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PROBABILITY AND STATISTICS

Inflation up by 12.8%.

The wife of a smoker is four times more likely to get cancer than that of a
non-smoker.

Mosquito popuiation peaks in April.

All these headlines appeared in a daily newspaper during April 1992. You, too, must
have often come across these or similar news items. These conclusions have one thing
in common. They have all been arrived at with the help of statistics. Statistics is a
body of concepts and methods used to collect and interpret data. It is used to draw
conclusions in situations where uncertainty prevails. Actually, in our everyday life,
each one of us often analyses data and draws conclusions, although unconsciously.
For example, we are sure you have a favourite shop where you buy vegetables. How
did you zero in on that shop? You must have experimented with many other shops
and gauged the quality and the freshness of the vegetables sold there before opting
for one particular shop. In this course, we will acquaint you with some methods which
ensure that your choice is the right one!

]

Whenever conclusions are drawn after analysis of data, their credibility depends on
the methods used and the care exercised in the data coliection. In the first block of
this course, we shall talk about collection and organisation of data. We shall also
discuss various descriptive measures of data like the measures of central tendency,
dispersion, skewness and kurtosis. We shall also, briefly, talk about the organisation
of bivariate data before discussing correlation and regression.

After collecting and organising data, the next important task is to analyse it.
Probability theory plays an importarit role in the analysis and interpretation of

. statistical data. We discuss this theory in Block 2. After introducing the basic concepts
. of probability, we’ll acquaint you with some standard discrete frequency distributions
like Bernoulli, binomial, hypergeometric and Poisson.

In Block 3, we continue our discussion of probability distributions. But this time we
- deal with the continuous ones. Here also we’ll discuss some standard continuous
distributions like uniform, exponential and normal. We then go on to discuss
bivariate distributions. You will also study the x?, t and F distributions. Next, we
state some important limit theorems: weak law of large numbers, central limit
theorem.

The last block, Block 4, deals with statistical inference. It concerns drawing
. conclusions about a population on the basis of the analysis of sample data. In this
© block, we shall introduce you to the techniques which ensure that the conclusions
- drawn are the best under the given circumstances. '

- Throughout this course, we have tried to explain concepts with the help of numerous
examples. Studying these examples will help in understanding the concepts. We have
- aiso given exercises related to each concept that we discuss. Do solve them as and
- when you encounter them. You can tally your answers with ours, given at.the end of
the units. It would help if you have a calculator to do the computations in the

- exercises. You may decide to rely on your brain power and not use a calculator. But

. that will be time-consuming. Calculators are also available at your study centre. If
you need further information about the concepts in this course, you may eonsult the

. following books :

1) An Outline of Statistical Theory, Vols. I & II by Goon, Gupta and Dasgupta,
 2) An Introduction to Probability Theory and Mathematical Statistics by V. K. Rohatgi
© 3) Introduction to Mathematical Statistics by R.V. Hogg and A.T. Craig.

. These are available in your study centre library.
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BLOCK 1 DESCRIPTIVE STATISTICS

The word “Statistics™ was first used to describe data collectad by the government.
Even today you know that our government collects data on various subjects. Recently
{in 1991, to be exact), we have had our tenth census of human population. The data
collected in the census are used to formulate economic policies as well as those on
public health, education, trade and commerce, etc. Apart from the government, there
are many other agencies which collect data. for example, a soap manufacturer may
collect data about population preferences before launching a new brand of soap.
IGNOU may collect data to find if there is a need for a particular programme before
launching it. In this first block, we shall see how data are collected and organised.

In the first unit, we acquaint you with various statistical terms which we’ll be using
in this course. In this unit, we also talk about the collection of raw data. We'll see
how raw data can be put in the form of a frequency distribution. We shall also look

at some ways of diagrammatic representation of the data.

In the second unit, we talk about two kinds of measures : measures of central
tendency and those of dispersion. These measures summarise the data and yet give
us a fair amount of information about it.

In Unit 3, we take up the study of skewness and kurtosis. A measure of skewness
tells us whether a given frequency distribution is symmetric or not. It also indicates
the degree of asymmetry. On the other hand, a.measure of kurtosis gives us the
degree of flatness of the frequency distribution.

We then extend the techniques of collection and organisation of data discussed in
Unit 1 to apply to bivariate data in Unit 4. Here, we also develop methods which tell
us whether the two variables show a linear relationship or not. You will also see how
to fit a straight line to given bivariate data. Once such a line is fitted, the values of
the dependent variable can be predicted for specific values of the independent one
with the help of the fitted line.

To illustrate the concepts occurring in Units 2, 3 and 4, we will refer, again and again,
to the data sets in Unit 1. So make sure that you are familiar with them. And the
best way to ensure that you have understood any concept is to sglve the exercises
related to it. So, good luck!




Notations and Symbols

X; Class mark of the ih class
f, frequency of the i class
X mean
X median
% mode
q it" quartile
v coefficient of variation
Var(x) Variance of x
s .standard deviation about X
Sa root mean square deviation.about A
MD mean absolute deviation about A
R range
m, r-th moment about x
m; r-th moment about zero
m! (A) r-th moment about A
Sk, measure of skewness (i=1,2,3,4)
b, measure of kurtosis
Z, p-quantile
f; frequency of the (i, j)-th cell
by regression coefficient of y on x
Cov (x,y) covariance of x and y
T correlation coefficient
Greek Alphabets
o Alpha -
v B Beta

vy Gamma
3 Delta
3 Epsilon
g Zeta
M Eta
8 Théta
L : Iot-a
K Kappa
A Lan"nb_da
W Mu’
v Nu
£ Xi
) Omicron -
7, 11 Pi (capital pi)
[ Rho
o, 2 Sigma (capital sigma)
T Tau :

‘ v Upsilon
¢ - Phi
X Chi
s Psi
w

Omega




UNIT | FREQUENCY DISTRIBUTION OF
A CHARACTER

Structure
1.1 Introduction
Objectives

1.2 Raw Materials of Statistics
[.3  Frequency Distributions
Ungrouped Frequency Distributions
Grouped Frequency Distributions
1.4 Diagrammatic Representation of Frequency Distributions
Frequencies
Cumulative Frequencies
Frequency Curve
Broad Classes of Distributions
1.5 Summary

1.6 Solutions and Answers

1.1 INTRODUCTION

In this unit, we shall talk about the basics of statistics. We shall define the terms
which we shall be using again and again throughout this course. It is possible that
you have read all this before. But that might have been some years ago. So a quick
look through this unit will help you to recall the relevant facts. In case you have never
been introduced to statistics before, this unit will gradually acquaint you with its basic
concepts. You will find that most of the terms we use in statistics are part of our daily

vocabulary. But we have to know their precise meaning before we use them in
statistics.

Further, you will see how to collect the data relating to a given investigation. You
will also be introduced to the concept of frequency distributions. Through simple
examples, we shall acquaint you with the various modes of presenting a frequency
distribution—tabular as well as diagrammatic.

Objectives

On reading this unit, you should be able to :

¢ distinguish between a qualitative and a quantitative character,

% differentiate between a discrete and a continuous variable,

® draw up a frequency table and get the relative frequencies, cumulative frequencies
and frequency densities,

® decide upon a suitable mode of representing a frequency distribution
diagrammatically. ‘ '

1.2 RAW MATERIALS OF STATISTICS .

We have told you that in this unit we are going to define some basic terms which
occur frequently in statistics. How about starting with the word “statistics”? We use

the term “statistics” in two different contexts. Numerical data arising in some sphere
of life, as well as the discipline that concerns itself with the collection, analysis and
interpretation of such data are both called statistics. ‘

For example, we talk about

® the admission statistics of IGNOU,

® the statistics of steel production in India, or

® the statistics of the Indian team’s performance in internationa,l. cricket tests.

In all these cases, we are tal'king about nymerical data.

“data’ is the plural of ‘datum’.
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On the other hand, when we taik about
e a student of statistics or
e a book of statistics,

We have the discipline in mind.

Now let us turn our attention to the two concepts of “character” and “indivi@ual"
which are basic to any statistical study. To understand these two terms, we consider
the following cases :

1) A teacher looks at the grades (say A,B,C,D and E) awarded to h.is'students on
their performance in an examination. Here, the students are the individuals and
the character is the grade (per student).

2) An economist collects data on the size and the expenditure on food in a given
month for urban households. In this case, the individuals are the households.
- What about the character? Here we see that there are two characters um}er
study, namely, household size and expenditure on food (per household) in the

given month.

Thus, in any instance, the data relate to one or more characters and a group of
individuals who possess the character or characters in varying forms or amounts.

Further, we can classify the data as primary or secondary. If we collect our own data
on the relevant group of individuals and use it in a study, then the data will be called
primary. In some cases, however, we may choose to make use of the data already
available in government publications or the data collected by some other agency.
Such data are said to be secondary. We can save a lot of time and money if we ust
secondary data. But, at the same time, we have to be very careful. We have to make
sure that

o the data are relevant to our enquiry,
e the concepts and definitions used conform to what we have in mind, and
e the data are reliable.

On the other hand, if we decide to use primary data, we shall have to decide on how
to go about collecting it. Primary data can be obtained in a number of ways,
depending on the information sought and also on our knowledge of the relevant
group of individuals. We give below some of the commonly used methods.

1) Direct Observation

Suppose we want to know the number of leaves per twig of a tree, or the weight (in
grams) per egg in a basket of eggs or the health status (good/indifferent/poor) per
student in a class. In each of these cases, we can obtain the required information by
direct observation, through counting or measurement or, simply, by inspection.

But in social and behavioural sciences, we oollect information from persons who are
supposed to know. These persons are called informants. We can either get the
information directly from the informants or through intermediaries (called

enumerators) appointed for the purpose. In such cases, we can use the following
methods.

2) Questionnaire Method

If the informants happen to be sufficiently enlightened, then we can give them blank
questionnaire forms and request them to provide the necessary information by filling
out the forms. This method would be appropriate in gathering information about
say, the attitude of doctors towards euthanasia (mercy-killing).

3) Interview Method

In case the informants are illiterate or not ehlightened enough, the enumerators |
out the schedule by a thorough and tactful questioning of each informant. As you ar

aware, this method is used in the population census held once in ten years in our
country.

-
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3 Now solve these cacivisvs aiu chieck whether you have grasped these ideas or not. h’ﬂllencyl)ktﬂ:;lﬁonol.

X E1) Indicate which of the following are primary data and which are secondary :

a) Data taken from the Government of India publication, Statistical Abstract
' India of 1986.

3 b) Data collected by a market research bureau through door-to-door enquiry
- to study the demand for a newly marketed shaving lotion.

¢) Datacollected by a medical research group through questioning of patients
visiting a hospital’s dut-door facilities.

d) Weather data recorded by the Department of Meteorology and then used
by the investigator for writing a Ph.D. thesis.

E2) What mode of data collection would you recommend for

a) studying the progress of a public health programme covering a city’s slums?

b) finding out the reactions of a number of economists to this year’s budget
proposals?

) estimating the yield rate (per acre) of a particular variety of wheat?
: d) estimating the time taken to complete a particular calculation?

We have observed before that data relate to one or more ‘“‘characters”. Let us look
at this term more closely.

Characters fall into two broad categories.

There are certain characters which take varying forms for different individuals but
- cannot be expressed numerically. The brand name of motor cars plying in an Indian
city is such a character; it may be Ambassador Contessa, Premier Padmini Deluxe,

Standard Herald Gazelle, Maruti 1000 or other. The employees in a city hospital may
o be observed for their smoking habits; any given employee will then be recorded as a
smoker or a non-smoker. Such a character, whose possible forms can be distinguished
= verbally, but not numerically, is called a qualitative character (or attribute).

On the other hand, we can express characters like the size of families, age of teachers,
. ' height of students, weight of eggs, etc., in numerical or quantitative terms. The size
of a family (i.e., the number of members in the family) will be a positive integer—
1,2,3, etc. The age of a teacher may be given in years or in years and months. The
' height of a student may be given in centimetres and may be rounded off to the nearest
centimetre. The weight of an egg may be recorded in grams and again may be

rounded off to the nearest tenth of a gram. Such characters are called quantitative
characters (or variables). :

- A qualitative character, too ultimately yields numerical data. This is because we will
: finally note how many of the individuals under study have any given form of the
character. In the case of motor cars in a city, we thus note how many of the cars are
- Ambassador Contessas, how many are Maruti 1000, and so on. However, the data
| ’ on a quantitative character are numerical right frgm the beginning and-so we can give
- them a more in-depth statistical treatment than those on a qualitative character. A
4 qualitative character whose forms have an implied ranking (or gradation), however,
stands on a somewhat different footing. We can assign scores to these forms and thus, -
express the raw data in quantitative terms. Datg of this type are called ordinal data.
- For example, an employee’s performance in a year may be very good, good,
satisfactory, bad or poor. But we can assign the scores 5,4,3,2 and 1, to these five
categories, and immediately the data on the performance of the employees in an
office assume a numerical look. Surely, there is a ot of arbitrariness in assigning
scores this way. Nevertheless, this method of scorjng is quite popular with research
workers in social and behavioural sciences. ‘

Note that ‘scoring’ must be distinguished from ‘coding’ used to facilitate the
processing of data on an electronic computer. We use codes mainly for identification
£ - purposes, similar to the use of roll numbers in IGNOU. Scores, on the other hand,

are more informative. For example, if you get a B grade in MTE-11, it means that
you have a good grasp of the course.

e T T ST




Descriptive Statistics See if you can distinguish between variables and attributes now.

E3) Classify the following characters as qualitative or quantitative.
a) word-length (i.e., number of letters per word) of the words of a poem;
b) diameter of balls (in cm) produced by a firm;
¢) mother tongue of the residents of a city;
d) attitude towards family planning of the couples living in a locality;
e) proportion of males in each group of 25 students.

We have classified characters into two categories: qualitative and quantitative. Now
quantitative characters or variables, in their turn, may be classified as discrete and
continuous.

A discrete variable is one that can conceivably assume only some discrete, or isolated
values. The size of families, the proportion or the number of males in each group of
25 students, or the length of a word are variables of this type. The size of a family
or the length of a word may take values like 1,2,3, etc., but no values in between.
The number of males in a group of 25 students may be 0,1,2,...,24 or 25, while the
proportion of males may be 0,0.04,0.08....,0.96 or 1; values in between these
numbers are inconceivable.

A continuous variable, on the other hand, can possibly take any value in some
interval. For example, the age (in years) of teachers, the height (in cm.) of students,
the weight (in grams) of eggs are all continuous variables. Supposing the minimum
age at which a person can join the teaching profession is a years and that every
member of the teaching community has to retire on reaching the age p years, then
the age of teachers must vary between « and $ and can take any. value within the
interval [a, B]. Indeed, the actual age of a teacher may well be 32.119237 years!
However, there will be hardly any need to record the age with this much precision!
The enquirer may be satisfied by taking the age correct to the second decimal place
so that the teachers age may be recorded as 32.12 years. This is an example of how
limitations of the measuring instruments can introduce a discreteness into the
observations of a continuous variable. Similarly; the actual monthly income of an
Indian which is a continuous variable, has to be expressed in rupees or in rupees and
paise, since the paisa happens to be the smallest denomination coin in the Indian
system of currency. This is also the case with the score in an examination of students
taking the examination. The score is invariably expressed in integers and yet it has
to be regarded as a continuous variable. This is because the score is supposed to
measure the proficiency of the students in the subject concerned, and the proficiency
may be taken to vary in a continuous manner (say, between 0 and 100).

Try this exercise now.

E 4) Indicate which of the following i'ariables are discrete and which are continuous :
a) diameter of ball-bearings produced by a steel mill;
b) number of beds per hospital in a city;
c) proportion of heads in sets of 10 tosses of a coin;
d) length (in mm) of needles 'Iaroduch by a factory;
e) weight of loaves (in kg) produced by a bakery;
f) size of households in a village.

The distinction between a discrete and a continuous variable is important. Quite
often, the statistical analysis of the data will differ accordingly. In fact, there are some
techniques of statistical inferenee, which are based on the assumption that the
variable under study is continuous. These are clearly inapplicable to data on a discrete
variable.

In the next section, we shall discuss the concept of frequency distributions of
10 qualitative characters and variables.



Frequency Distribution of a -
1.3 FREQUENCY DISTRIBUTIONS Character
In this section, we shall discuss the method of organising raw data into frequency
distributions. You will see that we can get information out of a frequency distribution
more easily than out of raw data. Here, we shall first discuss ungrouped frequency
‘ distributions and then discuss grouped ones.
1.3.1 Ungrouped Frequency Distributions
We use ungrouped frequency distributions when the data is of a qualitative nature,
o or when the variable under consideration is discrete. Here, we will take one example
- of each situation for illustration.
Frequency Distribution of a Qualitative Character
A botanist obtained a variety of linseed by cross-breeding of two pure varieties. She
observed the colour of flowers of plants grown through inbreeding of the new mixed
type (called plants of the F, generation). On the basis of these observations, she
. prepared the following table.
‘:. Table 1 : Classification of flowers in an F, population of linseed by colour
7 Colour S Number of flowers Relative frequency
(frequency)
Blue 169 ' 0.538
. Lilac 61 0.194
White 62 0.197 . '
Pink 22 0.070
Total 314 ' 0.999

(Ref: Statistical Methods for Agricultural Workers by Panse and Sukhatme).

: The figures in the second column of Table 1 are called the frequencies of the four
classes (or of the four colours). So ‘frequency’ indicates how frequently the
corresponding form of the character under study (viz., colour) occurs in the collected
data. The sum of the frequencies, 314 in this case, is said to be the total frequency.
The first two columns in Table 1 constitute a frequency table. Since these indicate
the manner in which the total frequency 314 (or the total number of individuals) is
Jistributed among the four classes, they are also said to represent the frequency
distribution of colour for the 314 flowers. Perhaps a better expression is ‘the
frequency distribution of the 314 flowers by colour’.

Alternatively, we can also write the frequency distribution in terms of the proportions
of blue, lilac, white and pink flowers in the group. These proportions give the relative
frequencies, and are shown in the third column of Table 1. By definition,

frequency of the class . 1
total of frequency )

Then what is the total relative frequency? One, of course. But you can see that in

Table 1, the relative frequencies do not add up exactly to 1. This is because the

individual figures are all approximate, rounded off to a certain number of decimal

places. :

relative frequency of a class =

Note that while the distribution of frequencies answers questions of the type ‘How
“ many flowers in the given group are blue?’, the relative frequency has to do with
& questions like ‘what is the proportion (or percentage) of blue flowers in the group?’

Further, in any situation, a frequency must be non-negative integer. The value 0 is
admissible, for in the above situation it is conceivable that we might have a fifth
flower colour, say yellow, which was absent in the sample. A relative frequency, on
the other hand, must be a rational number in the interval [0,1].

The simplest type of classification of a group of individuals by a qualitative character
is a dichotomy, i.e., a classificarion with just two classes. A group of students may
thus be classified by sex as boys and girls or by performance at an examination as
successful and unsuccessful.




Descriptive Statistics Let us now take an example of the data on a discrete variable.

Ungrouped Frequency Distribution of a Discrete Variable

Consider the data collected by a social scientist on household size for households in
an urban locality, given in-Table 2.

Table 2 : Data on household size for 80 households in an urban locality

.
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As in the case of a qualitative character, here too, we would like to summarise the
data by forming a frequency table. For this it would be necessary to count the number
of times 1 appears, the nvé;pber of times 2 appears and so on. We can count more
easily if we follow a tallying system. This system can be used by people without any
formal training in arithmetic (like our cave-dwelling forebears!)

Thus, we take nine classes defined by the nine distinct values 1,2,...9, noting that ¢
was the largest household size recorded in the data. The second column in Table 3
shows the tallies against each of these values. After counting the tallies, we write the
frequencies in the third column. In the fourth column we have written the relative
frequencies.

Fig. 1 : Early notch-cutting by
primitive man

Table 3 : Frequency table for size of 80 households

Household Tallies ) Frequency Relative
size frequency
! i 3 0.0375
2 M 7 0.0875
3 AU | 11 0.1375
4 At I 14 0.1750
s il il 19 .0.2375
6 grray 12 0.1500
7 gl 8 0.1000
8 Il ' 4 0.0500
9 I i 2 0.0250
“Total 4 80 1.0000

There are two more ways in which we can represent the frequency distribution of
discrete variable. Both make use of what are called the cumulative frequencies of the
variable. For a discrete variable like household size, the frequencies answer question:
of the type : ‘How many individuals in the given group have the value k of the
variable?’, and the relative frequencies answer questions like : ‘What proportion o
the individuals has the value k of the variable? But how do we answer a question
like “How many individuals have the value k or less?”’ or “How-many individuals
have the value k or more?” ‘

From Table 3, you can see that the number of households of size k or less is 3 for
k=1, 3+7=10 for k=2, 10+11=21for k=3, and so on. We obtained these figures by
taking cumulative totals of the frequencies in Table 3, starting from the lowest
observed value of the variable and gding successively to the higher values. These are
12 ; called cumulative frequencies of the less than type. Similarly, to get the number of




households having size k or more, we take the cumulative total of the frequencies in Frequency Distribution of &

. . Character
Table 3, starting from the highest observed value of the variable and moving

successively to the lower values. The figures obtained in this manner are called '
cumulative frequencies of the miore than type. Cumulative frequencies of the more We cannot talk of cumulative
than type provide one mode of representation of the frequency distribution of a f;qu"irc‘cs ‘l’f‘a fi““““fd'tll:'f
variable; those of the less than type provide another. We illustrate these two modes gr:;f;:f!;::’ €8S 115 of the
for the data on household size by means of Tablés 4a and 4b.

