recoverable schedule is one where, for each pair of transaction Tin ad Tj,
guch that Tj reads a data item that was previously written by Ti, the the commit
operation of Ti appears beforg the commit operation of Tj.

In other words, if a transaction Tj reads a valne that is updated by Ti, then the
commit of Tj must occur after the commit of Ti.

Ti Tj
Read(A)
Write(A)
Read(A)
Write(A)
Commit
Commit

Suppose, if due to some reason Ti fails before it commit, then in this situation
Tj can be abarted and data can be recovered. Hence given schedule is recoverable,
8.5.2.2 Cascade less schedule are those where for each pair of transactions Ti and Tj
ysuch that Tj reads a data item previously written by Ti, then the commit operation of
Ti appears before the read operation of Tj.
Ti Tj

Read(A)

Write(A)
Commit
Read(h)
Write(A)
Commit

These types of schedules are recoverable and eliminate the drawback of cascading

rollback.

In cascading rollback, due to failure of single transaction, a sexies of transaction that

are dependent on failed transaction rolled back that leads to unnecessary work head.
Check your Progress

1. Explain Scheduling and its types.
2. What is Recoverability?

8.6 Serializability of Scheduling

In the previous topic of scheduling, we have seen there are serial and non-
serial schedules. Serial schedules are those in which another fransaction starts only
after the completion of first transaction, it means it does not allow concurrent
execution of transactions while the non-serial schedule, mmlfiple transactions are
rumning concurrently then there is a possibility that the database may be left in an
inconsistent state. So, serial schedules are always serializable but non seriel schedules
are needed to be checked for Serializability.

8.6.1 Serializability iz a process of testing the schedules whether they are seriglizable
of not. A Serializable schedule is a schedule which leaves the database system in a
consisient state,

8.6.2 Types of Serlalizability

There are two types of Serializability of scheduling.

1. Conflict Serializability

2. View Serializability

8.6.2.1 Conflict Seriallzability: tells us whether a non-serial schedule is conflict
serializable or not, Conflict serializable schedule is a schedule which can be converted
to serial schedule after swapping its non-conflicting operations. Two operations are
gaid to be conflicting if all conditions satisfy:

113

114

» They belong to different transactions
¢ They operate on the game data item
¢ At Least one of them is a write operation

Let’s congider a schedule:-
T1 T2

R(A)
R{A)
R(B)
W(B)

R(B)

W(A)

After swapping non-conflicting operations we get a serial schedule.

T1 T2
R(A)
R(B)
W(B)

R{A)

R(B)

W(A)

So, the above given schedule is conflict Serializable.

6.6.2.2 View Serializabilitytells us whether a non-serial schedule is view serializable
or not. A schedule is said to be View serializable schedule if it is equivalent to its View
Equivalent.Let’s congider a non-serial schedule and its Setial schedule: -

T | T2
REX)
W)
R(X)
WX
R(Y)
w(Y)
R(Y)
W)
T | T2

The non-serisl(S1) and its serial schedule(S2) are view equivalent, if they satizfy all
the following conditions:
Initial Read: Initial read of cach data item in transactions mmust match in both

schedules.

Final Write: Final write operations on cach data item must match in both the

schedules.

R(X)
WS
R{Y})
W(Y)
RX)
W(X)
R(Y)
Ww(Y)
Non Serial Serial
s1 82
1 | 12 | T1 | T2
RX) REX)
W(X) W)
R(X) | R(Y)
W) | WY
R(Y) R(X)
W(Y) W(X)
R(Y) R(Y)
W(Y) Ww(Y)

52 1z the senal schedule of §1

115

116

¢ TUpdate Read: If in schedule S1, the transaction T1 iz reading a data item
updated by T2 then in schedule 82, T1 should read the value after the write
operation of T2 on same data item.

So, in the above given example two schednles S1 and S2 are view equivalent. Hence,
the schedule 81 is view serializable schedule.

8.7 Transaction Support in SQL

As discussed earlier in the previous sections that transaction executes set of
operations as gingle logical unit. Each of the transaction begins with a specific
operation and ends when all the tasks in the given set of transaction complete
successfully.

These set of operations performed against a database wrapped in Transaction SQL
statements. If all the operations are executed successfully then the tramsaction is
complete and then it will be committed and updates the database permanently. But, if
any of the operation fails then the entire transaction will fail and complete transaction
will be cancelled or rolled back

So, to manage and control the tramsaction in the database following SQL

commands are used.

+» BEGIN TRANSACTION

» SET TRANSACTION

 COMMIT

s ROLLBACK

+ SAVEPOINT

These transaction conirol commands are only used with the DML Commands
such as - INSERT, UPDATE and DELETE only, They cammot be used while creating
tables or dropping them because these operations are automatically committed in the
database.
8.7.1 BEGIN TRANSACTION: It tells the starting point of 2 transaction.