Table 4a : Cumulative frequency table of ‘‘less than’’ type for size of 80 houschoias.

Household size ) Cumulative frequencies

<1 3

<2 10

<3 21

<4 35

<5 54

<6 66

<7 74

< R 78 -
<9 80

Table 4b : Cumulative frequency table of ““more than’’ type for size of 80 households

Household size Cumulative frequencies
> 1 80

23 7

=3 70

=4 59

=5 45

=6 26

=7 14

=8 6

=9

2uy value greater than 9

While making use of Table 4a, you should remember that the cumulative frequency
of the less-than type is 0 for any value of the variable less than 1, is.3 for-any value
between 1and 2 but less than 2, is 10 for any value between 2 and 3 but less than 3,

and so on. Finally, the cumulative frequency of the less than type is'80 (the total
frequency) for 9 or any value exceeding 9,

Similarly, the cumulative frequency of the more-than type is 0 for any value of the
variable exceeding 9, is 2 for any value between 8 and 9 but exceeding 8, is 6 for any
value between 7 and 8 but exceeding 7, and so on. Finally, the cumulative frequency
of the more than type is 80 for the value 1 or any value less than 1. :

Thus, we can sec that the cumulative frequencies are constant in some intervals, but
when they change, they change in jumps.

It goes without saying that by taking cumulative tota] of the relative frequencies (or
by dividing the cumulative frequencies by the total frequency), we can form two other
tables : a table of cumulative Proportions of the less than type and a table of
cumulative proportions of the more-than type. The former would provide answers to
questions like, ‘What is the proportion of individuals having the value of the variable
less than or equal to k?’ The latter would answer questions like, ‘What is the
proportion of individuals having the value of the variable greater than or equal to k?

If you have understood the discussion so far, you will surely be able to do these
exercises. : : 13
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E5) The following is a record of the results of an opinion poll conducted among the
55 inmates of a nursing home to know their assessment of the scrvices offerec

by the home:

G B A% P B G B S G S S
G S G A% B B G S v B G
S G B B G G \% G G S B
A% S S G S v S B S G s
B A% S S B S S S B G G

[V=very good, G= good, S=satisfactory, B=bad, P=poor]

Drawup a frequency table and a relative frequency table for these data, Hence,
answer the following questions:

a) How many of the inmates think the services are good?

b) How many think that the services are at least satisfactory?

¢) Whatis the percentage of inmates who consider the services to-be less than
satisfactory?

E6) The following data indicate the length per word for the 91 words in Tagore's
poem ‘Where the mind is without fear and the head is held high, etc.’:

5 4 3 5 8 6 6 3 4 5
3 4 4 5 8 2 6 7 4
4 S 6 4 9 6 4 2 6
2 9 2 3 3 3 2 4 2
7 2 4 4 4 3 4 4 7
4 4 9 3 7 4 5 4 2
3 5 2 5 10 3 5 8 6
3 3 6 2 5 3 3 7 3
4 5 8 S 3 4 4 3 2
2 3 5 5 5 3 2 6 7

Draw up a frequency table. In the same table, show the relative frequencies and
the cumulative frequencies of both types. Hence, answer the following
questions :

a) How many of the words have at least 6 letters?

b) How many have § letters or more?

¢) What is the proportion of words with 2 letters?

d) What is the proportion of words of length 4 or more?

Bat this may not always be feasible. For example, suppose we have raw data on the
number of grains per earhead for 400 ears of a variety of wheat. It is quite possible

sub-section.

1.3.2 Grouped Frequency Distribution

To illustrate the method of construction of a grouped frequency table, we consider
the data collected by a botanist in Shillong, shown in Table 5. Note that we are
dealing with a continuous variable here,
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Table 5 : Petiole length (in cm.) of 198 leaves of a four-year old pipal tree (see ¥ig. 4j Frequency Distribcu;ion o'a
e aracter

:s 54 53 63 57 55 41 29 27 60 59 18 37 41 56
5. 306 60 78 45 57 45 80 55 7S5 31 31 52 68 92
<< 45 55 70 45 40 59 38 60 52 56 70 63 51 60
“2 45 S0 53 56 63 34 51 67 62 72 62 50 6.1 63
.- 41 61 56 55 44 60 50 34 50 25 57 52 61 65
4 55 45 55 77 70 73 65 67 61 67 47 85 47 67
<2 69 39 72 42 61 16 72 65 36 59 5.3 66 5.0
L9 22 S2 66 49 59 5S4 65 66 68 4l 47 57 41
so 57 52 28 43 46 49 60 59 45 37 57 38 56
39 65 SO0 52 60 23 S2 32 55 71 70 32 72 59
16 69 61 63 67 24 63 48 46 67 15 68 59 5.3
43 67 54 47 S1 52 74 45 64 50 20 57 46 4.9
60 45 61 35 59 ‘50 68 50 10 55 49 59 52 6.1
53 59
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t1zre, the values are recorded correct to one decimal place (i.e., correct to the nearest
tenth of a centimetre). The lowest observation in the set is 0.8 and the highest 9.2.

1f we take our classes as 0.6-1.3, 1.4-2.1,2.2-2.9,....,8.6-9.3, then the total number

of classes will be 11. To get the frequencies for these classes, we again go in for the
tallying system which we had adopted in Table 3. This is done in Table 6.

“able 6 : Frequency table for the data of Table 5 on petiole length of leaves of a pipal tree

Fig. 2 : Petiole leagth

Zetiole length (cm) Tallies Frequency
06-1.3 1 2
L 4-2.1 gt 6
22-29 gl 8
137 g 10
8-45 g g gl 24
4.6-53 L L e e e 43
54-6.1 b HE L I T T 52
5269 A A M AR i 33
7.0-77 T L 15
1.8~ 8.5 i 4
3.6-9.3 |

Yotal 198

't here the classes need to be redefined. The reason is that the value recorded as,
»ay, 4.6 actually stands for some value between 4.55 and 4.65. Similarly the value 5.7
s1ands for some value between 5.65 and 5.75. Thus, the class taken as 4.6—5.7 in
Table 6, in fact, begins at 4.55 and ends at 5.75. The other classes have to be viewed
in the same way. We then have to properly define the classes in terms of
class-intervals, with no gap between any two successive intervals. The two end-points
of a class-interval are called class boundaries (the lower and the:upper) while the
mid-point is called the clasy mark. The width (or length) of a class interval is, of
course, the difference between the upper class boundary and the lower. The
end-values of a class, when the clasges are defined as in Table 6, are called the class
limits to distinguish them from the class boundaries. We may then say that the
frequency table in the form of Table 7 presents the frequency distribution of petiole
length more appropriately than does Table 6. The width of each class here is 0.8 cm.

Table 7 : Frequency/relative frequency table for petiole length of 198 leaves of a pipal tree

Petiole length (cm) Frequency Relative Frequency
Class interval

0.55—1.35 2 © 0.0101
1.35--2.15 6 0.0303
2.15—2.95 . 8 0.0404

2.95—3.75 10 0.0505
3.75—4.55 24 0.1212

4.55—5.35 43 0.2172
5.35—6.15 52 0.2626
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Petiole length (cm) Frequency Re’ative Frequency
Class interval
6.15—6.95 33 0.1667
6.95—7.75 15 0.0758
7.75—8.55 4 0.0202
8.55—9.35 1 0.0050

Total 198 1.0000
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The third column in Table 7 shows the same frequency distribution in terms of relative
frequencies. While the frequencies tell us, for any interval, how many of the leaves
have petiole length between the two class boundaries, the relative frequencies indicate
what the proportion (or percentage) of such leaves is.

Here again, the cumulative frequencies of less than and more than types provide us
with two additional modes of represcating the same frequency distribution. You can
see such representation in Tabie &,

Table 8 : Cumulative frequencies for petiole length of 198 leaves of a pipal tree

Petiole ength (cm) Cumulative frequency

Class interval (less than type) . (more than type)
0.55—1.35 2 198
1.35—2.15 8 196
2.15—-2.95 16 . 190
2.95—-3.75 26 182
3.75—4.55 50 172
4.55—5.35 93 148
5.35—6.15 145 105
6.15-—-6.95 178 55
6.95—7.75 193 20
7.75—8.55 197 5
8.55-—9.35 198 1

We have to be careful in interpreting the cumulative frequencies of either type for
a continuous variable. In Table 8, 2 is the number of leaves having petiole length
1.35 cm or less, 8 is the number of leaves having petiole length 2.15 cm or less, and

o on. Hence, the cumulative frequencies of less than type now correspond actually
to the respective upper class boundaries. Qn the other hand, if we look at the column

length 7.75 cm or more is 5. and so on. Thus, the cumulative frequencies of more than
type now correspond to the respective lower class boundaries,

But then there js yet another way of descfibing the frequency distribution of a
continuous variable, viz., through the use of what are called the frequency densities
of the different classes. By the frequency density of a class we mean the frequency

¢ density of a class — class frequency )
requency density of a class = ~elass widih . (2

The series of class intervals taken together with the series of frequency densities
should give a good idea of the frequency distribution of the variable being studied.

You may wonder why we need to bring in frequency densities at all. Are’nt the



income brackets. As in other cases, here too,.we may choose to have classes of the Frequency D“"“g'h‘:';c °“e:
same width. However, if the common width is small, say Rs. 200, then too many

classes will have to be taken. Many of these classes might be empty. This will bring

in an irregujar pattern and gross distortion in the true nature of the distribution. On

the other hand, if the common width is large, say Rs. 1,000, then the number of
classes will be too few and the true nature of the distribution, which usually shows

rapid changes in the lower parts of the range, will get blurred. This will also lead to
serious errors in the statistical measures computed on the basis of the grouped data.
Therefore, it would be advisable to have classes of varying width—narrower classes
in the lower parts of the income range and classes of increasing width towards the
higher parts of the range. Now, when the classes are of varying width, the class
frequencies will not be comparable. In such situations, the frequency densities that
are obtained from the frequencies by reducing them to a common base (see Table 9)
should be used.

Table 9 : Frequency distribution of monthly income for 1,276 urban families

income (Rs) Frequency Frequency density
0 218 1.0900
200 153 0.7650
400 190 0.6333
700 152 0.5067
1000 159 0.3975
1400 119 0.2975
1800 - 107 0.2140
2300 73 0.1460
2800 49 0.0817
3400 23 0.0375
4000 15 0.0188
4800 8 0.0080
Totai 1,276 —_—

Thus, frequency densities give us a true picture of the frequency distribution when
the classes are of varying width. This will be all the more obvious when we consider
the problem of diagrammatic representation of the frequency distribution of a
continuous variable in the next section.

e have already mentioned at the end of Sec. 1.3.1 that even in the case of a discrete
vzriable (or, for that matter, of a qualitative character), we may have to define the
classes in terms of more than one distinct value of the variable (or more than one
distinct form of the qualitative character). Table 10 illustrates this point. We would
have to deal with as many as 50 classes if we did not use the type of condensation
that is indicated by the first column of the table.

Table 10 : Frequency distribution of number of grains per earhead for 400 ears of
a variety of wheat (see Fig. 3)

Number of grains per earhead } Frequency
812 . 1
13-17 1T
18-22 25
23-27 86
28-32 125
33-37 ‘ 77
38-42 s
43-47 9
48-52 4
5357 \ 1
Total 400

) Fig. 3 : Wheat earhead
Source : Statistical Methods for Agricultural Workers by Panse and Sukhatme.
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Now before we end this section, we list the main considerations guiding the
construction of a frequency table.

For one thing, the classes should be exhaustive, in the sense that each of the
observations should be assignable to one class or another.

Secondly, the classes should be mutually exclusive. This means that no two classes
should overlap so that each of the observations cun be assigned to exactly one of the
classes without any ambiguity. These two criteria have clearly been followed in
constructing the tables in Sections 1.3.1 and 1.3.2.

Thirdly, while it seems natural in the case of a qualitative character to take a separate
class for each distinct form of the character and in the case of a discrete variable to
take a class for each distinct value of the variable, the classes should not be too
numerous. For the main objective is to summarise the data into an easily manageable
and compreliensible forra. B 2sides, having too many clesses might result in a situation
where many of the classes may have zero frequencies. Whereas the true distribution
may show a gradual increase or decrease of frequency, the observed distribution, in
such a case, will indicate abrupt chauuges in the irequency. Because of this, in many
cases, we have to uefine the classer in terms of more than a single value of the 1
character concerned. '

But the classes should not be too few either. If there are too few classes, we are likely
to overlook some important featurcs of the distribution. For instance, an
asymmetrical distribution may appear to be fairly symmetrical. We shall taik about
symmetrical distributions in Section 1.4.4.

Further, in the computation of various measures related to the distribution, we
assume that the observations within each class interva: are concentrated at the class
mark, instead of being spread over it. You will come across this in Unit 2. So, it the
classes are too few, or equivalently, if cach class is too wide, then this assumption
may lead to considerable error in the computation of these measures.

Last, but not the least, we should see to it that in the case of a variable, the classes
are defined in terms of the same number of distinct values f thz variable or are of
the same width. Otherwise, the frequencies (or the relative trequencies) for the
different classes will not be comparable. ©On occasion we have to deviate from this
rule, as you have seen from Table 9. In such cases, we have to work with frequency
densities.

Try this exercise now.

E7) Consider the data shown below :

Yield of seed cotton (in gm) for 120 plots of size 0.0005 acre

193 8l ST 42 95 80 52 70 105 72 60 68
49 74 60 57 63 S1_100 41 S0 66 65 81
8 85 59 44 90 69 69 68 95 82 39 44
75 8 63 99 91 64 ' 68 33 115 74 60 65
63 75 23 58 76 55 67 63 68 78 47 68
8 82 39 79 72 8.5 66 73 102 93 95
62 46 69 79 8 54 29 51 79 8 57 66
94 71 51 62 76 68 S4 69 109 39 74 58
45, 48 58 81 96 52 47 106 75 75 86 43
S 65 56 31 79 45. 78 87 71 77 62 69
a) Draw up a frequency table with 10 classes. Also show, alongside the

frequencies, the relative frequencies and the cumulative frequencies of both
types.

b) Estimate the number of plots with an yield of
i) 65.5 gm to 85.5 gm;
il) more than 100 gm; and
ili) less than 60 gm.



¢) What is the piopoition of plots with yield Frequency Distributios ot .
i) between 70 gm and 100 gm ? : Character
i) less than 75 gm ?
iii) more than 105 gm ?

So far we have seen that a frequency distribution presents the data in a concise form.
We can get a general idea of a distribution more readily and effectively through an
appropriate diagram. In the next section, we talk about this diagrammatic
representation.

1.4 DIAGRAMMATIC REPRESENTATION OF
FREQUENCY DISTRIBUTIONS

We can use various kinds of diagrams to represent frequency discributions. In this
section, we shall first see how to give a visual representation to the information in a
frequency table. Then we shall talk about the representation of cumulative
frequencies. After this, we shall discuss frequency curves, the diagraimatic
representation of the frequency distribution of a variable which takes infinitely many
values. Finally, we shall classify distributions into broad categornes on the basis of
their shapes. So let us start with the table of frequencies

1.4.1 Frequencies

We shall discuss the cases of ungrouped and grouped frequency distributions, one by
one.

a) Case of an Ungrouped Frequency Distribution

An ungrouped frequency distribution of a qualitative character, given by the
frequencies or the relative frequencies may be represented by means of what is called
a bar diagram. The bars (actually rectangles) are as many as there are classes. These
are taken perpendicular to the same base line, either vertically or horizontally.
Further, the bars are equispaced and have the same width. Their height or length (as
the case may be) indicates the frequencies (or relative frequencies) for the respective
class. The frequency distribution for Table 1 is represented in the bar diagram in Fig.
4.

40~

20 -

Pink Lilac White Blue

Fig. 4 : Bar diagram showing the freq Y. distribution of 314 flowers in an F, population of linseed
by colour. .
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The relative frequencies can be represented by means of a bar diagram in the same
way as the absolute frequencies. But in case of data on a qualitative character, a
better mode of representing them would be to use what is called a pie diagram or
chart. This diagram makes use of a circle, whose total area is divided irto as many
sectors as there are classes by drawing angles at the centre. The area of each section
represents (is proportional to) the corresponding relative frequency. To illustrate the
use of a pie diagram, let us consider the relative frequency table of colour of flowers
in the F, generation of linseed (Table 1). We first determine the angles (in degrees)

to be drawn at the centre of the circle (see Table 11).

Table 11 : Angles to be drawn at the centre of pie diagram for the frequency
distribution of Table 1

Flower colour Relative frequency Angle to be taken
Blue 0.538 193.7
Lilac 0.194 69.8°
White 0.198 71.3°
Pink 0.070 25.2°
Total 1.000 360.0°

The figures in the third column of the table indicate the measures (in degrees) of the
angle to be drawn for each class, its sides extending from the centre of the circle to
its circumference. Note that the angle for any given class measures

360° x relative frequency

Now, the area of a sector of angle 8 radians in a circle of radius r is -;—rze- Thus, in a
given circle, the area of a sector is directly proportional to its angle (whether in radians

or in degrees). So if we draw sectors with angles given in the third column of
Table 11, then the area of each sector is proportional to the corresponding angle

which, in turn, is proportional to the corresponding relative frequency.

You can see the pie diagram corresponding to Table 11 in Fig. 5.

Fig. 5 : Pie diagram corresponding to Table 11.

If we are dealing with a discrete variable, we can also form a colgmn diagram to
represent its frequency distribution. In Fig. 6(a) we have the column diagram for the
frequency distribution of household size (Table 3).



Frequency

5

T, 3 4+ s 6 1 8 9 W

(a) Household size
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1
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(b)Household size
Fig. 6 : (a) Column diagram (b) Frequency polygon for the data on household size

When the possible distinct values of the variable are equispaced, as in the case of
household size, word length, etc., an alternative mode of representing the frequency
distribution is available to us. Again we take two mutually perpendicular axes, the
horizontal for the variable and the vertical for the frequency (relative frequency).
Then we plot each distinct value and the corresponding frequency (relative
frequency) as a point on the graph paper, with respect to these axes. See Fig. 6(b)
which represents the frequency distribution in Table 3. Then we join the points for
the successive values of the variable by straight line segments. Next we take two
additional points, one for the possible lower value than the lowest in the table and
the other for the possible higher value than the highest in the table, the corresponding
frequencies being of course, zero. For the distribution of household size, for instance,
the two additional points will correspond to household size 0 and household size 10.
Then we join these points with the points corresponding to the adjoining value, and
thus obtain a closed polygon. Such a diagram is called a frequency polygon. Note that
we can also get the frequency polygon by joining together the tops of the columns in
the column diagram. : '

You may try your hand at drawing a frequency polygon now.

E8) Draw a column diagram and a frequency polygon to represent the frequency
distribution of the data in E6. «

b) Case of a Grouped Frequency Distribution

You would agree that the diagrammatic representation of a grouped frequency
distribution has to be different from that of the ungrouped one. The reason for this
is that unlike those for the ungrouped case, the frequencies in a grouped distribution
are scattered over the different class intervais.

" To represent the frequencies (relative frequencies), we again take two rectangular
axes of coordinates, the horizontal for the variable value and the vertical for the
frequency density (relative frequency density). Having marked the class boundaries
on the horizontal axis, we draw on each class interval as base, a rectangle whose
height equals the corresponding frequency density (relative frequency density). The
area of each rectangle, therefore, represents the product of the class width and the
frequency density (relative frequency density), i.e., the class frequency (relative
frequency). The resulting diagram is called a histogram. In Fig. 7, we show you the
histogram for the frequency distribution of petiole length per leaf of a pipal tree,
drawn on the basis of the frequency densities given in Table 7.

Frequency Distribution of 2
Character |
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Fig. 7 : Histogram for the frequency distribution of petiole lcngth.

In Fig. 8, you can see the histogram for the frequency distribution of family income
given in Table 9.
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Fig. 8 : Hisiogram for the frequency distribution of family income

Try this exercise now. .

E9} Draw a histogram to rcpresent the frequency distribution of the yield of seed
cotton given in E7.

Here we have scen some ways of diagrammatically representing the frequency tables
of qualitative characters, and discrete and continuous variables. We can also use
cumulative frequencies to represent the frequency distribution of a variable. In the
next sub-section, we shall see how the cumulative frequency tables of a variable can

be diagrammatically represented.