Syntax:BEGIN TRANSACTION transaction name;
Example: BEGIN TRANSACTION T1;

8.7.2 SET TRANSACTION Command:It iz used to specify the read and write
characteristics for the transaction.

Syntax:SET TRANSACTION [READ WRITE | READ ONLY];
Example:SETTRANSACTION Tlrw;

8.7.3 COMMIT Command: It iz used o save all the changes made by a trangaction
to the database. Let’s understand it with the help of an example:

Output:

1)) NAME AGE CITY | SALARY
101 Akhilesh 25 Lucknow | 15000.00
102 Roshan 22 Agra 10000.00
103 Ramesh 23 Varanasi | 20000.00
104 Himanshm 21 Kanpur | 25000.00
105 Ajay 25 Prayagraj | 25000.00
Syntax:COMMIT;
Example:
SQL> DELETE FROM CUSTCMERS WHERE AGE = 25;
SQL> COMMIT;
D NAME AGE CITY SALARY
102 Roshan 22 Agra 10000.00
103 Ramesh 23 Varanasi | 20000.00
104 Himanshu 21 Kanpur | 25000.00

8.7.4 ROLLBACK Command: Thiz command is used to undo the changes made by
a trangaction that are not committed or not permanently saved to the database.

Output:

Syntax:ROLLBACK;

Example:
SQL> DELETE FROM CUSTOMERS WHERE AGE = 25;
SQL>ROLLBACK;
ID NAME AGE CITY | SALARY
101 Akhilesh 25 Lucknow | 15000.00
102 Roshan 22 Agra 10000.00
103 Ramesh 23 Varanasi | 20000.00
104 Himanshu 21 Kanpur | 25000.00
105 Ajay 25 Prayagraj | 25000.00

117

8.7.5 SAVEPOINT Command: This command allows a transaction to rollback a
certain operation in 4 transaction without rolling back the entire transaction. Hers, it iz
required to create save points for all operation of the transaction. The ROLLBACK
command iz used to undo 8 mentioned save point

Syntax: SAVEPOINT savepoini name;
ROLLBACK TO savepoint_name;
Example:
SQL> SAVEPQINT SP1;
Savepoint created.
SQL> DELETE FROM CUSTOMERS WHERE ID~=101;
1 row deleted.
SQL> SBAVEPOINT SP2;
Savepoint created.
SQL>DELETE FROM CUSTOMERS WHERE ID=102;
1 row deleted.
SQL> SAVEPOINT 8P3;
Savepoint created.
SQL> DELETE FROM CUSTOMERS WHERE 1D=103,
1 row deleted.
SQL> ROLLBACK TO SP2;
Rollback complete.

Ountput:

SQL> SELECT * FROM CUSTOMERS;

m NAME AGE CITY | SALARY
102 Roshan 22 Agra 100:00.00
103 Ramesh 23 Varanagi | 20000.00
104 Himanshu 21 Kanpur | 25000.00
105 Ajay 25 Prayagraj | 25000.00
4 rows selected.

Check your Progress
1. Explain Serializability and its type.
2. Describe SET TRANSACTION Command with example.
3. Explain Transaction Support in SQL.

118 8.8 Concmrrency Control Technignes

Az we have seen when database system allows concumrent execution of
transaction then it is difficult to maintain Isolation property of transaction. However,
to ensure that interleaving of transaction will not leave the system in inconsistent state,
gystem follow some mechanism called as concurrency control techniques.

Concurrency control is a process of managing concurrent operations without
conflicting each other and to ensure integrity of the database.

8.9 Concurrency Techniques for Concurrency Control

As in above discussed examples we have seen Read and Write operations on
databases arc applies in an interleaving manner. In this case, there are possibilitics of
some conflicts such as WW Conflicts, RW Conflicts and so on.

So, to overcome these types of issues, database system has some concurrency
control techniques. These are:

» Lock-Baged Protocols

» Timestamp-Based Protocols

» Validation-Based Protocols

8.9.1 Concurrency Control Based on Lock-Based Protocols

In this protocol, a tramsaction cannot read or write until it acquires an
appropriate lock on the data item, In this way, while ong transaction is accessing a data
item, no other fransaction can modify the same data item.

Here, lock is data variable which is related with data item that tells any
operation is performing on the data item. A request for the lock is made to the
concurrency control manager. Once the lock is granted, then only the transaction
proceeds its execution. There are two types of lock:

Shared lockslt is a read only lock, It can be shared among transaction as in this data
can only read but cannot be modified by the trangaction,
Exclusive Jock: In this transaction can read as well as write a data item. Here, nultiple
transactions cannot modify the same data at a time, There are following types of lock-
based protocols:
1. Simplistic Lock Protocol: In this lock is granted to a transaction before
beginning of transaction and it is released after completing the transaction.
2. Preclaiming Lock Protocol: This protocol evaluates all the data items on
which they need locks. If all the required locks are gramted then the

119

124

transaction beging otherwise it rolls back till all required locks are not granted.
After completion of the transaction it releases all the issued locks.
3. Two-phase locking (2PL): This protocol works in three steps-
» Firstlywhen the transaction begins to execute, it requires permission
for the locks it needs.
¢ In second phase, all locks are granted to a tramsaction. The third
phase is started as soon as the transaction releases its first lock.
¢ In the third phase, the transaction cannot demand any new locks. It
only releages the acquired locks.

Locked
Point

Lock

Acquire Release
. lock |
J\Elg:;‘re | Release
Lock
2 3 4 5 7 8

Time1l b

~ »

Start End
operations

Growing phase Shrinking phase
Locked phase

This protocol as termed as 2PL as it involves two phases:

Growing Phase: In this phase transaction may obtain locks but may not release any
locks.

Shrinking Phase: In this phase, a transaction may release locks but cannot obtain any
new lock

8.10 Concurrency Control Based on Timestamp Based

Protocol

Az Lock based protocel solved the problem of ariging conflict among
transaction of first lock at execution time, But sometimes this leads to incompatible
databage.

There is ancther method for determining the serializability order among
transaction called ag Timestamp Ordering Protocol

Timestamp Ordering Protocol serializes the execoution of concurrent
transactions based on their Timestamps.

8.10.1 Timestamps

As with the creation of transaction Ti in the database system, a unique fixed
timestamp TS(Ti) is attached to it. Thiz timestamp is assigned m two ways:

1. Using the valie of the system clock as a timestamp.

2, Tlging logical counter that is incremented after a new timestamp haa been

assigned.

Here, trangactions are executed on the basis of the ascending order of the

transaction creation. A transaction with older timestamp will execute first.

Let’s assume, there are two transactions Ti and Tj, Where Ti has entered the
gystem at time (010 and Tj at 0020, Here, TS(Ti)< TS(T}), 5o the trangaction Ti will
execute first.

Timestamp Values of data item Q can be of two types:

1. R_TS(Q) it denotes the largest timestamp of any transaction that executed
Read (Q) successfully.

2, 'W_T5(Q) it denotes the largeat timestamp of any trangaction that executed
Write (Q) successfully.

8.10.2 Timestamp Ordering Protecel cnsures that any conflicting read/ write
operations of B transaction are executed in timestamp order.

Conditionl: Whenever a transaction Ti issues a Read (Q) operation and:

If'W_TS(Q) >T5(Ti) then the operation is rejected,

If'W_TS8(Q) <= TS8(Ti) then the operation ir executed,

Timestarps of all the data items are updated.

Condition 2: when g transaction Ti issues & Write{Q) operation and ;

If TS(Ti) < R_TS(X) then the operation is rejected.

If TS(Ti) < W_TS(X) then the operation is rejected and Ti is rolled back
otherwise the operation is executed,
8.11 Validation Based Protocol

This protocol is known by optimistic concurrency control techmique, This
technique minimizes transaction conflicts. Here, transactions are allowed to execute
without restrictions until it is committed. It involves three phases:

121

122

1. Read Phase: during this phase, a transaction can read the data item from
the databage but the update data item ig stored in a local buffer, not in the
actual database.

2. Validation Phase: here, transaction is validated to ensure that the changes
made will not affect the integrity and consistency of database, If in the
validation phase, database ix congistent then a transaction goes to write
phase otherwise transaction is rolled back.

3. Write Phase: as in this phase, all updates are reflected in the database
permanently afler successful validation.

Check your Progress
1. What iz Concurrency Control?
2. Explain Timestamp Ordering Protocol.
3. Discuss Validation Based Protocol with its phases.

8.12 Deadlock Handling

Deadlock is a unwanted situation of a dastabase, when o mumber of
transactions are running and each transaction is waiting for another transaction for
releasing a locked data item, Example Suppose, there are T1, T2,T3 transaction exists
and these transactions are in a situation such that T1 is waiting for a data item (Q1)
that is hold by T2, T2 is waiting for a data item(Q2) that is hold by T3 and T3 is
waiting for a data item{Q3) that T1 holds.

&
z| T2

In figure nong of the transaction can complete its execution and leaving the system in
8 deadlock state.So, to recover from this situation system follows some deadlock
handling mechanism:

e Deadlock Prevention

¢ Deadlock Detection

¢ Deadlock Recovery
8.12.1 Deadlock Prevention

This helps in prevention of deadlock situation by avoiding condition of nmiyal
exclugion, circular wait, no preemption for a data item. Prevention For deadlock
prevention, system uses timestamp-based prevention mechanism is used. Here, the
gystem uses timestamps to decide whether a transaction should wait or roll back.
There are mainly two deadlock prevention schemes using timestamps are:

1. Wait-Die scheme: If T1 is clder than T2, T1 is allowed to wait. Otherwise, if

T1 i& younger than T2, T1 is aborted and later restarted.

2. Wound wait scheme:If T1 is older than T2, T2 is aborted and later restarted.

Otherwise, if T1 is younger than T2, T1 is allowed to wait.

8.12.2 Deadlock Detection
Asg a deadlock in database system ocours when a transaction waits for a

indefinite time to obtain a lock. To detect & deadlock situation, a wait -for graph is
used If 2 wait-for graph contains a circular wait loop, then each transaction involved in
the graph is said to be in deadlocked.Let’s understand a situation by taking an
example: There are three transactions T1, T2 and T3. T1 is waiting for T2; T2 is
waiting for T3 to release the lock Here a circular waiting loop exists in the wait for

graph.