1.4.2 Cumulative Frequencies
Now we divide our discussion into two parts : a) discrete and b) continuous variables.



a) Discrete variable

We again take two perpendicular axes of coordinates. The vertical axis will now be
used for the cumulative frequency while the horizontal axis will continue to be used
for the variable itself. But note the way the cumulative frequency changes : in the
discrete case, whenever it changes it changes by jumps (a point already mentioned in
Sec. 1.3.2).

In Table 4, which is a cumulative frequency table of the less than type, the cumulative
frequency is zero for values of the variable less than 1, is 3 for values not less than 1
but less than 2, is 10 for values not less than 2 but less than 3, and so on. Hence, the
cumulative frequency diagram takes the form indicated in Fig. 9(a). Itis called u step
diagram owing to its resemblance to a flight of steps.

"]

80 -

604

Cumulative freq. (less than)

207

(a) Household size

100'1

8

Cumulative freq. (more than)

20

{(b) Household size

Fig. 9 : Step diagram representing cumulative frequencies of the (a) less than type, (b) more than type,
for the data on household size.

The picture takes a somewhat different form when it comes to the cumulative
frequencies of the more-than type. From Table 4 you can see that the cumulative
frequency diogram will again be a step diagram, but like the one in Fig. 9(b).

b) Continuous variable

In representing the cumulative frequencies of either type for a continucus variable,
we proceed as in the discrete case, taking two rectangular axes of coordinates, the
horizontal for values of the variable and the vertical for cumulative frequency. But
we have to bear in mind that the cumulative frequency of the less than type for any
class corresponds to the upper class boundary and that it increases gradually and not
by jumps (as it does in the discrete case). Similarly, we have to remember that the
cumulative frequency of the more than type for any class corresponds to the lower
class boundary and that it decreases gradually and not by jumps.

Frequency Distribution of a
Character
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So while drawing the diagram for the cumulative frequencies of either type, the points
corresponding to the successive class boundaries are joined by straight line segments,
Note that the cumulative frequency of less than (more than) type is zero {n) for any
variable value less than the lower boundary of the lowest class and is n (zero) for any
variable value exceeding the upper boundary of the highest class. Hence, the graph
of the cumulative frequency of the less than type will coincide with the horizontal
axis for values less than the lower boundary of the lowest class and parallel to that

axis at a height of n for all values equal to or exceeding the upper boundary of the
highest class.

In the case of the cumulative frequency diagram of the more than type, the picture
gets reversed : the graph will now be coincident with the horizontal axis for values

exceeding the upper boundary of the highest class and will be parallel to that axis at

a height of n for all values not exceeding the lower boundary of the lowest class, In

Figs. 10(a) and (b), we have these diagrams for the data on petiole length of leaves
of a pipal tree,
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Fig. 10 : Ogives for the data in Table 8 (a)lless than type, (b) more than type.

The two cumulative frequency diagrams for a continuous variable resemble in shape
the two curves forming the top of an ogée, a type of arch. Hence they have been

called the ogives of the distribution of the variable.

Here is an exercise for you.

E10) a) Represent the cumulative frequencies of the less than and more than types

for the data in E6 by suitable diagrams.
b) Draw the ogives corresponding to the data in E7.
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So far we have considered frequency distributions of variables wiicre the (o1ai number
of individuals was finite. Later, in Block 4, you will see that the frequency
distributions that we encounter in real life situations arise from sauipling from a large
group of individuals, called a population. In most of these situations, we can regard
the population as infinite. Let us now discuss the diagrammatic representation of the
fiequency distribution of an infinite population by a frequency curve.

1.4.2 Frequency Curve

LLet us try to visualise what the frequency distribution or its histogram would look
fike in an infinite population, especially when the variable is continuous. We first
divide [a,b], the range of variation of a continuous variable, into a few class intervals
when the total frequency (i.e., the sample size) is small. But let us consider samples

i+t increasing size and at the same time suppose the class intervals are taken smaller

and smaller. Suppose we draw the histograms of the distributions obtained in this
«ianner. To make these histograms comparable, we replace frequency density by
rclative frequency density on the vertical axis. Also see Fig. 11(a), (b) and (c). Isn’t

it natural then to expect that the histogram will gradually take the form of a smooth
curve (Fig. 11 (d))? This smooth curve, representing the frequency distribution of
the variable in the infinite population, is ‘called the frequency curve of the variable.

¢ freq. density

—

——> Relative freq. density

—x Reia

~———> Variable value ——%  Variable valuc

(a) (b)

/N '

saative frey. density
|

b
S,
e

~———> Relative freq. density

Frequency Distribution of a
Character

> Variable value ~——-> Variable value
(c) - )]

Fig. 11 : Histogram of a frequency distribution &7 a continuous variable approaching u smooth curve.

Similarly, we can also say that with increasing total frequency and decreasing class

width, the ogive of a continuous variable of either type will also gradually approach

a smooth curve as shown in Fig. 12. For the sake of comparability, we draw these on
the basis of cumulative relative frequencies (rather than cumulative frequencies).

Y YJ

Cumulative rel. freq.

O

.o Cumuiative rel. freq.

Variable Value FX Variable value
() (b)

Fig. 12 : Limiting forms of the ogives of a continuous variable ; (a) less than type (b} more than type
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"Now here are some exercises. In each of these we have asked you to give a

diagrammatic representation to some of the frequency distributions which you have
met in this unit.

E11) Represent the frequency distribution of assessment of the services offéred by
the nursing home for the 55 inmates (given in E5) in terms of frequencies.

E12) Draw a suitable diagram to represent the frequency distribution given in
Table 10. '

So far we have discussed various ways of visual representation of frequency
distributions. Now we shall see how frequency distributions can be classified into
certain broad categories according to shape.

1.4.4 Broad Classes of Distributions

In this section, we’ll consider five different classes of distributions. These are
i) Bell-shaped symmetrical

ii) Bell-shaped moderately asymmetrical

iit) J-shaped

iv) U-shaped

v} Multimodal

distributions.

‘Let’s discuss these one by one.

i) Bell-shaped Symmetrical Distribution

Such a distribution is also called a2 unimodal symmetrical distribution. It may be’
related to eitber a discrete or a continuous variable. It has the feature that its highest
frequency or frequency density occurs right at the middle of its range of variation,
and the frequency or frequency density decreases on either side gradually and at the
‘same rate (see Fig. 13).

Relative freq. density <

o Variable value X

Fig. 13: F requehcy curve of a symmetrical distribution

Many of the distributions that are encountered in the physical, biological and
behavioural sciences, as well as those arising from measurements in the field of
manufacturing industry, closely follow this form. For instance, if we collect data cn
the stature (in cm) of a large number of adult males of a given race, then we will end
up with a distribution of this type.

ii) Bell-shaped Moderately Asymmetrical Distribution

A distribution of this type also has a single maximum, but the frequency or frequency
density decreases on one side at a higher rate than on the other (Fig. 14).

<

Ol Rel. freq. density

Variable value X

. 14': Frequency curve of a bell-shaped asymmetrical distribution.
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While we very rarely encounter an exactly symmetrical distribution, most ot the Frequency Distribation of a
real-life distributions will fall in the present category. The distribution of petiole
length per icaf of a pipal tree, as indicated by the histogram of Fig. 10, has a
distribution with a longer tail to the left of the maxirhum than to the right. The
distribution of number of defects per piece of a manufactured item, on the other
hand, will have a longer tail to the right of the maximum than to-the. left. The
distribution of the births occurring in a year in a big community by age of mother
will also be found to belong to this category.

iii} J-shaped Distribution

A J-shaped distribution may be said to be the most extreme form of an asymmetrical
distribution. Here the frequency or frequency density is maximum at one end of the
range and decreases monotonically as the variable value changes from this end of the
range to the other (see Fig. 15).

=

Relative freq density
Relative freq. density

Variable value X ’ O’ Variable.value X

Fig. 15 : Two J-shaped distributions

The income distribution of Table 9 fails in this category, as you can see from Fig. 8.

The distribution of land-holding per family, the distribution of age at death of people
of age 60 years or less, the distribution of life of lamp bulbs, etc., will also be similar
to Fig. 15 (a).

v} U-shaped Distribution

Such distributions are extremely rare. A distribution of this type has its minimum
frequency (or frequency density) towards the middle of the range of variation while
the frequency (or frequency density)graduallyincreases, at the same rate or at
different rates, as the variable value changes either to the left or to the right (see -
Fig. 16).

Relative freq. density ¢

Variable value X

Fig. 16 : A U-shaped distribution.

The distribution of days in a month b
cloudiness may be considered a contj
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v} Multimodal Distribution

In some situations, we may come across distributions with more than one maximum
asin Fig. 17. You may realise that such a distribution may result if several groups of
individuals are mixed together. For each group separately, the distribution may be
unimodal, but if they have distinct maxima, then the distribution in the composite
group will take on a multimodal form.

Y

Relative freq. density

O

Variable value X

Fig. 17 : A muitimodal distribution

In general, a multimodal distribution signifies heterogenity of the data—the fact that
the data have been obtained from groups with widely different characteristics.

So, we have seen that we can obtain a lot of information about the data from its
pictorial representation. '

‘With this we bring this unit to a close. Let us go back and recall the points covered
in it.

1.5 SUMMARY

In this unit, we have discussed the following points :

1) The term statistics may mean either numerical data arising in some sphere of life
or the scientific discipline that concerns itself with the collection, analysis and
interpretation of such numerical data.

2) Methods of data collection :
Direct observation method
Questionnaire method
Interview method
'3) Classification of characters into qualitative and quantitative, and that of
quantitative characters into discrete and continuous ones.

4) Representation of frequency distribution of a character by means of a table.
5) Relative frequencies and cumulative frequencies.

. 6) Representation of the frequency distribution of a character by means of a
diagram : bar diagram, pie diagram, column diagram, frequency polygon,
histogram, ogive curve. . )

7) Classification of univariate distributions into certain broad categories :
Bell-shaped symmetrical and asymmetrical distributions,
J-shaped distributions,
U-shaped distributions,
Multimodal distributions.

1.6 SOLUTIONS

El) a) and d) are secondary data,
b) and ¢) are primary.



E2) a) interview method Frequeney Distribution of a
b) questionnaire method (or interview method) | Character
¢) measurement (of yield for some sample plots)

d) measurement.

E3) c¢) and d) are qualitative,
a), b) and ¢) are quantitative.

F4) b), c) and f) are discrete,
3 a), d) and €) are continuous.
E5) The frequency distribution is :
Assessment ' Frequency Relative Frequency‘
v 7 0.1272
G 16 . 0.2909
S 18 0.3272
B 13 : 0.2363
P 1 0.0181
55
a) 16
b) 41
¢) 1« 100 = 25.4545%
55
E6)
Cumulative frequency
Word Length Frequency Relative Freq. less than more than
2 13 0.1428 13 91
; 3 19 0.2087 2 78
4 21 0.2307 53 59
: 5 15 0.1648 68 38
6 9 0.0989 77 . 23
7 6 0.0659 83 14
8 4 0.0439 87
9 3 0.0329 %
10 1 0.0109 91 1
- 91
a) 77
b) 38
c) 0.1428
59
d) T 0.6483
E7) Noting that the lowest and the highest of the observations are 23 and 115, you
may take your classes as 21-30, 31-40,...... , 111-120.
(a)
. Cumulative frequency .
Yield (gm) Class mark Frequency Relative Freq. less than more than
2130 25.5 2 0.0166 2 120
31—40 35.5 S 0.0416 7 118
41—50 455 13 0.1083 20 113
51—60 55.5 21 0.175 41 ©100
61-—70 65.5 27 0.225 68 79
71—80 75.5 22 0.1833 90 52
81—90 85.5 16 0.1333 106 30
91-—100 95.5 9 0.075 115 14
101—110 105.5 4 0.0333 119 S
111—120. 115.5 1 0.0083 120 1
120 '
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o D 15 5

i) 5 iii) 41

E8)
2.7
20 /
154
10 =
5-
2 3 4
E9)
30 4
25 -1
20
15
10
P
¢ o - - —
2130 +3140 4150  Si-60 6170 T80 8190 91-100  {0I-110° 11i-120,
E10) a)
1001
80— -
,60 =4
40 =
’
20-
L} L] 1 p 4 1 p = T ) 9 1Y
30 2 3 ) s 6 78 9 10
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UNIT 2 MEASURES OF CENTRAL
TENDENCY AND DISPERSION

’

Structure

2.1 Introduction
Objectives
2.2 Central Tendency and Dispersion
2.3 Measures of Central Tendency
The Mean
The Median
The Mode
Algebraic Properties of the Measures
A Comparison of the Measures
2.4 Measures of Dispersion
The Range
The Mean Deviation
The Standard Deviation
Algebraic Properties of thc Measures
A Comparison of the Mcosures
2.5 Coefficient of Variation
2.6 Summary

2.7 Solutions and Answers

2.1 INTRODUCTION

In Unit 1, we have seen that statistical data may relate to qualitative characters as
well as quantitative. This unit highlights some common features of a frequency
distribution of a single variable (also called a univariate frequency distribution).
These features are central tendency and dispersion. We shall also discuss some
commonly used measures of these features and their properties. Most of you would
already be familiar with the measures of central tendency and dispersion. So we’ll go
over these quickly and ask you to do a few exercises to help you to recapitulate.

In the examples, we’ll be referring again and again to the data sets which you have
studied in Unit 1. So, you will often have to go back and look at the tables in that
unit. If you have a calculator, it would be a good idea to keep it handy while going
through this unit. Calculators are also available at your study centre.

Now we are going to list the objectives of this unit. After you have gone through the
unit, make sure that you have achieved them.

Objectives ‘
After studying this unit, you should be able to :

® compute the mean, median and mode from raw data or from a given frequency
distribution,

® compute the range, standard deviation and mean deviation of the data, whether
grouped or ungrouped.

e derive and use some algebraic properties of the measures of central tendency and
dispersion. ‘ ‘

2.2 CENTRAL TENDENCY AND DISPERSION

If you glance through any set of observations on a variable, you will usually find a
tendency among the observations to cluster around some particular point, or some
small part, of the range of variation, This tendency will be all the more apparent if
we construct the column diagram (or frequency polygon) or histogram related to the

data. In'Fig. 1, you can see the observations clustering in the interval [4.55—6.15].
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Fig. 1: Histogram for the frequency distribution of petiole length

Now suppose you are told that the average blood pressure for your age-group is 120 mm.
You measure yours and find that it is 110 mm. What does this mean? Is it a cause for

you see, knowing only the ‘average’ is not enough. While mentioning an average, we
should also give an idea of the extent to which the individual observations differ from
the average value. The variation of the observations from the average (or from one
another) is called scatter or dispersion of the data on the variable. Thus, to describe

asct of data, we have to give a measure of dispersion along with a measure of central
tendency.

In the next section, we’ll describe some measures of central tendency. But before
that, a word about the notation that we’li be using in the unit.

Nutation

We shall use some such letter a8 X, y Or z to denote the variable imder study, and
the letter n to denote the sum total of the frequencies (i.e., the total number of
individuals for which data are available). '

In case the data are in their raw (or ungrouped) form, x; will denote the values of x
as observed for the ith individual (i=1, 2, .... n). Thus, x;, x,, x;, etc., will,

respectively, denote the values of x as observed in the first individual, second
individual, third individual, etc.

In case the data are in the form of a frequency table, the number of classes will be
denoted by k and x; will denote the value of x defining the ith class or the mid-point.

of the ith class interval (also called the ith class mark). We will denote the frequency
in the ith class by f,. We then have

k
Sf=n : e (D)
1

Before we go any further, let us recall the following properties of the summation
notation.

i) 1If a=a for all i, then

m
a = ma.
i=]

Measures of Central Tendency an
Dispersior
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ii) If bis a constant, then
m m
bei = bz:xi
i=1 i=1

‘m

i) i(xi"')'i) = ixi + §Yi » E(xi—yi) = Exi - zy* ’
i=1 i i=1 i=1

i=1 i i=1 i=1
This result can be extended to more than two series of numbers.
i), ii) and iii) lead to the following property:
iv) If a and b are constants, then

m m
2(a’-+bxi) =ma+b Exi-

i=1 i=1

In case the observations x,, x,,........, X, on a variable x are arranged in ascending
order, we shall denote by X;), the ith value in this arrangement.

Thus, we have
Xy S X S oo S X v (2)

In the same way, if the observations are arranged in descending order, then X(;) may
be taken to denote the ith value in that arrangement. Thus, we have

Xy = Xg = . = Xy . 3

Our notation also implies that f,/n will stand for the relative frequency of the ith class
(i=1, 2,...,k). We denote by F, the cumulative frequency of the less than kind and
by F{ the cumulative frequency of the more than type for the ith class. By definition,
then,

; ‘
F, = Efl @i=1,2,.....,k) and

so that

F,=F_, +f fori=2,
and )

Fi =F,, +f forisk-1

1

Now here is a simple exercise to find out whether you have understood our notation
or not. :

E1l) a) Suppose the annual incomes of 5 individuals as reported in the I-T returns
for the year 1990-91 (in thousands of rupees) are 75, 80, 75, 105 and 83.
Compute X and x(z).

b) Show that
' F.=n-F, (forisk-1)
and .

Fi=n-F_, (fori=2)

¢) What are F, and F; ?

Now we are ready to discuss the measures of central tendency in the next section.

2.3 MEASURES OF CENTRAL TENDENCY

The averages (or measures of central tendency) in common use are mean, median
and mode: Let’s consider these one by one.

$e



2.3.1 The Mean Measures of Central Tengency ant

The arit! netic mean (or simply the mean) is the most widely used average. For any
set of data on the variable x, the mean is denoted by x and is obtained by dividing the
sum of the observations by their number. Thus, we have

=13%x (@)
1

» For data grouped into a frequency table, we have

;' . ‘ 1 .

o E )]

'_ 1

. Formula 5 will provide the exact answer in case the variable x is discrete and the
frequency table has classes defined by one distinct value of x each.

el
=

=]

If classes of the frequency table are not defined by single distinct values of x, we still
use Formula 5, but x; now denotes the class mark of the ith class (i=1, 2,....., k).
Since we are considering class marks instead of individual values, Formula 5 gives
only an approximate value of X. In other words, we can say that Formula 5 is subject
to grouping errors. But Formula 4 gives the value free from such errors. In the
continuous case, since the observations will involve rounding-off errors, even
Formula 4 will be approximate, despite being free of grouping errors.

We now gi;e two examples to illustrate the use of Formulas 4 and 5.

Example 1 : The quantities of milk (in litres) produced by a dairy farm on ten
ansccutive days are shown below : -

218.2 199.7 207.3 185.4 213.7
184.7 179.5 194.4 224.3 203.5

Let us calculate the mean production.

Here the data concern a continuous variable, viz., milk yield per da{y. Here n = 10

and
n
Exi = 2010.7 litres.
1
3 : Hence, the mean output per day for the dairy farm is
: | - _ 20107
. T 10

= 201.07 litres.

. Before giving the next example, we would like to tell you about a method of
simplifying the computation of the mean.

In Sec. 2.3.4, you will see that under a linear transformation of the variable, the mean
gets transformed in the same way. Hence, if the variable is subjec?ed to a change of
base and/or scale, that is, if

= _ (x—x)

=w‘(ca‘=0), then u
c c

Thus, we get X = xo+cu R ()]

We can use this formula to simplify the computation of the mean from a frequency
table. We take x, to be the class mark of a class near the middle of the table, and ¢

to be the common width of the classes. Example 2 may help you in getting this point
clear.

Example 2 : Let us obtain the mean petiole length per leaf of pipal tree from Table 6 in
Unit 1.

We lay out the computations as in the table below :
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Actually, the census tabulation
feaves the last interval open, that
is, simply as “60~" But here we
ask you to do the calculation
hased on the assumption that the
upper end point of this interval s
74. We cannot calculate the mean
without some such assumption.
However, we must realise that .
this assumption may introduce yet
another source of error.

Refer to Sec. 2.2 for notation.

36
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Table 1 : Calculations for mean petiole length
Class mark Frequency

X, u;=(x,—4.95)/0.8 f; ) fu,
0.95 -5 ' 2 ~10
1.75 —4 6 -24
2.55 -3 8 ~24
3.35 -2 10 -20
4.15 ~1 24 -4
4.95 0 43 0
5.75 1 52 52
6.55 2 33 66
7.35 3 15 45
8.15 4 4 16
8.95 5 1 5

Total — 198 82

From the table, we have, as the mean of the new variable u,

I .
u= ngx“-

82
= —— = (.414].
198
: -4,
Since u = (x o 895) , the mean petiole length is
‘X =495+0.81

= 4.95+0.331=5.281 cm.

You can try your hand at these exercises now,

E2) The scores obtained in English by 15 students are given below. Calculate the
mean score.