@
Hence, to resist the system from deadlock situation, system keeps on checking

for the circular wait loop in the graph. If there is no cycle in the praph, the gystem is
not in a deadlock gtate,

123

124

8.11.3 Deadlock Recovery
After detection of a deadlock in a system, recovery mechanizm is applied to

recover a database from a deadlock state. Most commonly transactiong are rolled back
to break a deadlock. There are three actions which are taken for deadlock recovery:
+ Selection of 2 Victim: From 2 set of transaction which occurs deadlock, itis a
process to select those fransactions which are to be rolled back.
¢ Rollback: It is to determine how far a particular transaction is rolled back. A
transaction can be either rolled back partial to a specific point or can be rolled
back completely,
¢ Starvation: When a victim transaction never completes its execution, then it
is termed as & starvetion.

Check your Progress

1. What is Deadlock?
2. Describe the concept of Deadlock Handling,
3. Explain Deadlock Recovery.

8.13 Database Recovery Techniques Based On Immediate

Update

A datebase gystem can face failure due to various reasons such as disk crash,
power outage, software error, catastrophe and so on. But in all these situatioms,
database systems should robust encugh to recover the lost data to maintain the
atomicity and durability of the trangactions,

£.13.1 Database recovery on immediate update

Database recovery techniques are applied before the commit point or the
transaction. In an immediate update scheme, the database may be updated by some
operations of a transaction before the transaction reaches its commit point. However,
these operations are recorded in a log on disk before they are applied to the database,
making recovery still possible.If a transaction fails to reach its commit point, the effect
of is operation nmst be undong i.¢. the transaction must be rolled back. This recovery
scheme follows two recovery procedures:

» undoe(Ti): it restores the value of the data items updated by transaction Ti to its
old values.

+ redo(Ti): it sets the value of the data items updated by transaction Ti to its new
values.

This technique is known as undo/redo algorithm.

8.14

Failure Classification

A failure of the database system can be of following types:

8.15

Transaction Failure: A transaction can be failed or aborted due to two types
of errors:

Logical errors: errors in the logic of a program resist a transaction from
execution.

System Errors: undesirable state such as deadlock, resist a fransaction fo
execute normally.

System Crash: this failure can be raised due to hardware malfunction, failure
of & database software or operating system corruption that results into loss of
data of the volatile storage and lefts the transaction processing to a halt.

Disk Fallure: it involves formation of bad sectors, head crash, unreachability
of the digk or data transfer loss.

Shadow Paging

Shadow paging is a database recovery technique. Here, database is considered

as made up of fixed size of logical units of storage which are as pages. Pages are
mapped into physical blocks of storage, with help of the page table which allow one
entry for each logical page of database. This method uses two-page tables named
current page table and shadow page table.

Current page table - used to point to most recent database pages on disk.
Entries present in current page table may be changed during execution.
Shadow page table - Shadow page table is used when the transaction starts
which is copying current page table. It resides on disk, and is never modifies
during execution.

After successful execution of transactions, both tables become identical. The

concept of shadow Paping is illistrated with the help of piven example:

125

126

Database disk

Block
| Page3 lold) |
| Page 4 Shadow page
Current page table | Y table (Not
afterupdating(3,5) 5 Page 1 [\ Updated)
S Yoy
1 —" 4 Page5(old) | \ T 1
fr |I -.\.‘_ .II
e ‘?(_ T— 4| Page2 & 2
3 I'I'-n. = .r’ \' e _\\ .'l 3
[Page 6 |
4 HT g .\ \‘-. 4
LE. L.
5 A~ »| Page 3 (new) ~ 5
6 | Page 5 [new) | 6
L Free Block

Here, two write operations are performed of Page 3 and 5. Before execution of
write operation, current page table is pointing to old page on disk. When write
operation of Page 3 staris, following steps takes place;

1. Firgtly, it searches for available free block on disk.

2. After finding a free block, it copies page 3 to free block which is represented
by Page 3 (New).

3. Now current page table points to Page 3 (New) on disk but shadow pape table
points to old page 3 because it is not modified.

4, The changes are now propagated to Page 3 (New) which iz pointed by current
page table.

To commit transaction following steps should be followed:

1. Flush all modified pages in main memory to physical database.

2. Cutput current page table to disk.

3. Make the current page table the new shadow page table. For this, keep a
pointer to the shadow page table at a fixed (known) location on disk And
update the pointer to point to current page table on disk.

Once pointer to shadow page table hag been written, transaction is committed,In
case of failure during execution of transaction before committing, it is only needed to
free modified database pages and discard current page table, The modified pages are
available through the shadow page table.If the transaction is performed successfully,
the entries of the shadow page table are discarded and the current page table is again
copied to the shadow page table.

8.16 Log Based Recovery

Ag it i the most cormmon recovery mechanism. Here, it maintains a structure
for recording database npdates termed as log. This log maintains a sequence of log

records, which is it a file that contains all read, write, and commit activitics of
transaction in the database. A log record holds following fields:

e« Tranyaction identifier (Ti): Unique Identifier of the transaction that
performed the write operation.

o Data item(X): Unique identificr of the data item written, a location of the data
item on the disk.

e Old value(V1): Value of data ttem prior to write.

¢ New value(V2): Value of data item after write operation.

There are log records to record significant evemts during tranzaction
processing such as start, commit or abort of a transaction. We denote these types of
records as:

s <Ti gtart>: when a transaction Ti starts.
s <Ticommit>: when a transaction Ti commits.
s <Ti abort>: when a transaction Ti abotts.