33, 41, 46, 47, 52, 52, 53, 54, 57, 61, 61, 68, 69, 70, 74

E3) The age-distribution of the Indian population according to the 1981 census is
shown below :

Age
* as on
last 04 56 10-14 15-19 20-24 25-29 30-34 35.39 40-44 45-49 50-54 55-59 60-74
birth- )
day '

percen- 1259 14.08 12.88 9.63 8.62° 763 638 5.85 5.14 4.40 3.83 247 6.49
. tage

Obtain *he mean age of an Indian‘alive at the time of the census (Note that
here age x on last birthday means that the age at the time of the census was less
than x+1 years but not less than x years. Hence the class intervals should be
taken to be 0-5, 5-10, etc. You can take x,=32.5 and c=S5.

We now turn our attention to another measure of location, the median,

2.3.2 The Median

By the median of a set of observations on a variable x, we mean the middlemost value
of the set when the elements are arranged in either ascending or descending order.
So there are at most half the observations below the median as well as above the

median.



But the middiemost value may not be unique, and so the median toco may not be Measures of Central T""‘“"":
unique. Let us denote the median by X. For ungrouped data arranged in ascending
order, we define X as follows.

If nis odd (=2m+1, say), X= x, ;-
If nis even (=2in), any value X such that x,, < X < x,,,, is 2 median of x.

Of course, if x,, and x,,, are equal, then median will be unique even when n is
even. If nis even and x,) # X, ), We sometimes take the mean of these two central
values as the unique median of x, i.e. (by convention), we take

' ;( = xgm) + xgmﬂ) .
2

In case the data are arranged in descending order, we. have
X = X(p.q if 0 is odd (=2m+1)

’ < ! 1 f M —
and X', S X = x7,if nis even (=2m)

Here too, if n=2m and x;m) * xémm , we sometimes take

¥ = X'(m) + x(’mﬂ)_
2

Example 3 ;: Consider the data on the daily milk yield of a dairy farm that were cited
in Example 1. Arranged in ascending order, the observations are (in litres),

179.5 184.7 1854 194.4 199.7 203.5 207.3 213.7 218.2 224.3
Here n is even (=10). Also, x,=199.7 and X =203.5.

Hence, any value between 199.7 litres and 203.5 litres may be taken to be the median
yield of milk for the dairy farm. However, if we follow the convention, we may take,
as the unique median, '

% - ,(_1&7*72@ = 201.6 litres

Now suppose the data on a discrete variable is put in the form of a frequency
distribution in which each class is defined by a single value of x. In this case, the
cuinulative frequency table of less than (more than) type presents an arrangement of
the original observations in ascending (descending) order. Let's see how we can use
this fact to get the median.

Example 4 : Table 4 a in Unit 1 shows that if the original data (as shown in Table 2
of Unit 1) were arranged in ascending order, then the first three values would be 1,
the 4th to the 10th would be 2, the 11th to the 21st would be 3, and so on. Here
n=80 and we find that

Xy = Xany = 3,
sothat x = 5.

When the variable x is continuous and the data are in grouped form, you may
visualise the frequency curve of the distribution. The median should then be taken
as the value of x that divides the area under the frequency curve into two equal parts’

(or the value that has ordinate —2 in the corresponding ogive of either type). In any

particular situation, however, y?)u will have a frequency table with, say, at most 20-25
class intervals, and can hope to get only a rough approximation to the median. You
may then take the median as that value of x which has cumulative frequency (of either
type), n/2. : g

Suppose we have a cumulative frequency table of less than type. We first ascertain
which of the class-intervals contains the median. Suppose this interval has lower
boundary x, and upper boundary x,. We further assume that the cumulative frequency
increases linearly from F, to F, as the variable x increases from x, to x,.

—-X (n/2)-F,

X
Thus, ,
x,~x,  F,—F 37
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We have assumed that the ratio in
which X divides [x,, x ] is the
same as the ratio in which n/2
divides [F,, F,l.

—F,
sothat X = x, + (hn/Zf)_, X ¢, . o (D
0

where c=x,—x, is the width of the median interval and fo = F,—F, is the frequency
for the interval.

We can also make use of the cumulative frequency table of the more than type for
computing the median.

Here is an example to illustrate the use of Formula .

Example 5 : For the frequency distribution of petiole length per leaf of a pipal tree;
-g = 99. Therefore, Table 8 in Unit 1 indicates that the median would be in the
interval 5.35 cm — 6.15 cm. Thus,

X, = 5.35, X, =6.15=>c¢=0.8
and

F=093,F =145 =, = 52.

Hence, the median may be taken to be

X =535+ x 0.8

99-93
52

= 5.35 + 0.00%
= 5.359 cm.

We can also approximate % graphically.
Let us see how.

After drawing the ogive of either type, draw a line parallel to the horizontal axis (i.e.
x-axis) at a height, n/2. The abscissa of the point at which the line intersects the ogive
is X. Note that X is also the abscissa of the point of intersection of the two ogives, see
Fig. 2(a) and (b).
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Fig. 2 : (a) less-than egive, (b) both tle ogives for the data on petiole length.

You may use the same method in deterrﬁining the median for the frequency
distribution of a discrete variable like the one in Table 10 in Unit 1, taking the
artificial class intervals 7.5-12.5, 12.5-17.5, etc. But note that this method can provide
us with only a rough estimate of the median. This is because in this method we only
replace a step diagram by an ogive. '

We have described the methods used to compute the median of

i) raw data on a discrete variable,

ii) data in the form of an ungrouped frequency table, and

iii) data in the form of a grouped frequency table,

On the basis of our discussion, see if you can solve the following exercise.

E4) Obtain the median age of an Indian according to the population census of 1981
on the basis of the frequency table given in E3.

Now we take up the third common measure of central tendency—the mode.



2.3.%3 The Mode Measures of Central Tendency and
Dispersion
{n French la mede nicans the fashior. By the mode of a set of observations, we aiso

mean ke tashionable value, or the value that occurs most frecuently, in the set. We
shall dencte it by x Mode is an especially useful measure of central tendency for data
on pitrely quaiitative characters such as preferences for colours. This is because, in
futa cases, no cther measure would be meaningful.

“ihe cariable is discrete, YOUu inay just draw up a irequency table corresponding to
stk ndividual value and see which, if any, of the values defining ttole classer has the
fiighest frequency. If there is such a value, then it will be the mode x. For examp'e,
-onsider the data on household size for 80 households given in Table 3 of Unit 1.
Phe vilue 5 has the highest irequency. Hence, here the mode is

o

x=5,
tiowcver, you may encounter cases where two or more distinct values ot the variable.
have the same frequency, which is higher than the frequencies for the other values,
in such cases, we shall say that the mode is not uniquely defined.

+iere is an example of a situation where the mode is not uniquely defined.

Euxample 6 ; For the frequency distribution of word length for the 91 wordsin a poem,
as shown in Table 2, you can see that both 4 and 5 have the highest frequency (19).
As such, in this case the mode is not unique.

Table 2 : Frequency table of word length for the 91 words in a poem

Wordlength Frequency
2 13
3 17
4 19
5 19
6 9
7 6
3 4
9 3
10 1
__Total _ 91

* it comes to a grouped frequency distribution, the above approach is
itaporopriate. This is because now the frequencies correspond to certain
class-intervals rather than to single values of the variable. If the classes are of equal
width, we may talk of the modal class as being the class with the highest frequency
(if such a class exists). But since the classes may be of varying width, it is more
appropriate to say that the modal class, if it exists, is the class with the highest
frequency density (or relative frequency density). '

In the case of a continuous variable, we consider the frequency curve which can be
obtained as a limiting form of the histogram by taking finer and finer classes and
increasing the total frequency at the same time. Then the mode is the value (if there

is any), with the highest relative frequency density in the frequency carve (see Fig. 3)..
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Fig. 3 : A frequency curve with its mode, x. 39
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“Empirical = based on practical
experience.,
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S0, to find ihe mode of a continuous variable, we look at its frequency table or
histogram. Asa first approximation, we can take the mid-point of the modal class as

x. If this class has boundaries x, and x,, and x( denotes the first approximation to X,
then

IO &tx,) ..
2
=x, + /2,
where ¢ is the width of the modal class.

But we get a better approximation if we consider the modal class as well as its two
adjacent classes (provided, of course, that the modal class is not a terminal class).
Suppose that these three classes are of the same width. Let us denote by f,, f_ and
f,, respectively, the frequency of the modai class, that of the class immediately
preceding the modal class and that of the class following the modal class. Further,
we assume that

2 . S ¥ N I
X=X, 1 X, ~X = fo—i_: {1

+

This assumption leads to the second approximation, viz.,

;(2) - f"_f
b ST T s
f,—f_
= X -+ H—-;—'f‘: X C. oo (10)

Now, when will these two approximations be equal? On equating (9) and (10) and
simplifying, we get

x® is equal to xV iff f_ = f,.

In the following cxample, we have calculated x® and x® for the data in Table 7 in
Unit 1.

Example 7 : The frequency table for petiole length per leaf for 198 leaves of a pipal
tree has classes of equal width and the class 5.35-6.15 (cm) is the modal class.

Our first approximation to the rode is, then,
X1 = 5.35 + 0.8/2
= 5,75 cm.
In this case, we have
fo =52, f_ =43 and f, = 33,

Thus, the second approximation is

. 52-43
®=535+ 2" v
* ax52—a3-33 < 08

9 Yo
= §.35 4.-—2—8 X (.8

5.35 + 0.257
= 5.607 cm.

Il

Now, here is a re -:ark about the relanonshlp between the three measures that we
have discussed.

Remark 1 : There is an empirical relation connecting the mean, median and mode,
of a distribution, viz., the relation

mean — mode = 3(mean ~ medlan)

or ‘i - x =3x-%) .. (11)

We can also use this in obtaining an approximate value of the mode of a frequency
distribution. From (11), we get the formula for this third approximation as,

(<] . —
x® = 3x-2%.

We are now giving an exercise which will give you some practice in calculating the
mode.

o
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E5) a) Find approximately the mode of the age distribution given in E3 by using Dispersion

Formula (10).

b) Compare the mean, median and mode as obtained by you for this distribution
and state whether the empirical relation (11) is borne out by the distribution.

So far we have acquainted you with three measures of central tendency; the mean,
the median and the mode. In the next sub-section, we shall discuss some algebraic
properties of these measures.

2.3.4 Algebraic Properties of the Measures

The mean, median and mode have certain algebraic properties. We are going to list

and prove some of them here. You should keep these in mind while using any of
these measures.

i) If all the observations on the variable x are equal, say to a, then
X=X =X = 4.

i) Ify = a+bx (b+0), then the mean, median and mode of y are
y=a+bX,y=a+bX,y=a+ bx.

iii) The sum of the deviations of the observations on a variable x from their mean is

zero i.e.,

n

2 (x,—X) = 0. The difference x, — a is called
=1 . the deyiation of x, from a.

iv) Suppose k sets of observations on x are combined, the ith set having m
observations with mean X,. Then the composite (or grand) mean of x is

IVE

n; X
1

|
il

n.

-

i

i
vi Ifz,=x +y,thenz =% +y.
Similarly, if z = x;, — y,, thenZ =X - ¥.

This result can be extended to the case when two Or more variabl;:s are adde ] or
subtracted. So, if

z = a+bx+cy+dz+...+Iw, then Z = a+bx+cy+dz+.....+1w.

Out of these, i) and v) are easy to prove. We are sure you will be able to prove them.
Here, we will prove ii), iii) and iv). '

Proof : ii) We have
¥, = a + bx, for each i, i=1,2,... n.

=“>i)ﬁ
1

n

z(a + bx)

1

na+b ixi
1

=2y = a + bx.

Again, we shall have, for each i,
Y= at bx(i) ifb>0
= a+ bxéi) ifb<0.
“her words, the smallest observation on y corresponds to the smallest observation

“=cond smallest observation on y corresponds to the second smallest on x,
" On the other hand, in case b < 0, the smallest observation on y
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Descriptive Statistics corresponds to the largest observation on x. The second smallest observation on y
corresponds to the second largest on x, and so on.

Now if n = 2m+1, then Ymery = a+bx, ., forall b + 0.
And if n=2m, then

Yomy =@ + bx, Ymeny = @+ x5 if b > 0, and

Yomy = @ + bxj = a + bx(m+l),

Ymeny =@+ bx ) =a+ bx,if b <0.

Hence, in either case, we have y = a + by,

Finally, if x is discrete, so is y and the value with the highest frequency of y must
correspond to the value with the highest frequency of x. If x is continuous, so is y
and the frequency density of any y-value, say g(y), is related to the frequency density
of the corresponding x-value, say f(x), by

y=a) |dy|™
(522
This resuit will be proved in &(y) b dx |
Unit 10. 1 (y_a)
=__f .
/bl "\ b

. . 1 . .
Thus, the frequency density at any value of Y 18 Just — times the frequency density at

the corresponding value of x. Consequeritly, if there js a value X of x with the highest
frequency density, then a+bx must be the value of y with the highest frequency
density.

o o
Hence, y = a + by,
whether the variables are discrete or continuous.

iii) If we have ungrouped- data, then
n n n
Exi=n§:>2xi—n§=0=>2(xi—§)=0.
i 1 1

For grouped data, we similarly have
k

3£ x = ng = ifix,. - iifi =0
1 1

1
k v
= Y f(x, ~ %) =0,
1 |

iv) Let X;; be the jth observation in the ith set (i=1,2,..... kandj=1,2,.... . . ;). Then
the mean of the ith set, X;, is given by




Now we are listing some exercises for you to solve. You can use the five properties
that we have just discussed to solve these.

E6) if two sets of observations are combined, show that the composite mean must
lie between the two set means.

E7) Let y be a monotone function of x, say g(x). Show that
a) y = g(x).
b) Show that ;1 = g()(z) if the variables are discrete.
c) Isy=g(x)?
(Hint : Try with g(x) = x°.)
E8) Prove algebraic properties i) and v).
E9) The mean of a number of temperature readings on the Centigrade (Celsius)

scale is 33.2 degrees. What would be the mean if the readings were taken on
the Fahrenheit scale?

E10) There are four blocks in an urban locality, having 126, 153, 137 and 190
households. If the mean income (in rupees) for a month per household is
2012.35, 1972.45, 2734.56 and 2415.67 for the four blocks, respectively, then
what is the mean household income for the month for the locality as a whole?

So far we have seen how to compute some measures of central tendency and have
also discussed some of their algebraic properties. Now, we should be able to decide
which of these measures should be chosen for the given data. For this, we have to
know the pros and cons of using each of these measures. In the next sub-section,
we’ll talk about just this.

2.3.5 A Comparison of the Measures

Can you think of some conditions which a good measure should satisfy? Here we list
some.

e It should be rigidly defined and easy to interpret.
@ [t should not be too difficult to ‘compute.

& It should also be based on all the observations made. At the same time, it should
not be too highly affected by comparatively few extreme observations (i.e.,
observations that are extremely large or extremely small).

e Later, in this biock, you will see that we use a measure of central tendency in the
computation of various other measures like the standard deviation and the mean
deviation. So it should be possible to subject the measure of central tendency to
further mathematical treatment.

Now let us compare the mean, median and the mode with respect to each of these
criteria ‘ ‘

As you have seen, the mean is rigidly defined, and so is the median, though its
definition may not lead to a unique median. The position of the mode is somewhat
similar to that of the median. .

All these measures are easy to interpret and not too difficult to compute, although,

there is no satisfactory method for the determination of the mode from a frequency
table in the continuous case.

In the computation of each of the measures, all the observations have to be taken
into account. But it is only the mean that directly depends on all the observations: a
change in any one of the observations influences the value of the mean but the median
and mode are not so sensitive.

As regards amenability to algebraic treatment, too, Section 2.3.4 shows that the mean
is the best.

Considering all these facts, we can say that the mean is, generally, the best measure
of central tendency. But here is a warning. If the data have even a few observations
of an extreme type, these may make the mean unrepresentative of the data. In such

Measures of Central Tendency a
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cases, we may have to choose another measure to represent the data. This point will
be clear to you after you have done E11).

E11) In a group of 10 male college students, there is an exceptionally tall boy. The
following figures (arranged in ascending order) indicate their stature in cm.

161.5 161.6 161.9 162.0 162.3 162.3 165.1 165.4 165.6 186.5

Find the mean stature per student of the group and see if it is a representative
value. What is the median? Is that a representative value?

With this, we end our discussion of the measures of central tendency. In the next
section, we’ll talk about the measures of dispersion.

2.4 MEASURES OF DISPERSION

The commonly used measures of dispersion are the range, the mean (or absolute)
deviation and the standard deviation. We start our discussion with the range.

2.4.1 The Range
The range, R, of a variable is the difference between the largest and the smallest
observation,
Thus,

R = Xy = Xy = X{y = X
When the data are in the form of an ungrouped frequency distribution, then we can
calculate R exactly. Here

R =x, —x,.
But when the data are presented in the form of a grouped frequency distribution, we
can compute R only approximately. In this case, we estimate R by,

R =x, - X
where x, is-the upper boundary of the last (kth) class andx,  is the lower boundary
of the first class.
This estimate is usually an overestimate of the true range.
We can verify this by comparing the range of the raw data on petiole length (Table
5, Unit 1) and that of its frequency distribution given in Table 6, Unit 1. We have

Xy = 0.55cm, x,, = 9.35 cm.
Hence the range would be taken as

"R =935 - 0.55 = 8.80 cm.

That it is an overestimate is evident from the raw data which show that X = 9.2cm
and x,; = 0.8 cm. Hence, apart from the unavoidable rounding-off errors, the range
is exactly '

9.2cm=0.8 cm = 8.4 cm.

You have also come across some frequency distributions which have.open-ended end
classes (see the table in E3 and the adjoining remark). In such situations, it is
impossible to find the range. In the following example, we take some sets of data
that you have already encountered and find the respective ranges.

Example 8 : i) For the data on daily milk yield for a dairy farm, we have, with n=10,
Xy = 179.5 litres, x,, = 224.3 litres.
Hence, the range is
R =2243 - 179.5
= 44.8 litres.
i) For the grouped data on household size as shown in Table 3 in Unit 1, we have
R =9 - 1 = 8 exactly.

Now we turn our attention to the mean deviation.
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2.4.2 The Mean Deviation

Suppose A is the chosen average value of x for a given set of observations on the
variable. Then we can take the deviations x,— A (i=1, 2,...... ,1) into consideration in
constructing a measure of dispersion of x. You would agree that the bigger *hese
dcviations are the larger is the dispersion. Would you also agree that the magnitude.
of the deviations, and not their signs, are important? To get rid of the signs, we
consider the absolute values |x,—A| and get a measure of dispersion by taking their
mean, called the mean deviation (or mean absolute deviation) of x about A. Note that
the mean deviation has the same unit in which the original observations are recorded.
If we denote this by MD,, then we have

:1|»—-A

Eix -A|l .. (13)
1

For data on a variable x, given in the form of an ungrouped frequency distribution,
the mean deviation is given exactly by

k

= > flx-Al . (14)

1

=] -

To compute the mean deviation about A for a grouped frequency distribution, we
use the formula

:Hr—t

k
2 .. (15)

The only difference between Formulas (14) and (15) is that in (14), x; denotes the ith
distinct value of the discrete variable and in (15), x; denotes the class- mark of the ith
ciass.

The following remark contains an important result.

Remark 2 : The mean deviation MD,, is least when A is the median of x, We are not
going to prove this here. But if you are interested you can look up the book :
Fundamentals of Statistics, Vol. 1 by Goon, Gupta and Dasgupta. This book is
avzilable in your study centre library.

Tz result stated in Remark 2 perhaps supplies a rationale for taking the median as
the origin while computing the mean deviation of a set of observations.

Now, if the number of observations, n, is odd,
say, n=2m+1, then X =X, .

2m+1

.nMD;, = E(X XG) + E(X(l) X) )
i=m+2 !
= SZ - Sl, .
2m+1
where §; = ZXQ) and Sz = 2"0)
m+2 '

If n = 2m, then x,;) < X < Xy
m 2m
LOMD; = 3 (X = %) + X (% ~ %)
1 m+1
=83 - 8§,

where S} = ZX(I) and S} = 27‘(:)

i=m+1
Thus, we have

nMD, = Sum of observations exceeding the median — Sum of observations
that are less than the median. .. (16)
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Now 1 _
MD, = — % |x—x|f,
n
= % x 117
= 14.63 litres.
46

Using this formula, we can find the mean deviation about the median without
explicitly knowing the value of the median. We now give an example to illustrate the
use of the formula.

Example 9 : Consider the data on the daily yield of milk (in litres) of a dairy farm
given in Example 1. Arranged in ascending order, the values are

179.5, 184.7, 185.4, 194.4, 199.7, 203.5, 207.3, 213.7; 218.2, 224.3, ]
‘The mean deviation about the median (i.e., about any value between 199.7 and

203.5) is given by
5 10
10MD; = 3 x;) - 2%
1 6

1067.0 — 943.7 = 123.3

Hence, »
MD; = 12.3 litres.