These records allow undo and redo operations in case of failure of a transaction.
For log-based recovery database system consults the log record to idemtify which
transaction needs to be rede and which needs to be undo. We can see situations, when
undo and redo operations are applied on a database:

s Transaction Ti needs to be undone if the log contains the record <Ti start>
but does not contain cither the record <Ti commit> or the record <Ti
abort>.

¢ Transaction Ti needs to be redone if lop contains record <Ti start> and
gither the record <Ti commit> or the record <Ti abort>.

For log records to be useful for recovery from system and disk failures, these
log records nmst regide on stable storage,

8.17 Failure with Loss of Nonvolatile Storage

In the above recovery mechanisms, we had discussed about the recovery of
data loss from volatile memory. But in some rare situations, failure of nonvolatile
storage results in data loss.So, to recover data from failure of non-volatile storage
dump scheme 18 used. It dumps the entire content of the database to stable memory
periodically. No transaction can be active during the dump procedure. Procedure to
dump the database follows ateps:

Output all log records currently residing in main memory onto stable storage.
Output all buffer blocks onto the disk.

Copy the contents of the database to stable storage.

Output a record <dump™ to log on stable storage.

Ealb ol o

To recover from disk or non-volatile storage, the system-

1. Restore databasge from most recent dump.
2. Consult the log and redo gl transacticns that committed after the dump

127

128

This is also known as an archival dump.
Check your Progress

1, Discuss on Faiture Clagsification,

2. Explain Log Based Recovery.

8.18 Summary

Transaction refers to a unit of program execntion that accesses and updates a
data itern. The transaction processing takes place in such a way that any fajlure cannot
leave the database in an inconsistent state. Transaction is required to maintain the
ACID (atomicity, consistency, isolation and durability) properties. As concurrent
transactions have the ability to use the CPU cycle to its fullest but execution of
congurrent trangactions can lead to inconsistency.

It is therefore mandatory for the system to control the interleaving
trangactions. Schedules are maintained by system to achieve consistency. Serial
schedules are consistent while non-serial schedules can cause incomsistency in
database. So, the concept of Serializability is introduced to make the database
consistent by testing the schedules whether they are serializable or not. Along with this
congurrency control techniques based on locking, timestamp and validation are used.
Some techniques result into deadlocks which i also deal by database systerns using
deadlock handling techniques.

Az a computer system like any other electrical device are prone to failure.
These failures cab be because of disk crash, power less, software errors or any
catastrophe. In case of amy failure, state of database system may no longer be
consistent. Then it is necessary to recovery the data loss. Recovery schemes such as
logs, shadow paging, periodic dumps are followed by data bases to maintain the
atomicity and durability property.

Terminal Questions
1. What isTransaction Processing?
2.Why we need of Concurrency Control in Transaction Processing.
3. Digcuss the Database Recovery Techniques.
4. What does the ACID acronym for? Describe each property individually.
5. What is the difference between the following transaction states: Aborted vs Failed
and Active vs Committed?
6. What do you understand by Deadlock? Explain its features with an example,
7. what is concurrency control 7 Explain it with a suitable technique.
8. What iz shadow paging? How it is differ from Log based recovery?

Unit 9 - Emerging Trends in DBMS

Siruciure:

9.1 Introduction

9.2 Objectives

8.3 Introduction {0 object oriented Database Management System
9.4 Introduction to client/Server Database

0.5 Imtroduction to Distributed Database

9.6 Introduction to Knowledge Databases

9.7 Summary

9.1 Introduction

From the last four decades, businesses relied on relational database
management systems (RDBMSs)—that used Structured Query Language (SQL) as the
programming language. But the recent applications and emergence of network demand
a completely different set of requirements in terms of the undetlying database models.
The conventional relational database model is no longer appropriate for these types of
applications. Therefore, this unit will introduce emerging databases such as Object -
oriented, distributed databases, client server database and knowledge database, their
functionality and requirement,

9.2 Objectives

By the end of this unit, you should be able to understand shout the various
database models and their basic functioning. This will give you a view how these
databasges are different from conventional database systems and helps the application
Programs,

9.3 Introduction to object-oriented Database Management

System

In carly 1960z computerized databases were there with the availability of
disks and drums that helps in maintaining data. Then in 1570s, Database technology
improves amdl aims to make the data independent from the logic of application
programs. This enables the different application programs to access the data
concurrently. The first-generation databases were navigational, here data was accessed
through record pointers moving from one record to ancther. With more advent of

129

130

technology, this was followed by relationa]l model, which focused on data than
pointers for data retrieval. These kinds of databases are more popular till date.

The Relational databages have many features and support in maintain data and
information of commercial systems and business applications. RDBMS are capable to
handle simple and fixed collection of data types, support high level queries, query
optimization, transaction backup and crash recovery.

Despite all the above features, a number of limitations exist with relational
medel:

& Many other application domaing need complex kindg of data such as
CAD/CAM, multimedia repositories, and document management. To
support such applications, DBMSs mmst support complex data
typea.The lack of support for new data types such az graphics, xml,
2D and 3D data.

+ With the advent of Object-Oriented methodologies and languages,it
was quite difficult to map data of application programs.