Now, for these data, i=2§)1.07 litres. That is, X also lies between 199.7 and 203.5.
Hence, 12.3 litres is also the mean deviation about the mean.

In the next example, we consider data in the form of an ungrouped freqhency table.

Example 10 : Let us calculate MD; for the fre
given in Table 3 in Unit 1. Here, n = 80 and

x=5.

We show the required computations in the following table.

Table 2

X f, Ix ~ x| Ix —xIf,
1 3 4 12
2 7 3 21
3 11 2 2
4 14 1 14
5 19 0 0
6 12 1 12
7 8 2 16
8 4 3 12

9 2 4 8

Total 80 | — 117

Next we take the case of data given in the for

Example 11 : Let us find MD; for the fre
in Table 6 of Unit 1. Here, ¥=5.359 cm,

We first form the following table.

‘Table 3

quency distribution of household size

m of a grouped frequency table.

quency distribution of petiole length given
which lies in the class interval 5.35-6.15.

Class mark x, Frequency f, Ix, = xi f,ix, — x!
0.95 2 ~ 4.409 8.818

" 175 6 - 3.609 21.654
2.55 8 — 2.809 22472
3.35 10 - 2.009 20.090
4.15 24 - 1.209- 29.016
4.95 43 - 0.409 17.587
5.75 52 0.391 20.332
6.55 33 1.191 39.303
7.35 15 1.991 29.865
8.15 4 2.791 11.164
8.95 1 3.591 3.591

g | | _
Total 198 223.892
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Then MD; = —Ef, [x, — X| Dispersion
n
= —(223.89
93 (223.892)
= 1.131.

Try to do these exercises now.

E12) Show that in computing MDi, it is necessary to consider only the positive
deviations (for which x, > X) or only the negative deviations (for which x; < Xx).
Indeed, if the sum of the former is P and that of the latter is Q, show that

nMD, = 2P = -2Q.

E13) For the age distribution of Indians shown in E3, obtain the mean deviation about
median.

In the next sub-section, we’ll introduce standard deviation, which is considered to be
the best measure of dispersion.

2.4.3 Standard Deviation

Consider the deviations of the observations on variable x from a chosen average A.
Instead of taking their absolute values to free them from their signs, we may take
their squares. This leads us to an alternative measure of dispersion. The mean of the
squares of devxatxons is called the mean square deviation about A and may be
denoted by s3. Thus,

1 n
Si=;2(&"A)2
1

The positive square-root of this, denoted by s,, is an alternative measure of
dispersion and is called the root-mean-square deviation of x about A. Thus,

= \/%:E (x,— A)? - (17)

s, has the same units as x.

For grouped data, we take

[k i
SA=\/%12fi(xi-A‘)2 o (18)

We have the following result, in view of which the root-mean-scjuare deviation is
1sually measured about the mean.

"he root-mean-square deviation is least when A = X.
roof : We may, without loss of generality, consider ungrouped data. Then, we have

n
ns; = 3 (x, — A)?
1

Site x, — A = (x, = %) + &~ A),
Wehave(x»—A)2 (x,— X% +2(x - A) (x, - X) + (x — A)?

Ths, E(X - A) = z(xi - x)2 + n(x — A)%.

1

iZ(R—A) (x,-%)

= 2(X-A) Jj(x,-%)
Sire n(X — A)? = 0, we can say that B .
" =0.

S . — A)? and hence s}, is least if and only if

! A=X
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So, in computing the root-mean-square deviation, we usually take deviations about
the mean. The root-mean-square deviation about the mean is called the standard
deviation and is denoted by s. The Square of the standard deviation iy known as the
variance. The unit for standard deviation is the same in which the origina}
observations are recorded, while for variance, it is the square of the sume unit.

1 < =2
Thus, s = \{?_!"1- Z(Kj =Xy (19}

Since (x, — X)° = x! ~ X x, + X2,

we get

n 11l
S0 -0 = 3o T+ ok
. ,

(20)

is another expression for s.
For grouped data, we have the formula

i _
- fiZse e

1< '
or s = J;Ef,.x?—iz- - (22)

Now we'll illustrate the method of finding the standard deviation of the given data
on a continuous variable. We are sure you will have no difficulty in computing the
standard deviation of the data on a discrete variable.

Example 12 : For the grouped data-on petiole length (see Table &, Unit 1), the
computations needed for determining the standard deviation (together with the
mean} may be lfaid out in tabular form. But, in this case, it will be convenient to

subject the variable to a change of base and scale. Let ns takeu = .(i; ;'-95).
Table 4

Class mark u,=ix — 4,95)/0.8 Frequency ‘,
. f £, fu}
0.95 _5 .5 "0 w
.75 4 % Y o
2.55 ! -1 . — ”
335 ! -2 T -~ 20 ®
4.15 -t Y 2 2
4.95 0 " ) o
575 1 s 5 o
o ? 33 66 13
A : 15 ‘ a5 19
8.15 4 4 i 16 5
£.95 5 | 5 | » |
Total — 198 s 'Il590 ]

We have, from this table,
k
> fu =82
=

ifiuf = 690,
|
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,
Hence ns? = Efiuj - —

(82)2
=690 — 2
6 198

690 ~ 33.959¢
656.0404

fi

it

Hence, the variance of y s

2 _ 656.0404
" TT198
But how can we gets? the variance of x, from this? It is related to the variance of u by

s = 3.3133 (cm)?

2 2.2 ) R
§ =0, We'll prove this in the next section.
Here ¢ = .8 Therefore, we have

= 0.64 x 3.3133 = 2.1205 (cm)?,
and the standard deviation is

§ = J2.1205 = 1.456 cm.

From the same table, we get

_ 82
= —= 0414
u 198 0 141 cm,
SO that

X =495+ 08 x 0.4141
=495+ 0.331 = 5.281 cm.

Check if you can find the standard deviation of the data on a discrete variable by
solving this €xercise now, :

El4) Find the standard deviation of the data
a) on the daily output of milk given in Example 1.
b) on the size of households given in Table 3 jp Unit 1.

——— e,

Next, we shall discuss some algebraic properties of the three measures of dispersion
discussed so far.

1) Ifali the observations on the variable x are equal, Sayto a, then R = MD, =s=9,

corresponding quantities for Y. Then

) R, =[b/R_,
i) MD} = |b|MD;,
iit) s, = |b| s, .

F'roof ;i) Range : If p ~ 0, then

Yoy =a + bx“) Yy = a+ bx(n) s
so tha*
Ry =Yy =¥ = b(Xm ~ X)) = bR,
JdEb <0, then

Yoy =a+ bx(n) 'Yy = a + bxm ,
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so that

Ry =Y = Yy = blxg) = %)) = — bR,
Hence, in either case,

Ry = !ble. )

il) Mean deviation : We have already seen (in Section 2.3.4) that under a
transformation of this type,

A’ = a + bA.

Now,y — A" = (a + bx) — (a + bA)
= b(x — A).

Hence

. 1 <
MD]}. = n EIY.' - Al
1

l n
Ib] x HIEIXi — Al

= |b/MDX .

iii) We leave this to you as an exercise (see E15) b).

Remark 3 : Note that a good measure of dispersion should have Property (2). For,
if the observations are all increased or decreased by a constant amount, then the
dispersion remains unchanged, but if they are all increased or decreased in a constant
proportion, then the dispersion too gets increased or decreased in the same
proportion.

3) Suppose several (say k) sets of obsérvations on x are combined, the ith set having
n, observations with mean x; and standard deviation s, (i=1,2,....... ,k). Then the

composite standard deviation, i.e., the standard deviation of the combined data
is s, given by

k K
Sns?+ S % - %
! 1

Sn

1

s2

Proof : Letx..

i be the jth observation in the ith set (i=1,2,... k and i=12,.....,n0).
Then i

n
= 1 2_1 @, -
X =szij’ S T - (5~ X))

i=1 =1

—

~and, as we have seen in Section 2.3.4,

K
n.X.

171

1
k

E"i
1

Now, s? is the variance of the combined set and is, by definition, given by

X =

Butx; —~ X = (x; - %) + (x, - %),

so that (Xij - i)z = (xij - ii)2 + 2(x,—X) (xij -X) + (ii__;)z’

and E‘(xij -x)?= Z(X,'j ~-X%)* + n(X,—X)*, since z(xij -X)=0.
j j i

ﬁisf + nyx; - x)?
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E E(xij ~%)? = Enis? + Eni(ii - %7,
i i i

and the result is established.

Hence,

Remark 4 : This result shows that the standard deviation of the combined set may be
non-zero even when the individual sets have zero standard deviations. If the values
in the ith set are all equal to a, i=1,2,..... k,

k

Enial 2

— 1 5 ‘ . Z!ni (a - a)
and a = , then s° will equal’ :

5 =

This will be non-zero unless ay =a, = ..., =a, .

Try this exercise now.

o E15) Prove a) Property (1) and
- b) Property (2) (iii).

‘The next example shows how these properties are useful in some real-life situations.

Example 13 : For the four blocks in an urban locality, the means and standard
deviations of household income (in rupees) for a certain month are given below
together with the number of households in each block:

Block I 1 I | v
Number of 126 153 137 190
households

Mean Income 2012.35 1972.45 2734.56 2415.47
(in Rs.) :

S.d of income 153.17 189.62 183.47 202.09
(in Rs.)

Let us find the mean and standard deviation for the entire locality.

We have, in the notation used in (3),

3 ini = 606, ini X; = 1388914.97
F and 3 n;s? = 20828581.0
\ Also, x = IEniii/;ni = 2291.94 (rgpees).

We show the necessary comphtations in the table below :

Table 5
X § ngx, ns; %) &%)
2012.35 153.17 253556.70 2956092.2 —279.59 9849491.6
1972.45 189.62 301784.85 5501228.9 ~319.49 5617301.0
2734.56 183.47 374634.72 4611590.0 44262 26840008.0
2415.47 202.09 458939.30 7759669.9 123.53 7759669.9
— — 1388914.97 20828581.0 - 60066470.5

Hence the composite variance is
2o 20828581.0 + 60066470.5

606

133490.18
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and the composite standard deviation is

s = /133490.18 = 365.36 rupees.

See if you can solve these exercises now.

E16) If R and s be the range and the standard deviation for a set of n observations on
a variable x, show that

R2_, Z/Rz
=S5 T —

2n 4
E17) Show that the standard deviation can be expressed in terms of the mutual
differences x;~x; of the observations — more precisely,

1
Szz.z_n_zz

=1 j

n n
(x,—-xj)z.
=1

E18) There are 4 sections, A,B,C and D in Class X of a school, having 48, 41, 52
and 45 students, respectively. {f the mean IQs per student for the sections are
133.2,125.4, 110.5 and 97.8, and the standard deviations of IQ are 3.8,4.7, 5.1
and 5.9, respectively, then find the composite mean and composite standard
deviation of IQ for the class. '

So far, in this section, we have discussed three measures of dispersion. Now let us
compare and contrast these.

2.4.5 A Comparison of the Measures of Dispersion

In Sec. 2.3.5, we discussed the criteria which a measure of central tendency should
fulfil. Now, can you think of some criteria which a good measure of dispersion should
satisfy? Actually all the criteria for a measure of central tendency apply to a measure
of dispersion too. In addition, a measure of dispersion, to be considered satisfactory,
should properly reflect the variability of the observations on the given variable.
Before we go any further, why don’t you go back to Section 2.3.5, and take a quick
look at the criteria listed there?

Now let us compare our three measures of dispersion in the light of these criteria.

o The range and mean deviation are easy ‘7 interpret, while the standard deviation
may seem a little difficult.

» The range is generally easy to determine, while the determination of the mean
deviation and standard deviation is more difficult.

® The range depends only on the two extreme observations and so ignores the
variation of the data lying in between. As such, two or more distributions with
widely different degrees of dispersion may have the same range. The mean and
standard deviation, on the other hand, properly reflect the variation in the data.

® For the same reason, compared to the mean deviation or the standard deviation,
the range is highly affected by the presence of an extreme.y high or extremely low
value. .

® As regards amenability to algebraic treatment, the standard deviation is surely the
best of the three measures.

We now summarise these observations in the following table. We have deliberately
left some gaps and expect you to fill them (see E19).

Table 6 : Comparison of the measures of dispersion

Range Mean Deviation Standard Deviation

Easy to compute — : —

— Properly reflects the variation
in the data —

— — Not unduly affected by the
presence of extremely high or
low values.

Not amenable to algebraic

treatment —_— J—
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E19) Fill in the gaps in Table 6. Dispersion

In the light of these observations, the range appears to be the worst measure. Indeed,
the standard deviation may generally be taken to be the best measure of dispersion,
just as the mean may generally be taken to be the best measure of central tendency.
However, in industrial applications, to check whether a manufacturing process is
under control, we have to compute a measure of dispersion of some important
characteristic of the manufactured product at frequent intervals. Due to the simplicity
of calculation, the range is quite popular in such cases.

In the last two sections, we have discussed the measures of central tendency and
dispersion. In the next section, we’ll see how we can compare two or more data sets.

2.5 COEFFICIENT OF VARIATION

Sometimes we need to compare two or more distributions in respect of dispersion.
Then it becomes necessary to relate a usual measure of dispersion to a measure of
central tendency.

Suppose a height distribution is to be compared with a weight distribution in respect
of dispersion. Since the height data will be in, say, cm, while the weight data will be
in, say, kg, a comparison of the two standard deviations (or even the two mean
deviations or ranges) will not make sense. This is because these measures will have
different units attached to them. To overcome this difficulty, we take

100 S,

- . (23)
X

(where X is assumed to be non-zero) which is free of units, i.e., is only a number.
This measure will be more appropriate for comparisons. The measure (23), that
expresses the standard deviation of x as a percentage of the mean, is called the
coefficient of variation (CV) of x.

Such a measure becomes useful even when several sets of data expressed in the same
units but with widely differen averages are to be compared. For example, consider
the following situation. Suppose Firm I manufactures ball-bearings meant for
hicycles, while Firm II manufactures ball-bearings that are to be used in motor cars.
Naturally, the ball bearings of Firm I have to be much smaller in volume than those

1 Firm II. If we want to know which of the two firms produces ball-bearings with a
lesser variation in size, then a comparison of the two standard deviations will not be
relevant. Since the ball-bearings produced by Firm II are larger, we would be ready

to tolerate higher deviation from the mean size (and hence a higher standard
deviation) than in the case of Firm I. A comparison of the two coefficients of variation
will be much more meaningful. For the same reason, we should use the coefficient
of variation, rather than the standard deviation, when income disparities in, say, a
group of managers are to be compared with those in a group of ¢lerks.

Example 14 : The mean and standard deviation of family income (in US dollars) in
a year are given below for each of the three countries, A, B and C.

l Country A B C :
i[ Mean 18,727 320 339
i Standard deviation 2,432 ! 54 21

We would like to know which of the three countries shows the highest disparity in
family income and which one shows the lowest.

We may compare the standard deviations of B and C, but A surely stands in a
different category, having a mean family income that is vastly higher than those of
B. The comparison should, therefore, be made in terms of the coefficients of
variation rather than the standard deviations. We have

2432 _ 15 999, |

Va = 100X 757 53
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= 4 _ 0
vy =100 X 5 = 16.88%

b = ——21 = 9,
ve =100 X £==619%,

Hence, income disparities are the highest in B and the lowest in C, while A stands
in between B and C.

Wouid you like to try this exercise now?

E20) The following values are for a group of male undergraduates :

Mean height—159.8 cm, Mean weight—50.27 kg.
S.d. of height—11.3 cm, S.d. of weight—4.74 kg.

Is it correct to say that their weights show greater variation than their heights?
Why?

With this, we bring this unit to a close. Here is a brief summary of our discussion.

2.6 SUMMARY

In this unit, we have discussed some features of univariate distributions. In particular,
we have seen that

1)

2)

3)

4)

the observations on a variable show a tendency to cluster around some point or
a small part of the range of variation. This is called the central tendency. An
average is a value which can be taken to be representative of the data. The
variation of the observations from the average is called dispersion.

there are different types of measures of central tendency:

the mean, the median and the mode.

We have seen how to compute these from raw data, grouped or ungrouped
frequency distributions.

We have noted that the mean, median and mode have certain algebraic
properties.

We have also discussed the relative advantages and disadvantages of these
measures.

there are various measures of dispersion :
the range, the mean deviation, the standard deviation.

We have noted the algebraic properties and relative merits and demerits of these
measures. '

coefficient of variation is used to compare dispersions of different data sets.

2.7 SOLUTIONS AND ANSWERS

El)-

E2)

a) Data: 75, 75, 80, 83, 105
X = 80
xéz) = 83

i+1 1.

i 3 k
b) Fi+F;+]=12fj+ Si=f=n
1

o -
= F =n-F,

Similarly, F; + F,_, = n and hence
F,=n-F_,

¢) F,=F =n.

mean score = %3;— = 55.86.....
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e5 of Centrel Tendency and

E3)
L i, LA iy Fg
2.5 12.59 -6 ~75.54 12.59
1.5 14.08 -5 —70.4 L2667
12.5 12 BB -4 —=51.52 30.55
17.5 9.63 -3 —-28.89 49.18
2.3 8.62 = —-17.24 57.8
27.5 7.63 =1 ~ 7.63 65.43
32.5 6.38 0 0 71.81
3.5 5.85 1 5.85 77.66
42.5 5.14 2 10,28 82.8
475 4.40 3 : 13.2 872
525 3.83 4 15.32 91,03 -
57.5 2.47 5 12.35 93.5
67.5 6.49 7 45.43 160
100 —148.79
_ 5w _y4g70
u= Efl_ T T —1.4879
X =5u+4 325
= —7.4395 + 32.5
= 25.06 years,
E4) x, =20, F,=49.18, n = 100, ¢c = 5, fo = B.62.
'.§=x1+(——-———-nf2)fﬁl:’ X c
0
= 20.47 years.

E5) a) x,=5,f,=14.08, f_ = 12.59, f, = 12.88,c = 5.
L f,—f_
. X = x] + W P o
= 7.77 years.
b) Now from E3 and B4, X — X = 17.29 years
and X — X = 4.59 years.
So the empirical relation is not borne out in this case.
E6) Let X, be the mean and n, be the total frequency of the first set.
Let X, be the mean and n, be the total frequency of the second set.

Let x be the composite mean.

I0se X, < X, ¥

e

«dlemost value of x corresponds to the middiemost
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frequency for the corresponding value of y. Hence, the value of y with the
hlghest frequency corresponds to the value of x with the highest frequency,

e,y = g(x).
c) ? # g(x) unless g is a linear function.

E8) i) x,=a Vi
1 n
TR
The median and the mode are, obviously, equal to a.
i) z=x +y,

@‘Z_

i
SR

»M:
N

== (x+y)
2%+

ny

1
n
1
n
X

+y.

Similar proof for the case when z; = x; — y,.

E9) 32 + -95 x 332 = 91.76°

2012.35 X 126 + 1972.45 x 153 + 2734.56 x 137 + 2415.67 x 190

E10) x = 126 + 153 + 137 + 190
1388952.97
= o = Rs. 2292.
606

Ell) X = 165.42 cm. X = 162.3 cm.

165.42 is not a representative value.

162.3 is one.
EI2)P+ Q= E(X - =0=°pP=-Q.

nMD; = P - Q = 2P = -2Q.

E13)
X = 20.48
X, [/ flx, ~ xl
2.5 12.59 ‘ 226.36
7.5 Cqane o . 182.75
125 , 102.78
1175 ' 28.69
25 8.0, ' 17.41
21.5 7.6 53.56
3.5 63 .
375 1
5.85 .
425 s.14 oL
47.5 4.40 %
52.5 3.83 ‘p
57.5 2.47
1675 6.49 .
100
, F:
b o]



E14)

Measures of Central Tendency a;
A=a Dispersi

]
S MD, = %f_}:[xi —al=—-%la-al =0.

Similarly s = 0.

b) v =y = b(x; — X), since y = a+bx.

2 I =2
.a:;;m"w
1 n
2 N =2
=b" =3 (x — %)
1
e 2.2
=b S,
s, = |bls, , since standard deviation is the positive square root of
' variance.
. - 1539.54
o MDx = 2207 - 15,39
b 160
a)
2
| X X ]
218.2 47611.24
199.7 39880.09
207.3 42973.29
185.4 34373.16 X = 201.07
213.7 45667.69
184.7 34114.09
179.5 32220.25
194.4 37791.36
224.3 50310.49
203.5 41412.25
+
406353.9
r s
$2 = = Ex,z - X2
= 40635.391-40429.14 .
= 206.25 '
s = 14.36 litres
b)
X , fx, £x’,
I 3 3 3
2 7 14 28
3 11 33 99
4 14 56 224
5 19 95 475
6 2 1 m 432
7 56 392
8 32 256
9 2 18 162
80 379 2071 —J
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= zfx -
= 25.8875 — 22.4439
=3.44

.s = 1.86

El5)a) x,=a V,.
=>R=x(n)—xm=a—a==0.

. n
1

X 2 X + 2
= | __(*)___"_(ﬂ}+{x(n)_ Q) xgn)]

X
] (0] 2 2
=R
and
n
2
ns® = 2("@) < E(X(,) a)® + z(xm a ,
1 XS _ Xg>a
where a = o * X}
2
Again, ) s
Z(xﬁ) —a)* < n; {xq ~ a}
xpSa
=M
= R
and ) ) .
E(X“) — a)® < ng {X( - a}
x(-)>a
= .13_2. Rz .

Since n, + n, = n, the inequality s* < R%4 follows.

E17) Write x, = (x; - ¥) — (x; — %), so that
(x; X)z—(x — -2k~ D) (- D + (-
. Sum with respect to both i and j and note that

E(x—") z(x—- —OandZ:(x--")2 z(x--')2

' E18) s = 21.3, % = 116.57.

E19) { - :

) Range Mean Deviation * Standard Deviation
Easy te compute More difficult ' More difficult
Does not reflect variation [Properly reflects variation Properly reflects variation
properly
Grea-tly affected by the Not unduly affected Not unduly affected
presence of extreme values
Not amenable to algebraic [Not easily amenable to Is amenable to algebraic
treatment algebraic treatment ] treatment

E20) Yes, since the CVs are 7.07% and 9.43%, respectively.
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UNIT 3 SKEWNESS AND KURTOSIS

Structure

3.1 Introduction
Objectives

3.2 Moments and Quantiles
Moments of a Frequency Distribution
Quantiles of a Frequency Distribution

3.3 Skewness

3.4 Kurtosis

3.5 Summary

3.6 Solutions and Answers

3.1 INTRODUCTION

In Unit 2, we talked about the central tendency and dispersion of frequency
distributions. We have also seen how to compute some measures of central tendency
and dispersion. Now, in this unit, we shall discuss two additional features of
frequency distributions. These are : skewness and Kurtosis. A measure of skewness
would tell us how far the frequency curve of the given frequency distribution deviates
from a symmetric one. On the other hand, a measure of kurtosis gives us some
information about the degree of flatness (or peakedness) of the frequency curve. So,
these two features, along with the two discussed in the previous unit should give us
a good idea about the given frequency distribution.

The measures of skewness and kurtosis that we are going to discuss here, make use
of moments and quantiles. So, we shall first introduce these in Section 3.2.

While studying this unit, you will need to look back at the tables of data given in
Unit 1. You will also need your calculator. Check all the calculations in the solved
examples, so that you don’t have any difficulty in solving the exercises later.

With this unit, we end our discussion of the descriptive measures of univariate data.
in the next unit, Unit 4, we’ll talk about bivariate data, i.e., data concerning two
variables.

Objectives .

After reading this unit, you should be able to : :

® calculate the moments and the quantiles of a given frequency distribution,
® compute some measures of skewness and kurtosis,

® discuss the relative advantages and disadvantages of these measures.

3.2 MOMENTS AND QUANTILES

As we have mentioned in the Introduction, using moments and quantiles, we can
define some measures of skewness and kurtosis. So we can say. that moments and
quantiles give us some information about the nature of a given frequency distribution.
You will see that the mean of a frequency distribution can also be considered ‘as its
moment, whereas the median can be considered as its quantile. Now let’s study these
one by one.

3.2.1 Moments of a Frequency Distribution

If you have studied a little physics, you would have come across the word, “moment”’.
Moment, in physics, measures the tendency of a force to produce rotation. If there

¢
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are n forces, {;, f;, .........., I acting at distances X, X3, .......... , X, from the origin,
then the moment of the total force is

n
2 £x;
i=1

f

1

(n

M-

i=1

Now isn’t this a familiar expression? If in (1), we take f; to be the frequency of x;,
i=1,2,...... , n, then (1) also gives us the mean of the 'distribution of x-values. It is
because of this similarity, that the term, ‘““‘moment’’ has found its way into Statistics.
Now lef’s try to understand this term in the context of Statistics.

You know that the mean and the variance of data on a variable x are given by

|
1l
=T
'M”

k
..1._<
fixi = h—- Elfl (Xi - 0)‘ and
1 i=

s

S2=

=R

K
Efi (x; — X)°, respectively.
i=1

Now, taking a cue from this, if A is any number, we define the rth moment of x about
A to be the mean of the rth power of the deviations of x from A. We denote this by
m|(A), or simply m/, if there is no confusion about the origin chosen. Thus,

k
m{(A) = Z3f, (x, — A )
i=1

n
For raw data, we can write m/(A) = -};E(xi —A)-
1

If. we take A = X, then we get what are called the central moments. The rth central
moment is denoted by m,. Thus ’

1 k .
m, = Ezfi (x; — %) )
i=1

n
For raw data, m_ = %E(Xi -X)r-
: 1

We are sure you would agree with. the following :

my =my = 1 ' .. @
m;(0) = X . v (8)
m; =0 ... (6)
m; = §° . (D

(5) and (7) say that the mean of a variable is its nrst moment about zero, while the
variance is its second central moment. Recall that we have already established (6) in
Section 2.3.4.

Now let us try to establish a connection between central moments and moments about
any value A\ For simplicity we consider raw data only. '
For every i. we have ,
X —X=(-A) - (x~-A)
1
= (x5~ A) ~ =3, (= A)
= (x; — A) — mj



Therefore, using binomial theorem, we get Skewness and Kortosis

r

(x, = X = (x ~ Ay ~ ( ' ‘) (v =AY mi + (5 ) (x, — A)~2 (m))?

e, + (=1 (ril )  — A) )™ + (~1) (:)(m{)'.

If we sum both sides over all i, i=1,2,....... ,n, and divide the result by n, we get
’ r ! ’ r \ t !
mrzmr~(1)mr_1m1+(2)m,_2(m1)2— ............ +

1yl ro INT 1\ r r

(L) ) i+ -1 () mp - ®
Now let us take r = [. In this case, (8) becomes

’ 1 ’
m,=m1—(l)m1=0,

We have already stated this in (6). Now, if we put r = 2 in (8), we get

mi = (])mp?+ (3) iy

It

m,

This gives us
’ m; = mj — (m{)’ - (9)

Putting r = 3 in (8) gives us

m; = mj — 3mj mj + 2(m})* .. (10)
Check that if you put r=4 in (8), you get

m; = mj — 4mj mj + 6mj (m])> — 3(m})* .. (11)
Further, we have X = A + m] ' - (12)

We can use these relationships between the central moments and the moments about
any A, for simplifying the calculations involved in the computation of central

. .. We choose A to be a value near
moments. Here is an example to show how this is done.

the centre of the range of values
of x.

Example 1 : Let’s evaluate the mean and central moments of the milk yield data (in )
litres) of a dairy farm first used in Example 1 in Unit 2. Let us take A = 200 litres

and first obtain the moments about A. The values of u = x—A and of the squares,

cubes and fourth powers of u are shown in the table below. The last column is taken

to serve as a check on the calculations, as you will see later.

u, u? ul v (u+1)*
18.2 331.24 6028.568 109719.94 135895.45
-0.3 0.09 -0.027 0.01 0.24
7.3 53.29 4 389.017 2839.82 4745.83
~14.6 213.16 -3112.136 45437.19 34210.20
13.7 187.69 2571.353 35227.54 46694.89
-15.3 234,09 —3581.577 54798.13 41816.16
-20.5 420.25 -8615.125 176610.06 144590.06 .
~5.6 31.36 -175.616 983.45 447.75
24.3 590.49 14348.907 348678.44 409715.21
35 12.25 42.875 150.06 410.06
Total 10.7 2073.91 7896.239 77444464 ' 818525.85

The last row of the table shows that

n=10,

iui =107
1
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n

S ui=2073.91
S, ui = 7896.239

S ut = 774444.64.
1 .

Now to check these calculations, we make use of the last column. We have

S (u, + 1)* = 818525.85
1

But i(ui + )¢ also equals i“? +4 iuf + 6 iu? +4 i“i +n
1 1 N N <

= 774444.64 + 31584.96 + 12443.46 + 42.8 + 10
= 818525.86 .

n .
Since we get the same value for 2 (y, + 1)* by these two different methods, we can
1

be sure that the computations are correct.

Now
my = 1—?0:/— = 1.07,
m; = 207.391,
m; = 789.624,
m, = 77444.46.
Hence

X =200 + mj = 201.07 litres, (from (12))-

m, = mj — (m})’ (from (9))-
= 207.391 — 1.145 = 206.246 (litre)?,

m; = mj — 3mjm; + 2(mj)*  (from (10))
= 789.624 — 3 x 221.908 + 2 X 1.225
= 792.074 — 665.724 = 726.35 (litre)’s

and m, = mj — 4mjm] + 6mj(m})? — 3(m})* (from (11))

= 77444.46 — 4 X 844.90 + 6 x 237.44 — 3 x 1.31
= 78869.10 — 3383.53 = 75485.6 (litre)"s.

Try to do this exercise now. The result in this exercise also helps to simplify the
computation of central moments,

El1) Suppose the data are subjected to a change of both origin and scale, d.e., let

n
If v, == 3\t show that
1

X=a+cv,m=c[v = ()]

ms = v — 3upv] + 2(10)°], my = v ~ i + 6us(v))® ~ 3(v))*]

Notice how we have used this result in simplifying the computation of the mean and
central moments in our next example.

Example 2 : For the frequency table of petiole length of leaves of a pipal tree, let us
takeu = (x — 4.95)/0.8. The table below shows the steps to be followed in obtaining

Ay



vi, v3, v3 and v4. Here, again, we take the last column to provide a check on the

computations.

Y fu, ’ fl“? fa“us fi“? fn(“fH)‘

-5 -10 50 —-250 1250 512

—4 -24 96 —-384 1536 486

-3 -24 72 ~216 648 128

-2 ~20 40 —~80 160 10

-1 ~24 24 -24 24 0

0 0 N 0 0 43

1 52 52 52 52 832

2 66 132 264 528 2673

3 45 135 405 1251 3840

4 16 64 256 1024 2500

5 5 25 125 625 129

82 690 ‘ 148 7062 12320

k
We have 3 f, (u; + 1)* = 12320
1

k k k k :
andalso 3 fuf +4 3 ful + 6 Dfui+ 43 fu +n
1 1 1 1

= 7062 + 592 + 4140 + 328 + 198
= 12320.

Hence, we are sure that the column totals are free of errors.

We now have
v; = 82/198 = 0.41414

v; = 690/198 = 3.4848,
v = 148/198 = 0.74747
v; = 7062198 = 35.667.
The mean and central moments of petiole length are
X =495+ 0.8 x 0.41414 = 5.2813 cm,
m; = (0.8)* [3.4848 — (0.41414)%]
0.64 x 3.3133 = 1.7892 (cm)?

m3 = (0.8)° [0.74747 — 3 x 3.4848 x 0.41414 + 2 x (0.41414)7]
= 0.512 x (~3.44006) = ~ 1.7613 (cm)®, ‘
m, = (0.8)" [35.667 — 4 x 0.74747 x 0.41414 + 6 X 3.4848 X

(0.41414)* - 3 x (0.41414)%]
= 0.4096 x 37.927 = 15.535 (cm)*.

We may also encounter an exactly opposite situation, that is, given the mean and
central moments of a variable x, we may like to express the moments about some
other origin, say A, in terms of these quantities. So, we would like to6 have some
formulas which express each m, in terms of the central moments. We believe you are

now in a position to derive the required formulas.

E2) Provethatm, = m_+ (;)m,_l d+ (;)m,_z d +

r r—2 r T
R +(r__2)m2d +(r)d,
whered = x — A,

Hint : Use the fact, x, — A = (x;=X) +.(x~A) .

Skewness and Kurto
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E3) InSections 2.3.4 and 2.4.4, you have scen formulas for the composite mean and
composite variance in terms of the group means and group variances, when
several groups of data on 4 vuriable are taken together. Obtain simidar formulas
for the composite third and fourth central moments, using E 2.

Let us now turn our attention to quantiles.

3.2.2 Quantiles of a Frequency Distribution

Remember how we define median of a given set of data? It is a value x, such that at
most half of the observations are below x, and at most half are above x. Now, instead
of half, if we take a proportion p, 0 << p < 1, then we get a p-quantile.

Thus, by the p-quantile (or p-fractile, or quantile of order p,) of a variable x, we mean
a value, say 7, of the variable such that at most a proportion p of the observations .
is below z_ and at most a proportion (1—p) is above z,. S0, the median is the quantile

?
of order —é— Withp = % %—and % we have the three quartiles z,,, z,, and z,,
(which are also denoted by q, g and ¢3). Takingp = 0.1,0.2, ...... . 0.9, we get the

nine deciles and with p = 0.01, 0.02, ...... , 0.99, we get the ninety-nine percentiles.

Like the median, the p-quantilc for a set of observations, may not be unique. Now
let’s see how to compute this p-quantile. When a frequency table for a continuous
variable is given, we first decide which of the class-intervals contains z,. 1€ x, and x,,
are its lower and upper boundaries and F, and F the corresponding cumulative
frequencies. then the p-quantile z, may be determined approximately by using the
formula '

N . mw o F

X X Fu - F[

p— F X ¢ . (13)
f
where c is the width of the interval and f,, is its frequency. In (13), if we putp = % .

or, Z, =X +

we get the formula for the median. Now let's use Formula (13) to compute the
quartiles in an example.

Example 3 : For the frequency distribution of petiole length of 198 leaves of a pipal
tree, the median (i.e., the second guartile) was evaluated in Example 5 of Unit 2.
We’ll now find the first and third quartiles.

N o495 3n

1 49.5 and 1 148.5. .

On going through the cumulative frequency table (Table 8, Unit 1), we find that q,
lies in the interval 3.75 — 4.55 (cm) and g5 in the interval 6.15-6.,95 (cm). So, after

putting the appropriate values from Tablg 7 and 8 of Unit 1 in (13), we get

Here

495 - 26

q = 3,75 +'—24—'—-— x (1.8
= 4,533 cm.
qs = 6.15 +ﬂ§:._5,;._:_1_4§_ x 0.8
33
= 6.158 cm.

See if you can solve this exercise now.

E4) Find the thiee quartiles for the age-distribution of the Indian population
according to the 1981 census {given in Unit 2). Check that g, — q; < @3 — Qa.

If we are given the first few moments or a small set of quantiles of a frequency
distribution. we can get a fairly good idea about the distribution. In fact, for most
purposes, it will be enough to state the values of X, m,, m; and my or those of the
three guartiles (or of the nine deciles).



We'll come back to this later. Now we introduce a very useful concept, that of
weighted mean.

Weighted Mean

Consider this situation. Students are admitted to a B.Sc. course in Statistics on the
basis of their performance in the Higher Secondary, or an equivalent examination.
Then don't you think that their scores on the mathematics papers should be
considered more important than those on the physics papers? Similarly, shouldn’t the
scores on language papers be considered least important? It is necessary in such a
situation to take into account the relative importance (or weight) of the different
observations while evaluating the mean.

Suppose w, = 0 is the weight attached to the value x; (i.c., to the value of x for the
ith individual). Then the appropriate mean would be

X, = ——— .. (15)

The measure is called a weighted mean of x. This concept is particularly useful in
economic studies—in the construction of a price index number. This will become
clear from the next example.

Example 4 : The price increases from 1985 to 1989 for five food items have been (in
percentage terms) as follows:

132.1 153.4 1443 119.7 120.1

If the figures given below indicate the relative importance of these items in a typical
citizen’s diet,

34 19 24 12 11,

then the average price increase for these items should be taken to be

L 134 % 1321 4 19 X 1534 + ... + 11 x 120.1)

Y = _-
* =100
= -1—3%3—7 = 136.27 per cent.

Qbserve that the formula

k
Efixi
1

that we used to compute the mean of x from grouped data is nothing but the weighted
mean of x|, ....... , X, the respective frequencies now serving as;the weights.

X =

S

Try this exercise now.

ES) A student gets 85, 76 and 82 marks in the three tests for the course MTE-11.
She gets 79 marks in the final examination. What are her average marks if the
weightage given to the tests and the final examination are 10, 10, 10 and 70,
respectively? ‘

In the next two sections, we’ll see how moments and quantiles lead to measures of
skewness and kurtosis of a frequency distribution.

3.3 SKEWNESS

In Unit 1, you saw that frequency distributions may be classified as symmetrical and
skewed (or asymmetrical). Skewed distributions can again be classified as positively
skewed or negatively skewed, according as the longer tail of the distribution is
towards the higher or the lower values of the variable (see Fig. 1).

Skewness and Kurtosis
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Fig. 1 : (i) Symmetrical (ii) positively skewed and (iii) negatively skewed distributions.

Now, the degree of skewness is the extent to which the given distribution departs

from symmetry. A good measure of the degree of skewness has to fulfil the following
criteria:

i) It should be a pure number, i.e., should be free of the units in which the variable
is measured.

ii) It should be zero, positive and negative for a symmetrical distribution, a
positively skew distribution and a negatively skew distribution, respectively.

iii) It should vary between two definite limits, say, —k and +k, as the nature of a '
distribution changes from extreme negative asymmetry to extreme positive
asymmetry. Here are some commonly used measures (assuming s >0) :

As usual,

% Jdenotes the, mean, 3(xX — X

x denotes the median, Skz = “(——S“‘—)‘ y

x denotes the mode.

q;. the i™ quartile, - _

m;. the third moment. Sk; = (a4 D) — (g - (h)
about X and s, the standard @G -q) +(q—q)
deviation, :

=M
and Sk4 = F
Sk, may not be defined, since the mode may not be defined. To get over this
difficulty, we use the empmcal relation X—x = 3(x — X)to get the measure Sk,. Sk,
and Skj; too, may not be unique since the median and the first and third quartiles may
' 2

M
not be unique. The square of Sk, Ski = i is called Pearson’s coefficient and is
denoted by b. - M;

- All the four measures above are free of‘ units. Secondly, for a symmetrical (unimodal)
distribution,

mean = median — mode
and g3 —q:=¢q —q.
Further, for most of the distributions which we see in practice, we have the followmg
two observations:
1) For a positively skew distribution,

mean > median > mode,
o ‘ and g3~ Q2> — qr-

2) For a negatively skew distribution,
mean < median < mode,

66 . and q; - q; < q; — q, . See Fig. 2(a) and (b).
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For a symmetrical distribution, m; (or for that matter, any odd-order central
moment) is zero. my > 0 for a positively skew distribution, and m; <0 fora
negatively skew distribution. Hence, all the four measures meet the second criterion.
As to the third criterion, we have the foliowing results :
i) For any distribution with s>0,
-3<8k, < +3.
ii) For any distribution,
- 1=<8k; < + 1.
Thus, Sk, and Sk; meet the third criterion. Since we have the empirical relation.
mean — mode = 3(mean ~ median) ,
we can say that Sk, too, roughly meets this criterion. However, Sk, = /b, may take
any value between — @ and + % and hence, is inferior to the other measures.
Let’s now calculate these four measures for the data on petiole length.

Example 5 : For the frequency distribution of petiole length, we have '
X = 5281 cm, X (=q;) = 5.359 cm, % = 5.607 cm.
Also, for this distribution, the first and thifd quartiles are
q; =5.093cm, g3 = 6.235cm ,
while the standard deviation and third central moment are
s = 1.456 cm, m3 = ~ 1,761 (cm)® .

Hence,
_ (5.281 — 5.607) _
Sk = 14 = 0.224
_3X(5.281 —5359)
Sk, = 1% = — 0.461 ,
Sk, = (6.235 — 5.359) — (5.359 — 4.533)
S 6.235 — 4.553
_ —0.05 _ _
=TT = 0.029, and
Sk, = -1.761 _ ~1.761 = — 0.905.

T (1.4567  T1.945

All these values indicate that the distribution is only slightly asymmetric, and that it
is a case of negative asymmetry. This is also apparent from the histogram of the
distribution (see Fig. 4 in Unit 1. :

Now here is an exercise for you.

E6) Show that, for a distribution symmetrical about a, the mean as well as the
median is a and the central moments are all equal to zero.

Hint : You may take the values of x to be, sayax hj,at h,, ........ »,ath,
(h; = 0 for each i) with frequencies f, for a — h;, and also for a + h;.

Skewness and Kurtosi:

67
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meso means moderate, lepto
means thin and platy mean flat.
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Now that we have seen how to measure the skewness of a frequency distribution, let
us talk about its kurtosis.

3.4 KURTOSIS

We now focus.attention on another feature of a frequency distribution that
determines the shape of the distribution. It is the degree of steepness or pointedness
of distribution—or, to use a Greek work, the kurtosis of the distribution. Some
distributions are flat-topped; some are highly peaked; most distributions will be in
between these two extreme types, not too peaked and not too flat-topped either.

In Fig. 3, we have the frequency curves of a distribution that is highly peaked, one
that is of moderate kurtosis and a third one which is rather flat-topped.

Y
(@

JEA\

—» Frequency

@)

3X

Fig. 3 : Three symmetrical distributions with same mean and s.d. but of varying kurtosis.