Hence, to cope up with all arising problems and to meet ont the needs of complex
data, object database systems were developed.

Object Oriented Database (OODB) implements OO concepts such as object
identity, polymorphism, encapsulation and inheritance to provide access to persistent
objects using any QO-programming language,

CODB also provides a unified environment when dealing with complex data
such as 2D and 3D graphics by proper mapping of object orientation and databases.
These databases are designed to work well object oriented programming languages
such as Objective-C, Java, and Python.

9.3.1 Basic Object Oriented concepts - object, attribute, OID, class, method,
encapsulation, class hierarchy, single/rmultiple inheritance, extensibility, complex
object, overloading, overriding, polymorphism, user-defined typeAs OODB follow the
concepts of Object data medel. So, in this both data and itz relationship are combined
together in a single data structure. This data structire as a whole is termmed as object.

9.3.1.1 Object: it is an abstraction of real-world entity. Thig entity conceptually exists
and can be identified distinctly such as person, employee, student, book etc, these
objects have structural properties which are defined by set of attributes and
behavioural properties which are defined by methods. Each object is associated with a

logical non-reusable and unique object identifier (OID). The OID of an object is
independent of the values of its attributes

9.3.1.2 Attributes: the properties of objects which help in identifying the objects are

termexd as attributes.
Person Whject j
\ ‘ Class]

Name

Age AttributeJ

DOB

Figure 7.1 — Attribute & Object

9.3.1.3 Class: Chjectzs which are simidlar in nature or have gsame attributes are grouped
together in a class. So, we can say class is a collection of similar objects which have
same attributes and behavior.
Classes are clasgified as lexical claszes and non-lexical classes.

1. Alexical class containg objects that can be directly represented by their values.

2. A non-lexical class contains objects, each of which is represented by a set of
attributes and methods. Instances of a non-lexical class are referred to by their OIDs.
Example person and employee part are non-lexical classes.

9.3.1.4 Method:These arc the procedures which modify the objects state and it allows
one object to communicate with other. A message passing system is used to call a
method of an object. A method’s specification is represented by a method signature,
which have the method name and information on the types of the method’s input
parameters and ity fimctionality and output.

Object A

Methods

Object B

Figure 7.2 Methods

E.gz when an employee is fired, we need to delete the employee information
from the employee file, delete the employee from the employee-project file, and inzert

131

132

the employee information into a history file, etc. One method called “Fire-employee™
can be defined that incorporates thig sequence of actions.

9.3.1.5 Class Hicrarchy: when classes are arranged that represents an upside down
tree and have parent child relationship. By this it supports Inheritance.

9.3.1.6 Inheritamee: As like parent child relationship, it allows a class to inherit
properties (attributes and methods) from its super classes.

Course

Offline Online
Course Course
I

Full Time Part Time
Course Course

In this figure full time and part time course Inherit the
properties (attributes and methods) of class Course.

Figure 7.3 Inheritance

9.3.1.7 Abatraction:in this some aspects of an entity are detailed which are needed
and rest are ignored.

9.3.1.7 Encapsulation: it iz a binding mechanigm by which we can bind
state{attributes) and behaviour{methods) of an object together.

9.3.1.8 Generalization: It is method to create a superclass is called generalization.
9.3.1.9 Specialization: It is process of forming a sub class is called specialization.
9.3.1.10 Polymorphism: It means —many forms. It iz dynamic feature which
executes at run time of program. It involves the concept of overriding and overloading,

9.3.2 Object Definition Language: There is a standardized language for defining the
structure of object oriented databases. ODL defines three components of the object-
oriented data model: Abstraction, Inheritance and Encapsulation

9.3.3 Object Query Language: As like SQL, it includes declarative statements.
Besides this OQL includes more language constructs which permit for object-oriented
design such as operation invocation and inheritance. Syntax or OQL query structure
looks very similar to SQL but the results returned are different. As OQL query returns
a set of objects.Example: OQL query to obtain Voter names who are from the state of
Uttarakhand

Select distinet v.name From voters v Where v.state = “Uttarakhand”

Voterid Name | State

V1 Ramesh Uttarakhand

V2 Harish Uttarakhand

V3 John | Goa

Result from SQL Result fram OQL

table with rows collection of Objects

Name String String

Ramesh & e

— ames aris
9.3.4 Applications for GO databases

The applications that use complex data types and needed high performance include:
» Computer-aided design and manufacturing (CAD/CAM)
¢ Computer-integrated mamfacturing (CIM)
+ Computer-aided software engincering (CASE)
¢ Geographic information systems (GIS)
+ Many applications in science and medicine
¢ Document storage and retrieval
Check your Progress

1. What iz OO database?

2. Describe the Basic Object Oriented concepts.
3. Explain Object Query Language with example.
4. Explain the application of 00 Database.

94 Introduction to client/Server Database
Ag the name suggests these type of databages have two components that are client and

the server.
9.4.1 Client: A client represents any end user which makes a request. It may be a
application program, commputer -mobile with a software application.

133

134

Client

Device
| Request >

Figure 7.4 Client

9.4.2 Server:Server is a cemfralized computer that provides services to all attach
clients. Itaccepts the request of clients and maintains a connection according to a
defined protocol. For exarnple file gerver, web server, mail server etc.
9.4.3 Working of Client-server Database Architecture in DBMS

In client / server architecture many clients connected with one server. The
server is centralized; it provides services to all clients. All clients request to the server
for different Service. The server responds according to the client’s request.

Client/server architecture is a computing model in which the server hosts
(computer), send and manages most of the regources and works to be required by the
client. In thiz type of architecture has one or more client computers attached to a
central server over a network. This system shares different resources.

Client/server architecture is also called as a networking computing model and
client-server network because all the requests and demands are sent over a netwark

Client Server

= =

Figure 7.5 Client/server architecture
This architecture is hasically working on three layers/ levels which shows how
client access the data or response at each level. This iz also termed as threetier
architecture as it follows three bagic layers that are:
* Presentation tier
» Application tier
¢ Database tier

9.4.3.1 Presentation tier: this is a top most layer which provides a user interface.
Here, a user makes a request without knowing about the existence of the database
beyond this layer. In this user sends a request by using an application program or any
software.

Presentation Tier

Output !! TT Request

Application Tier

Qmtpit Analysis
N i

Database Tier

Figure 7.6 Client/server architecture
9.4.3.2 Application tier: This layer behaves ag a middle man between presentation
and databasc layer. It takes the request from above layer and validates the request then
forwards it to database tier. Then in reverse manner, it takes the response from
database layer and forwards it to presentation layer.

Request Forward
Application Tier

Database

W

Presentation Tier

h 4

Request

Forward Response
Response [output

9.4.3.3 Database tier: This layer consistsofdatabase, which allows storage and
retrieval of data. Thig layer process the request arrived from the application layer and
take a response and forward that response to the application layer,

Check your Progress
1. What is Client / server database?
2. Describe the Basic Client-server Database concepts.
3. Explain Client-gerver Database Architecture.

135

136

9.5 Introduction to Distributed Database

Initially when database came into existence, it was single system architecture.
But with the increasing demand of data base applications, voluminous amount of data
and with the dispersed users around the worldereates a heavy load on a single database
server. Hence all these increasing factors influence the performance, reliability,
concurrency and security of the database.

So, to overcome these issues, a new mechanism of allocating users and DB
server is introduced. This new concept is known as Distributed database system
(DDB).

9.5.1 Distributed Databsse: it iz collecion of mmitiple, logically interrelated
databases that are distributed over a computer network.

Database Database

Figure 7.8 Distributed Database

Here, different database server is created and are placed at different locations
rather than at single location. All these remote or distributes server kept in sync with
cach other in order to maintain consigtency. In this user can access any of database
without knowing its location.

9.5.2 Distributed Data Storage:

There are two data storage processes involved in order to ensure that the
distributed database is reliable and are working efficiently. These are replication and
Fragmentation.
9.5.2.1 Replication:In this mmltiple copy of data are stored at different locations for
faster retrieval and fanlt tolerance.
9.5.2.2 Fragmentation: In this, a relation iz portioned into several fragmenis and
stored at different locations. It iz of two types horizontal{tuples) fragmentation and
vertical(attributes) fragmentation.

9.5.3 Features of Distributed database systenm:
¢ Data is stored at nmltiple locations rather than on a single location.

All database servers are interconnected to any computer network.
Digtributed database logically seems a single database.
It provides full functionality of database management system,

9.5.4 Types of Distributed Database Systems
DDBs are classified in two types:

1. Homogeneous DDB
2, Heterogeneous DDB

Distributed
Database

Homogeneous Heterogeneous

Figure 7.9 Types of Distributed
Database

9.5.4.1 Homogenecous DDB: in this, all interconnected databases have identical
database systems in terms of software, hardware, operating systems, database
management software’s and all components that are essential for having a database.
These DDBs also have common global schema over DDBMS.

9.5.4.2 Heterogeneous DDB: this is contrast to homogeneous DDBs. Here, databases
over the network may be different along with other components that are required for
the managing database. In this, Database schema at one location can differ from
another location.

9.5.4.4 Advantages of Distributed Databases

Allows sharing of data by maintaining location transparency, network
transparency, naming transparency.

Improves availability and relighility of data even on failure of any of the
system.

Providing better performance by reducing network load and time.

It also reduces the operating cost.

It is easier to expand DDBg by adding new database server at different
location,

9.5.4.5 Disadvantages of Disiributed Databases

Increases the complexity, asits difficult to maintain all of them to work
together, to keep them in sync, coordinate and make them work efficiently.
Difficult to maintain integrity.

Security of data is also an issue as data is scattered over the network.
Deadlock handling is difficult in DDBs.

Fragmentation of data and its distribution ig also challenge.

137

138

Check your progress
1. What iz Digtributed database?

2. Describe the Basic types of Distributed Databases.
3. Write down the advantages and disadvantages of Distributed Databage.

9.6 Introduction to Knowledge Databases

Knowledge databases are the database management system that manages the
knowledge in a specific domain and ecxhibits reasoning power as like human
behaviour, It facilitates the collection, crganization and retrieval of knowledge,

Most of the knowledge databaze iz based on Artificial intelligence that helps
databases in not only storing and retrieving data efficiently but algo in making
decisions smartly. Knowledge databages nse the techniques ranging from traditional
relational databases to data warehousing. It also uses the data from previous
experiences as a part of knowledge base.