It has been observed that for two distributions having the same dispersion and the
same degree of skewness, the e with higher kurtosis, usually has higher fourth
powers of deviations from the mean and hence a higher value of m,. This observation
is used to define a measure of kurtosis (under the assumption that s > 0) as follows :

b, = mys? ' L (19)

The division by s* makes the measure free of units. It also ensures that the measure
takes into account that part of the peakedness of the distribution which is
independent of (or is in addition to) the part that is due to the variance.

For a normal distribution (about which you will learn in Block 3), b, = 3. This value
is taken as a standard against which the kurtosis of other distributions is judged. Any
distribution with b, = 3 is called mesokurtic (i.e., of moderate kutosis): one with

b2> 3is said to be leptokurtic, while one with b, < 3 is said to be platikurtic. Thus, in
Fig. 3, (i) is lepokurtic, (ii) is mesokurtic, while (iii) is platykurtic.

For any univariate distribution with s > 0, we have
b, = 1.

Let’s prove this.

-Proof : Letu, = Q(l-?—)- for cach i.
n 1 n -
Then lzui = ;;(xi ~-x)=0




1 n Skewness and Kurtosis

=--Xns

=1n.

Also, we must have

S (u? ~ 1) = 0, since the L.H.S. is a sum of squares.
1

n n .
This means, zuf -2 Eu? +n=0.
1 |

or %xnm4—2n4+n>0,
or n{b, — 1) =0.
Since n > 0, this implies that b, — 1 = 0, so that the result is established.

Note that we have b, = 1iff (b, — 1) = 0.
n

So we can also say that b, = 1 iff E(u? -1 =0,ie.,
1

iff u? = 1 for each i,
i.e., iff x, = x % s for each i.
Thus, the coefficient of kurtosis b, = 1, iff the variable x can assume just two values

with equal frequencies (so that the mean may be cxactly midway between the two
values).

Now let’s calculate the coefficient of kurtosis-for our favourite distribution.

Example 6 : For the frequency distribution of petiole length, we have, from Example 2,
m, = 1.7892 (cm)?, my = 15.535 (cm)*.

Hence, the kurtosis coefficient b, for this distribution is given by
b, = 15.535/(1.7892)°
= 4.853.

So, we find that this distribution is slightly leptokurtic.
Try to do this exercise now.

E7) Comment on the skewness and kurtosis of the -age-distribution of the Indian
population (1981 census) given in E3) in Unit 2, by evaluating appropriate
coefficients and also by considering the histogram of the distribution.

Let us now summarise the points covered in this unit.

3.5 SUMMARY

In this unit, you have seen

1) what is meant by moments and quantiles of different orders about A:

=

k
m’ = Efi (x; — A)' for data in the form of a frequency distribution
i=1

, 1 n ]
and m, = = 1E(xi — A)" for raw data.

np — F
ZP:XI+_p__'_.xc
fO



Descriptive Statistics 2) how central moments; i.e., moments about x are related to moments about any A: -
m, = m — ( : ) m!_, mj + (;) m;_, (m)? — ... + -1y r’) (mj)"
3) when weighting of the observations would be appropriate for the computation
of mean,
4) what is meant by skewness and kurtosis :
skewness is the departure from Symmetry and kurtosis gives the degree of flatness
of a frequency distribution.
5) how to compute measures of skewness and kurtosis of a frequency distribution :
Measures of Skewness :
Sk1=(x—x)’ Sk2=3(x—x),‘
s s
(9~ q) — (q, - q) m, .
Sk; = ’ Sks = =+ provided s # 0 -
) @, ) TP
Measure of kurtosis :
m
b2 = S-: ’ (S # O) .
3.6 SOLUTIONS AND ANSWERS -
1 n
E1) v = S,
1
1y (-4
“n E c
= _
= a2 —A)
1
=&~ A)
c
X=A + cvj
2 _ (1 ?
Vo — v = -—Eui - (qu')
2
—Ap-[L -
= =30 -A) [cn S x A)]
171
=[5 3E-ar-a- AY]
-1 [ 23 7|
1
= = m;
Similarly, solve for mj and m,.
E2) X—A=(X-X)+(X-A)
= (x; — X) +d, say
Sl A== () -0 (2)&-»—e
r - [ F r,
+ o +(r_1)(xi x)d +('r)d
On summing over i and dividing the result by n, we get
T r T ~2 (1)
m,,-=mr+'(l)mr-ld+(2)mf—2d2+ ......... +(r_2)m2d +(r)d
70 where d = x—-A,

e
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3)

E4)

£6)

I < —
mjz = ‘HE(X;—X)3'

Suppose therce are k sets of data, each having n; observations and mean SEJ,
=1, 2., k. '
Then

| &
mg=gz[2(xi~§j+ij—§)3]

[E(Xa - %)+ 32(xi - %)X - X) +
35,0,-%) G- %+ 3& -]

|
t
=a
-

1 — - — —
=E2nj{m3j+3m2i(xj—x)+ (x).—x)3}y
j
since E(xi - X)) =
Similarly,

I - . — —2 = =
my = H}" n, { my; + 4my, (Ej. = X) +6my (X, — X)° + (x; — x)* } .
i
q, = 9.41 years, q; = 20.48 years, g3 = 37.73 years.

100X 85 + 10 X 76 + 10 x 82 + 70 X 79

Wei fcd mean =
gh 100
= 79.6
The first moment about a is
k k

m]'z%[z{(a+hi)—a}fi‘*z{(a—hi)*a}fi}

1 1

:%[i(hi-—hiﬂ)fi]=0-

!
= X=a+mj=a.

If a is not a possible value of x, then the total frequency of values less than a
equals the total frequency of values exceeding a. Hence a is the median. Ifais

a possible value (occurring with frequency f;, say), then also, total frequency
below a equals total frequency above a, hence a is again the median.

The moments about 27.5 (years) are

mj = — 0.488 X §

mj = —14.4954 x 5%,

m} = 19.0042 x 5%,

m} = 464.9984 x 5*. ,

Hence X = 25.06, m, = 14.2573 x 5%, my = 39.9931 x 5%, m, = 522.6385 x §*
= /b, = 0.743, b, = 2.571.

The distribution is moderately skew and platykurtic.

This is also indicated by the histogram.

Skewness and Kurtosis
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UNIT 4 CORRELATION AND
REGRESSION

Structure
4.1 Introduction
Objectives

4.2 Tabular and Diagrammatic Representation of Bivariate Data
4.3 What Do We Mean by Regression Analysis?

4.4 Simple Regression Line

4.5 Correlation Coefficient :

4.6 Relationship between Regression and Correlation Coefficients
4.7 Limitations of Correlation Coefficient

4.8 Summary

4.9 Solutions and Answers

4.1 INTRODUCTION

Suppose you are given the data on the scores obtained by 30 students in English.
From the three units that you have studied so far, you know how to form the
frequency distribution of the data. You have also seen how to compute the average
score and the standard deviation. Now suppose the scores obtained by these students
in Mathematics are also given o you. Apart from finding the average score in
Mathematics, you may also like to know whether there is any relationship between
a student’s score in English and his/her score in Mathematics. It is quite reasonable
to think that a student good at English would also be good at Mathematics. But is
this fact borne out by the data? In this unit, we are going to discuss some methods
which will enable us to answer this question.

We’ll start by discussing the tabular and diagrammatic representation of bivariate .
data, i.e., of data pertaining to two variables. After this, we’ll talk about the nature
and the degree of relationship between the observations on two variables. We would
also like to see if we can build up an equation on the basis of the given data, which
can help us in predicting one of the variables when the other is given.

Here are the objectives which you should achieve by the end of this unit.

Objectives

After reading this unit, you should be able to :

® draw a scatter diagram corresponding to the given bivariate frequency distribution
® explain the meaning of “correlation” a;ld “regression”

® fit a regression line to the given data

® compute the correlation coefficient for grouped and ungrouped data

® derive some relationship between the correlation and regression coefficient.

4.2 TABULAR AND DIAGRAMMATIC
REPRESENTATION OF BIVARIATE DATA

In this section, we’ll briefly discuss how to organise bivariate data. Since we have
already discussed the organisation of univariate data in detail (in Unit 1), here we’ll
only indicate in what way the organisation of h-ariate data is different from that of
univariate data.

When the number of individuals is not too large, we can present the bivariate data
simply in.the form of a table with two columns. The vaiues of the two variables, say

x and y, for each individual are written down side by side. We may also add a third
column, before the other two, to indicate which pair of values relate to which
individual. For example, we give the data on the height and yield of dry bark for 18
cinchona plants in this manner in Tabie 1.




Table 1 : Data on the height and yield of dry bark for 18 cinchona plants Correlation and Regression
Plant No. Height of dry bark Yield of dry bark
(inches) (ounces)
1 8 19
2 15 51
" 3 1 30
»' 4 21 42
5 7 25
‘ 6 5 18
: 7 10 44
8 13 56
9 12 38
10 13 32
11 5 - 25
12 8 10
13 4 20
14 B 27
15 7 13
: 16 12 49
17 6 27
18 16 55

Source : Fundamentals of Statistics by Goon, Gupta and Dasgupta.

However, as in the univariate case, when the number of individuals is large, the data
needs to be grouped into a frequency table. Now in the present case, the frequency
table has to be a two-way table, with a suitable number of classes for x and a suitable
number of classes for y. In Table 2, you can see that

We decide upon these “suitable™
numbers after bearing in mind all
the points listed in Sec. 1.3.

¢ we have divided the number of grains per earhead into 10 classes, 8-12, 13-17, ..... ,
53-57.

® we have divided the length of earhead into 9 classes, 5.25-6.25, 6.25-7.25, .....
13.25-14.25.

If there are | classes for x and k classes for y, the table will have ki cells in all. So in
Table 2 we have 90 cells.

After specifying the classes we determine the cell frequencies and write them as in
Table 2.

Table 2 : Bivariate frequency table for length of earhead and number of grains per
ear for 400 ears of a variety of wheat.

Length (in cm)
Number | 525 | 625 | 7.25 | 825 | 9.25 | 10.25 | 11.25 | 12.25 | 13.2
. of - - I - - - -

} grains 625 | 725 {825 , 925 | 1025 | 11.25 | 12.25 | 13.25 | 14.25
8-12 1 . 1
13-17 3 10 4 17
18-22 4 10 9 2 : 25
23.27 4 41 35 6 86
28-32 1 15 65 37 6 1 125
33-37 9 15 13 21 2 7
38-42 6 17 23 6 3 55
43-47 ‘ | 2 4 3 9
852 f 1 1 2 4
5357 ‘. 1 1 1
Total 4 14 19 74 | 123 92 55 13 | 6 400 !

Source : Statistical Methods for Agricultural Research Workers, by Panse and Sukhatme.

Table 2 shows a bivariate frequency distribution or a Joint frequency distribution (say,
of x and y). But the row totals or the column totals themselves represent a univariate
frequency distribution. If the columns are for x-classes and the rows for y-classes, then

DI ® the column totals give simply the frequency distribution of x. Thus, in Table 2, the
last row gives the frequency distribution of the data on len gth of earhead, divided
into the classes, 5.25-6.25, 6.25-7.25, ..... , 13.25-14.25.

® the row totals give simply the frequency distribution of y. Again, in Table 2, the
last row gives the frequency distribution of the data on number of grains per
earhead, divided into the classes, 8-12, 13-17, ..... , 53-57. 7
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These are called the marginal frequency distribution of x and the marginal frequency
distribution of y.

But each column or each row of frequencies in the two way table also represents a
frequency distribution. Here, in any column, the x value is either fixed or confined
to a given interval, but y is allowed to vary. The column of frequencies indicates how
the column total (i.e., the frequency for the given x-class) is distributed over the
different y-classes. We call this the conditional (or array) frequency distribution of y,
given x. Similarly, each row of frequencies shows the conditional frequency
distribution of x, given y.

We could also represent the joint frequency distribution in terms of relative
frequencies (obtained by dividing each cell frequency by the total frequency) or
cumulative frequencies or cumulative relative frequencies. The cumulative
frequencies of the less than type or those of the more than type will be obtained by
taking cumulative totals of the frequencies. But here each such total is a double sum.

Thus, if f;; is the frequency for the (i,j)th cell, i.e., the cell formed by the ith class of
y and. the jth class of x, then the cumulative frequency of the less than type for the
(i,j)th cell will be

=3 3y (=12, kj=12,..... )

i'si j'sj

and the cumulative frequency of the more-than type for the (i, j)th cell will be

2 S, Gy (=12, k;j=1,2,.j ..... b,

'zl j'Zj

Let us now look at the ways in which a bivariate distribution can be rcpresented
diagrammatically.
Diagrammatic Representation

Like a univariate frequency distribution, a bivariate frequency distribution too may be
represented diagrammatically.

- If raw data are to be represented, then we make use of what is called a scatter diagram

{or dot diagram). Here, the n pairs of values, say (x;, y;) for i=1, 2, ..., n, of the
variables x and y are plotted as points w.r.t. a rectangular system of coordinates. In
Fig. 1, we have the scatter diagram for the data in Table 1.

60
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o
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]
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'
T I T ) 1 T
4 3 12 16 20

Height
Fig. 1 : Scatter diagram for the data in Table I.

When the data are in grouped form, we use a three-diinensional analogne of a
histogram (in case both the vanables are continuous) or a three-dimensional analogue
of a column diagram or a frequency polygon (in case the variables are both discrete).
It the first case we take two mutually perpendicular axes of coordinates on a plane,
one for x and the other for y. Then we can show the class-intervals on each axis. This
gives us a netwnrk of rectangles, each corresponding to a cell of the frequency-table.
Next, we take an axis perpendicular to the xy-plane to represent frequency density.
Finally, on each rectangle as base, we erect a block, i.e., a parallelopiped (see Fig. 2).
The height of this box is equal to the frequency density.
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The three-dimensional analogues of a frequency polygon as well as a histogram are »

called stereograms.

In this unit, we’ll be using scatter diagrams to represent bivariate da:a. So, before
going any further, see if you can draw a scatter diagram on the basis of given data.

El) Draw a scatter diagram on the basis of the following data on the size of crop
and percentage of wormy fruits during a season for 12 apple trees.

Tree No. Size of crop Percentage of
(i.e., number of apples wormy fruits
in hundreds)

1 8 59
2 6 58
3 11 56
4 22 53
5 14 50
6 17 . 45
7 18 43
8 24 42
9 19 39
10 23 - 38
11 26 30
12 40 22

Source : Statistical Methods, by Snedecor and Cochran

Now, on the basis of such bivariate data, let us see if we can establish a relationship
between the two variables under study.

4.3 WHAT DO WE MEAN BY REGRESSION ANALYSIS?

Consider the following situations :

i) The advertising manager of a firm collects data about the money spent on
advertising and the sales in each year during 1980-90.

ii) A doctor collects data about the exter* of cellular damage induced by exposure
to differing intensities of radiatior.

iii) A social worker collects data about the number of children, the ages of parents
at the time of marriage and their educational status.

In each of these cases, data are collected to explore the possible relationship between
the variables. The advertising manager wants to know whether there is any
relationship between the money spent on advertising and the sale figures. He would
also like to know what the relationship is, for it will help him decide how much more
money he should spend to reach a particular target of sales.

Similarly, the doctor is concerned about ihe extent of damage caused by exposure to
radiation, and would want to have a clear idea before prescribing the dose.

The social worker wants to know what kind of relationship, if any, exists between
the number of children born to a couple, and the ages of the parents at the time of
their marriage and also their educational status.

Under regression analysis, we deal with statistical mehods which help us in
formulating models which describe relationships among variables. These models are-
eventually used for prediction. The term simple regression is used when we are
exploring the relationship between two variables (as in the first two situations above).
When we are predicting one variable on the basis of information on more than one
‘predictor’ variables (as in the third situation), we use the term, multiple regression.

In this course, we’ll only talk about simple regression.

Now suppose we have bivariate data and want to investigate the relationship between
the two variables. The first step is to draw a scatter diagram. By looking at it, we can
get some idea about the relationship. Here are some scatter diagrams pertaining to
different sets of data (Fig. 4(a) - (f)). We’ll now briefly explain how to interpret these
scatter diagrams. ,
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Fig. 4

iwya), (b) and (c), you can see that all the points are quite close to a straight line
path. in (a) and (b), this straight line has positive slope, while the one in (c) has
negative slope. We say that the data in (a) and (b) show a positive linear relationship.
Of course, the points in (b) are more scattered than those in (a). The scatter diagram
in (c) exhibits a negative linear relationship. From (d) and (e), we can say that the
data indicate curvilinear relationships. But, from the scatter diagram in (f), we cannot
think of any relationship existing between the variables in the data.

For bivariate data, we know that the conditional distribution of y given x indicates
how the frequency for a given x is distributed over different classes of y. Now, if the
onditional distribution of y given x does not change sighificantly for different values
»f X, then we can say that there is no relationship between y and x. And, in this case,
‘he x-values are useless for predicting y. One way to see if there is some kind of
-elavionship between y and x is to consider the average value of y given the values of
«. In other words, we consider the conditional average of y given x. If we plot the
<cnditional average of y given x, against x, we get a curve which is called the
egression curve of y on x. In general, this curve could be quite complicated. So, our
first reaction would be to explore the possibility of approximating it by a simple curve
iike a straight line. 1

Chere is yet another motivation for using the regression curve as defined above.
ecall that in Unit 2, we have seen that

n
E (x; - A)?is least when A = X.

i=1

So,

Sl—

n
E (x;~ A)?is least when A =X. ()
l B

Now, let us again refer to the data on length of earhead (x) and number of grains
per ear (y) given in Table 2. Suppose we are interested in predicting the number of
grains per ear on the basis of ear length. Suppose further, that the loss we suffer due

to wrong prediction is proportional to the squared error, where error is the difference
between observed and predicted values. Then our average loss will be minimum, if
the average squared error is minimum. Using (1), we can say that the average squared
error will be least if we take the mean numbeér of grains per ear for any specific length

Read the adjoining paragraph
slowly and carefully to
understand the argument.



Descriptive Statistics

78

of the ear, as onr predicted value. We can read out this predicted value from the
regression curve. :

The term ‘regression’ was first used by Sir Francis Galton in 1877, in & ynnection with
his study of human height. He found that the height of the children of tali parents
tended to regress (or move back) towards the average height of the population.
Galton called the line describing this relationship, a ‘line of regression’, and the
terminology has since been accepted universally.

In the next section, we’ll see how to fit a regression line to given data.

4.4 SIMPLE REGRESSION LINE

In this section, we describe a method of fitting a straight line equation to the given
bivariate data. This method will lead to the actual regression line if the regression is,
indeed, linear. Otherwise, it leads to the best linear approximation to the true
regression curve.

Now, in the light of what we have said towards the end of the last section, we try to
fit such a line that the average squared error is minimum. This indicates that the
straight line be fitted by the method of least squares. That is, we choose the constants
a and b in the regression equation y = a + bx in such a way that

2 (y; - a - bx,)* is a minimum.
Let ¢; = observed value of y - predicted value of y (corresponding to x;).
=y;—-(a+ bx), i=1,2, ... , .
e, is actually the error of prediction for the pair (x;, y;).

For obtaining a and b, we minimise 2 ¢2. Recall (MTE-07, Unit 8) that a necessary
condition for minimum is that the first partial denvatlvcs should vanish. Thus,
equating to zero the partial derivatives of 2 e; w.r.t. a and b, we get

-23 ¢=0and-2 S ex; = 0.
=>2e,-=z(yi~a—bxi)=0 . - (2)
and 2 ex; = 2 x; (y;—a-bx;) = 0. | ..(3)
If, by 3 and It; we denote the solutions of Equations (2) and (3), we get
Eyi—né\—gzx; = 0, from (2).

L y-A-bx=0,
or Q;—ng} .. (4)
Similarly, from (3), we get

zx,y,—anx—bEX = 0.,
Substituting the value of 4 from (4), we get
| 2xiyi—('§—8§)n§—{;2xf=0.
ﬁg[zx‘f—niz]=zxiyi—n§.§ .
or, b3 (x-x1= 3 (x-%) (%,~7) . (5)
We have already proved the equality cf E x} - nX % and 2 (x, - x)? in Unit 2. On
exactly similar lines, you can show the equivalence of 2 (x, - X) (y;~-y) and

E Xy, - n.X y. We leave this as an exercise to you (see E2). (5) gives us,

b 2E-D0-Y | Sy 6
S (x-%)? s ‘
where S, = 2 (x,—%) (y,~y) and $2 = 2 (x, - %)%

;
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E2) Prove that 2 x-X)(y,~-y) = z Xy, -nxy
1

To see that the solutions (4) and (6), indeed, minimise 2 e?, we proceed as below :

We have
g =Yy, —a-bx
= (=) ~b(x-%) + F - a-bD)
Therefore, ,
e =(-y + b (x-%)*+ (F-a-bx-2(y,-y) b (x,-%) +
2(y,~ ¥} (7~ 2~ b¥) - 2b(x,~X) (7 - a - bX) (D)
Now, when we sum overi=1,2,..... , 0, the last two terms on the right hand side in

{7) vanish, since 2 (y,-y) = 0and 2 (x,-x)=0
1 1

Hence we get.

el 3 (P 0 S (-R S, Goa bR -2 S, (5,-3) (-
1 1 i 1 1

et us write 2 (y; - ¥)* as SZ.
Then
Have you noted that the
2

N B
2 f‘? =n (y —a- bi)z + S? + bzsi - 2bsxy cxpressicns of §ni and —5# are
1 similar to the variances of y and x?