9.6.1 Knowledge

Knowledge can be defined as evidences and ideologics collected by human-
kind or the act, fact or state of knowing. Knowledge is stored in compuier systems in
symbolic structures as like nevrong of human being. Here these structures are in the
form of collections of magnetic spots and voltage states. There are some examples that

are representing facts:

1. Meera is clever then geeta.
2. Rajesh wedded to Rashimi.

These statements express some facts. To understand and meake use of this
knowledge, a person needs other world knowledge and the ability to reason with it.
So, to meke decisions on complex problems, knowledge-based databases come into
picture.

9.6.2 Knowledge Databases

Knowledge based database (KBDB) are systems that depend on a rich base of
knowledge to perform difficult tasks. KBDB use database concepts and models to
store and retrieve knowledge. As these systems helps in managing the knowledge then
termed ag Knowledge management systems.

These database systems typically can help link and integrate all available
knowledge sources, including explicit knowledge (various kinds of databases stored in
existing information systems) and inexplicit knowledge (practical experience, skills,
thought and thinking method in the brain of the experts / people) to form knowledge
databases of various kinds. These databases facilitate the people:

* To find out the knowledge they need from disordered information.

¢ In providing most optimal knowledpe to the most optimal people in
the most optimal time to enable them to make the most appropriate
decision-making.

s Solve complicated problems with relative ease.

5.6.3 Types of Knowledge Database

There are two types of knowledge database:

1. Human Readable KBDB: as they enable people to access and use the
knowledge stored in documents, manuals, troubleshooting information
and frequently answered questions.

2. Machine ReadableKBDR: the information stored is machine readable.
The solutions provided by them are based onautomated deductive
reasoning. Here, information shared is linear and is limited in interactivity,
unlike the human interaction which ig query based.

9.64 Componenis ofKnowledge Databases

Four main components of Knowledge Databases
1. Input/query

2. Inference Control Unit

3. Knowledge Bases

4. Output/ Advice

’ﬂ-—'-—-_._-_--‘-"l\
b
Inference Control | Knowledge
Unit Bases

9.6.4.1 Input / query - With the help of a user interface, & user makes input/output
query to communicate with the knowledge base system to find a solution.

9.6.4.2 Inferemce Control Unit - The inference engine is known as the brain of the
system as it is the main processing unit of the system. It applics inference
rules to the knowledge base to detive a conclugion or deduce new information.
It helps in deriving an error-free solution of queries asked by the user.

9.6.4.3 Knowledge bases - It is similar to a database that containg information and
rules of a particular domain or subject. The more the knowledge makes more

precise 12101, 139

140

9.6.4.4 OQutput / Advice - After getting the response from the inference engine, it
displays the output to the user.

9.6.5 Advantages of Knowledge Databases

It helps in making precise and faster decision making.

Resclves the problem quickly.

Minimizes the possibility of errors.

The performance of these systems remains steady ag it is not affected
by emotions, tension, or fatigue.

Enhances performance by better and expert knowledge.

9.6.6 Limitations of Knowledge Databases

It is difficult to maintain accurate and precise knowledge.

It cannot produce a creative output for different scenarios as a luman
being can.

[ts maintenance and development costs are very high.

Knowledge acquisition for designing i much difficult.

It cannot learn from itself and hence requires mamal updates.

It's also difficult to choosing and implementing kmowledge
management technology

9.6.7 Applications of Knowledge Databases
Knowledge based database systems are used in various fields such as:

Medical Diagnosis Systems

Engineering Systems

Quality Management Systems

Geographical Information Systems

Expert Systems

Client Service Software /Incident Management System

Check your progress

1. What is Knowledge Databases?

2. Describe the Basic types of Knowledge Databases.

3. Write down the advantages and disadvantages of Knowledge Databases.
4, Explain the main Components of Knowledge Databases.

9.7 Summary

In the past few years, however, there has been an increasing need for handling
new data types in databases, such as temporal data, spatial data, muliimedia data, and
geographic data and so on, This has resulted into the development of new database
technologies to handle new data types and applications.

Object Oriented Database (OODB) implements OO concepts such as object
identity, polymorphizsm, encapsulation and inheritance to provide access to persistent
objects using any OO-programming language.

Client/server database is8 a computing model in which the server hosts
(computer), send and manages most of the resources and works to be required by the
client.

Distributed Database is collection of nmltiple, logically interrelated databases
that are distributed over a computer network.

Knowledge databases are the database management system that manages the
knowledge in a specific domnin and exhibits reasoning power as like human behaviour
and helps in making intelligent solutions,

Terminal Question
1. Define DDBs and state is advantages and disadvantages.
2. How would you define object orientation? What are some of its benefits?
3. What is the difference between an object and a class in the object-oriented data
model?
4. Define Knowledge Databages and its main Components.
5. Explain applications of Knowledge Databases.
6. Explain the data storage process in Distributed Database.
7. Dizcuss the working of Client-server Database.
8. Define Client in Client-server Database,
9. Differentiate between Object Definition Language and Object Query Language.
10. Define Object Query Language in OO database.

141

Notes

142