2 2
=15 (-a-bx)? + (b’ST-2bS,_ + %%‘)+5§— S?zz , provided S_ # 0.

=n(y-a-bx)>+ (bS - %x )+ (S3- %) ’---(8)

‘The last term in (8) does not depend on a and b. You would agree that the first two
terms will have the smallest value (zero) if we set

b= %} =6anda=§—b§=é.

X
This shows that the solutions (4) and (6) do minimise 2 el

So, for the given data, we have to first calculate X, v, S2 and S,y- Then we get the
values of a and b and hence, fix the regression line : y = a + bx. Here, x is called
the predictor variable while y is said to be the predictant. The constant a is the
y-intercept of the line and represents the predicted value of y when x = 0. The Sometimes x is also called the
constant b, which is the slope of the fitted ling, is the rate of increase of the predicted independent variable ot v e
value of y per unit increase in the value of x. It is called the regression coefficient of dependent variable. -
y on x and is also denoted by b,,. In Galton’s example, b,, was negative. This led to
the regression phenomenon. .
n n ( X. 2
Now, we know that Si = E(Xi -X)? = Ex? - —E—n—l)——
1 1

(E yi)z
1

1 n

, and

Further, in E2) you have proved that

252

Sxy‘_"‘sl_:(xi-i) (yi‘y)z :Exiyi"—“;"—‘

bt
kY
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Putting these expressions for Si and S, in the formula for by, , we get

ixiyi - (ixi) (2 y))/n
1 1 1

n

ZXf - (Eﬂ x)*/n
1

1

or,

n Exiyi - (E X;) (2 Y)
b, = — ! ! . 9)

n znxz "(i x)?
1 1

Suppose we look upon x as the dspendent variable. Then to predict the values of x
from the values of y, we use the regression equation,

x=a +by,

S
where b’ = -S_%l S, #0),
and a’ =X - by

b’, the regression coefficient of x on y is denoted by b,,, and we have

n 3y~ Gx) Sy
1 1 1

by, = ... (10)

n ;Y? - (IEYi)z

Using Formulas (9) and (10), you can caiculate b, and b, from raw data. But

sometimes you may need to calculate b,,orb from grouped data. We now give the

formulas which you can use in such cases.

Let us first fix a notation. We write

f, = Zfij (i=1,2, ...... , k), and

2 G=1,2, ..., ).

Now the formulas for the regression coefficients of grouped data are ,

PDTACEES (yf,- -
" i Ef:o (X
2 zf‘l lyJ (Efl()x) (EfO)y))/n
— ! J
Efmxi - (zfmxi) /n

: . (1)

and,

2 E i ’y) (Efloxx) (E y]-)/n
b,, = -
26 - (Ef(}jyj) /n
j j

(12)

Now let us use Formula (9) to fit a regression line to the raw data in the next example

T

L o g



Example 1 : Look at the data given the following table, where x is the independent
variable and y is the dependent one.

x | L]t 2030 4 4afs]| 6] 6]7

Y 2.1 251 3.1 30 | 38 32| 43 39 | 44|48

Now, to find the values of aand b in the equation of the line of regression,
y=ax + b,

we form the following table.

% k2 X XY,
1 2.1 1 2.1
1 2.5 1 2.5
2 3.1 4 6.2
3 3.0 9 9.0
4 3.8 16 15.8
4 3.2 16 12.8
5 43 25 21.5
6 39 36 23.4
6 4.4 36 26.4
7 4.8 49 33.6
39 35.1 193 152.7 §

Here, we have Exiyi = 152.7, Exi =39
Sy =351, 3% = 193 and n = 10.

Putting these values in (9), we get
10 x 152.7 - 39 x 35.1

b =
¥ 10 x 193 - (39)?
= ().387.
. - _ 39 -
irurther, X = S 39andy = 3.51.
Therefore, a =y — bX = 3.51 - (0.387) 3.9
= 2.60 .

Hence, the regression line is y =2 + 0.387x.

In Fig. S, you can see the scatter diagram and the regression line for these data.

O]
—
N g
“H
-
o
-
-
»

Fig. 5 : Regression line for the data in Example 1

Correlation and Regression
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e

If you have followed the discussion in this section, you should be able to do this
exercise.

E3) A preparation of insulin was being studied to determine its effect on reducing
the blood-sugar level in rats. Seven rats were injected with different dosages.
Reductions in their blood-sugar levels are :

Dosage .20 25 .25 .30 40 .50 .50

Reduction in blood sugar] 30 26 40 35 54 56 65

a) Identify the dependent and independent variables.
b) Plot the scatter diagram.

c¢) Find the equation to the regression line and plot it on the same graph as b).

As usual, you can expect a suitable change of origin and scale to simplify your
calculations. In fact, if ‘

iz

x—A -1

u = and v = , then
c d
§=B+dV,§=A+cﬁandbyx=%bw-

Use this result while solving this exercise now.

E4) Find the regression line, y = a + bx, corresponding to the following data :

=

X 170 147 166 125 182 [ 133 146 | 125 136 . 179 .
y 698 518 725 485 745 538 485 625 47 798

So far you have seen how to find the line of regression to fit the given data. Using
this line, we can then predict the value of the dependent variable for given values of
the independent variable. For example, the regression line for the data in Example 1
is given by y = 2 + 0.387x. We could use this to predict the value of y, when x is,
say, 3.2. Thus, we can expect that '

=2+ 0.387 x 3.2 = 3.24.

But we should also know how good our estimate is. A measure of ‘goodness’ of our
prediction is given by the correlation coefficient and this is what we are going to study
in the next section.

4.5. CORRELATION COEFFICIENT

In the previous section, we saw how to fit aregressionlineof yonx,y = a + bx to
bivariate data. Recall that we have obtained the ‘“estimates” of a and b as
A A A S '

a=y—-bx, b=
. SX A
We had also seen that with these values of aand b, we get the least squared error.

Let us define
) A A A . .
e, =y, —a—-bxfori=1,2,..... \ I

. Now; if you go back to (8), you will see that

n 2
§e§ =87 - 2% , since the first two terms on the right hand side of (8)
i=1 x )

. A A
vanish foraand b .

. S
Letus write r = —2 - Then

SXSy
—Sg"l- =r1 S, and we have
X
n

;e?-_-si 1-r) - . (13)




The left hand side of (13) is non-negative. This implies that 1—r° should also be ‘Correlation and Regre
non-negative. Thus,

0<r’<1.

n
Now, ifr* = 1, Zéf will be zero. This means the prediction error is zero if r*=1.
1

n
On the other hand, if r’ is close to zero, 2612 will be close to Si. Thus, we can take
1
r* (or,r) to be a measure of the “‘goodness’ of the fitted regression line in explaining
the true regression of y on x. In fact, r measures the strength of the linear relationship

. Sy . : . .
between y and x. The quantity r = - is called the correlation coefficient between

S
X andy. S Y
) SZ SZ
We have noted earlier that sf = F" and s? = Tll are the variances of x and y,

S
respectively. We call Sey = —l’;! » the covariance between x and y (Cov(x,y)). Thus, we
can define the correlation coefficient between x and y as
Cov (x,y)

r= .
v Var(x) . Var(y)
Since 0 <1’ < 1, it follows that -1 <r < 1.

The correlation coefficient, r and the regression coefficient of y on x (or, of x on y),

byx (bxy) have the same sign; that of Sxy. So, if an increase in x is associated with an
increase in y, we would have a positive covariance and consequently, a positive
correlation coefficient. On the other hand, if an increase in x is associated with a
decrease in y, the sign of the correlation coefficient would be negative.

A A A .
Now,y, = a+ bx, + €, i=1,2, ... , M.

Let us find the variance of y. For this, we first write

Yi—y= G(x,- -X) + 'éi, sincelé =y - B%.
3 n —2 Sz n -2 n ‘\Z A n — A
Now,Sy=2(yi—y) = E(Xi—x) +Zei+2b2(xi—-x)ei.
1 1 1 1

2 .
=6 2+ 82 (1-n? + 26 Sx-%8& by3)

But 3\ (x, ~ M8, = 35, ~5) (x - B b 3 (- %2
1 1

1
. 2
= s,, - bs?
= 0. .
Therefore, 7 = & Sz +S) (1-17)

2
. A

§’;2y— + 82 (1-r), since b = <>

X

[72]

i

S

il

2 g2 2 2 . S
°S; + S) (1-1)? since r = XY

y y S«Sy
r’s; + s (1-1%) | . (14)

Il

Thus, si

We see here that sj , the variance of y is the sum of two parts. The first term on the
right hand side of (14) is the variance of 4 + bx; , which is the part of y explained by
the linear association of y and x. The second term is the variance of the residuals €,

This shows that r2 can be interpreted as the proportion of variability in y, which is
explained by its linear association with x.

_ SX)’
Now, r = S

7y



Descriptive Statistics An alternative expression is

Sxy = Gx) S ya/n
T i i
r =
IS -Gt [Sy - Sy
We get these expressions by i i i : .
e carher 10 et Formuas n 35y - Gw) Gy
(9) and (10). _ ; : :
JeZ@ -G a3y - Gy
i i . i i

Formula (15) is very useful if we want to compute the correlation coefficient from
raw data. Now let us derive a for-nula for the correlation coefficient for grouped datz

(15)

If x, is the class-mark of the ith class of x, and y;is that of the jth class of y, then we have

Var(x) = %Zfiﬂ (x, - %

Recall th 1 1
el ths = 2 {3hox - 3 Sy
fy= X, i i
i
and. 1 9
4 V = — f Pl
o=, ar(y) = — ,E 5 =9

-HSuv- 2 Swy]

and COV(X,y) = % 2 Zfij (Xi - }) (Y, - y)
i

= %{ .2 ,_qu‘xiyj "?11'( izf“’x*) (,.zfo"Yj)}

Now we are going to introduce some notation which will help us in the calculations

later. '
Let X, = 36 %
i
and Y = Efij Y
’ i
So that Exi = 2 Efijxi = EX. Ef., = Efioxi )
i j i i j . i -

2Yi= 2
i i

and 3%y = %Y= 3, D%y,
f i i :
So, the formula for the correlation coefficient becomes

SxY, - (%) S Y/
\/izfmx? - (jzkxj)z/n '\/jzfojy? - (iEYi)z/n




n inYi - (Exj) (EY;) Correlation and Regres
i i i

= \/n iEinXf - (JZXJ.)Z ‘/n jzfojy’? = (iZYi)z

We’ll use this formula to calculate the correlation coefficient in Example 3. But, first
we give an example about ungrouped data.

Example 2 : Consider the data of Table 1. Let us denote by x, the height (in inches)
and by y, the yield of dry bark (in ounces) per cinchona plant. It would be interesting
to know how closely the two are related. The scatter diagram (Fig. 1) indicates
moderate positive correlation. To obtain the correlation coefficient, we do the
preliminary computations in the table below.

X % x; vi ) XY
8 19 64 361 152
15 51 s 2601 765
11 30 121 900 330
21 ) 441 1764 882
7 25 49 625 175
5 18 25 324 %
10 44 100 1936 440
13 56 169 3136 728
12 38 144 1444 456
13 E7) 169 1024 416
5 25 25 625 125
6 10 36 100 60
4 20 16 400 80
8 27 64 729 216
7 13 49 169 91
12 49 144 2401 588
6 27 36 729 162
16 55 256 3025 880
179 581 2133 22293 6636

Since

n ixf - (i x)°
1 1

= 18 x 2133 — (179)*
= 38394 — 32041 = 6353,

n Eylz - (2 yi)z

1 1
=18 % 22293 — (581)?
401274 — 337561 = 63713

I

and

n zxiyi - % S
1 1 1

= 18 X 6636 — 179 x 581
= 119448 — 103999 = 15449,
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The correlation coefficient between height and yield of dry bark per plant is
15449 15449

I, = = :
Y /6353 x 63713  20119!

Now we take an example of grouped data. To simplify the calculations here, we shall
make use of our usual technique: change of origin and scale. So let’s first outline the
technique here.

= 0.768

Ifu = a + bx (b#0), v = ¢ + dy (d # 0), and the correlation coefficient of x and y is

defined and is r,, then the correlation coefficient of u and v is also defined and is

Cn, =R, .. (16)
according as b and d have the same signs or have opposite signs, We are leaving the -
proof of this statement to you as an exercise. See ES). T solve it, you will have to
show that :

2= b2, st = dzsi and Cov(u,v) = bd Cov(x,y).

Let’s look at an example now.

Example 3 : Consider the grouped data of Table 2. Let us find 1., where x is the
length (in cm) and y is the number of grains per earhead of wheat. To compute this
coefficient, let us make a change of base and scale for each variable. Precisely, let

u=(x - x)b,v=(y - yod, | N
where xg = 9.75,b = 1 (class-width for any x class), yo = 30 and d = 5 (class-width
for any y class). The computations needed to obtain r, are shown below (taking x;

to be the class-mark of the ith x-class and y; to be that of the jth y-class, u; and v,
being defined by (17)).

a3zl -1 b o ) 2] 3] ] {ty|[W| UUn|
Y)

-4 [ I 1] -4| 16 | -4| 16!
-3 30 10| 4 - | - 17 | -s1] 153 |-50} 150
-2 -1 alwof 9| 2|- 25 {-s0| 100 [-~41] 82
-1 - 4}l 4 |35 6} =1~ 86 | —86| 86 [—43| 43
0 15 165 {37} 6| 1 125 ol o3| o
1 - 9 |15 |30 | 21 2 | - |77 17y 17| 69 69
2 -1 6l | 23] 6| 3 |55]10] 220] 93]186
3 -l 2 43| -9 | s}
4 b1 b1t 2 4] 16| 64 13] 52
5 : - =] v} 2| s| 25| 4| 2
f, 4| 14 19| 74 {123 |92 ! ss | 13 | 6 la00| 44| 82| 95|67
f,u, 16 |-42 }-38 |-74 | 0 |92 [110 | 39 |24 | 95

fu? 64 | 126 | 76 | 74 | 0 |92 |220 117 | 96 |865

v, 13 |-38 [-36 |-50 |12 | 64 | 83 | 27 |19 | 44

WV, s2 14 | 72| 50 | o |64 {166 | 81 | 76 |675

i) i

Recall that U; = zf.-u. and V, = 3 f; v,
2 .
Now, 03 fgul= (zuj) = 400 x 865 — (95)
i i

= 346000 — 9025 = 336975.

400 x 822 — (44)’

n jzfojv? - (zVi)z

It

328800 — 1936 = 326864



andn Sy, V; - (EUj) (Ev) = 400 X 675 — 95 x 44

i

= 270000 — 4180 = 265820

Hence,

265820
J336975 x 326864

265820
- 331881

Since b and d are both of the same sign, the correlation coefficient between x and y,
has also the value 0.801.

w

0.801.

Xy'

Try to do the following exercises now. By doing them, you will gain a better
understanding of the concepts covered in this section.

E5) Ifu=a+bx(b#0),v=c+ dy(d # 0) and if the correlation coefficient of

x and y exists and is equal to r_ , then the correlation coefficient of u and v

. .o xy !
also exists and is given by +

TWw=%1,,

according as b and d have the same signs or have opposite signs.

E6) The correlation coefficient between x and y is —0.73. What is then the
correlation coefficient between

a) x+Sandy —4?
b) 2x —1 and -3y + §?
¢) 3 - 2xand4 + 3y?

E7) What is the correlation coefficient between x and y in case n = 2 and the two
pairs of values of x and y are

a) (7.3, 4.5) and (10.4, 6.7)?
b) (4.7,9.2) and (5.0, 6.1)?
¢) (9.4,7.0) and (10.5, 7.0)?

E8) For n observations on x, the unweighted mean is X while x, is the weighted
mean, defined by

n n
X, = Ewixi / zwi-
i 1

Show that X,;Z X according as r,, = 0.
Hint : Find the expression for X, — X .

E9) Find the correlation coefficient between the size of crop and the percentage of
wormy fruits per apple tree for the data of E1).

In the next section, we’ll talk about some algebraic relationships mvolvmg r,b,,
and b,

4.6 RELATIONSHIP BETWEEN REGRESSION AND
CORRELATION COEFFICIENTS

Let us first establish a connection between the regression coefficients and the
correlation coefficient for given data on two variables x and y.

The regression coefficient of y on x is

Suy

by‘zgz—

Correlation and Regressic
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Similarly, b,, = 35 -
y

Therefore, b, - b_ = —,-ér =r
xy yx Sx Y
So, we getir| = /b, - b .. (18)

Note that b,  and b,, have the same sign. The correlation coefficient has the same
sign as that of b, and b,, .

o
ko rnd

Now, suppose the regression line of y on x is
y=10 - 2x
and that of x on y is

x=5—%y-

Then by (18), we get || = 1.

Further, since in this case b,, and b, are negative, r = —1. In fact, you might have
noticed that, in this case, the two 1egression lines are identical. However, in general,
the two regression lines could be quite different.

The correlation coefficient has an interesting géometric interpretation.
The regression line of x on y is given by

X—X=b,(y-y)

=19 (y —
3, 6G-9.
The regression line of y on x is given by

y-y=b,(x-X%)
=L:';X(x_i)’

where ¢? = Var(x), 0'3 = Var(y) and r is the correlation coefficient. If m; and m, are
the respective slopes of these two lines, then

m; = 9y and m; = r_ql
Ioy, Oy
You can check that these lines intersect in (X, ¥). If we denote by 0 the smaller
angle between these lines, then

m — m
1+ mm,

_0,0,(1-10) ? |
- riﬁx+?y5, .. (19

From (19), we can see that the two lines are identical (.., 0 =0)iff r* =1, or

r = *1. We can also infer that the only way the correlation coefficient can be zero
is that the two regression lines are perpendicular to each other; one being parallel to
the x-axis and the other paralle] to the y-axis.

tan0 =

n ~
We have already seen that r* = 1 implies that 2 e? =0.

i=1
This, in turn, implies that each € =0.So, if r = % 1, then all the pairs of
observations (x;, y;) lie on the regression line and, in such a case, y Is determined by
x through a mathematical relation of a straight line. Further, the value of ris + 1
if y is an increasing function of x, and it is —1, if y is a decreasing function of x.

We shall now introduce a new concept, that of product moments.




Product Moinenis
Recall that for univariate distributions, we have defined the rth moment about a to be

m;('a) = % E(xi ~ a)f .

i=1

Extending this definition, we say that the product moment of order (r,s) of bivariate
data about (a, b) is

mis = % Z(Xi — a)" (y; — b)*, for ungrouped data,
1 r
=4 2 2 f;(x, — a) (y; = b)* for grouped data.
i

Ifa =Xxandb =y, we get the central product moment of order (r, s), which we
denote by m,,. :

Note that
m), = .11; 2 (x; — a)" for ungrouped data
i

= %. me (x; — a)" for grouped data,
i

where fo= Efii S i=12,....... , k, are the marginal frequencies for x.

Similarly, we can get expressions for m,,.

Thus, forr = 1, m/, and m,, ignore y, and so we can say that they describe the
marginal distribution of x alone. In the same way, fors = 1, m;, and my, describe the
marginal distribution of y alone. In other words, the moments which characterise the
joint distribution are m,, and m,,, for r=1 and s=1.

r

The simplest central product moment,
my; = %E(Xi = X)(y, - y) for ungrouped data

1
== 2 Zfﬁ (xi = X) (y; — ¥) for grouped data.
i

¥ou must have found this expression familiar. We have been calling it the covariance
of x and y, Cov (x, y). |

Now we can write

r= Cov(x,z) - ﬂand
S S S8y
b = Cov (x,y) =%,_.

k4 sx ' sx

So far, we have seen that if the scatter diagram indicates a linear relationship, then
we can find the equation of the regression line and use it to predict the values of one
variable when those of the other are given. The correlation coefficient tells us how
precise our estimate is. But if the data do not have linear relationship, then the

correlation coefficient does not serve any purpose. We shall talk about the limitations
of the correlation coefficient in the next section.

4.7 LIMITATIONS OF THE CORRELATION
COEFFICIENT ‘

The correlation coefficient is a measure of the relationship between two variables,

say, x and y. While it generally serves as a useful statistical tool, we should also be
aware of its limitations.

Correlation and Regres
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Firstly, the coetficient 18 a nieasuie vk seatisucal relationship, and not of causal
relationship, between the two variables. This means that the value of r tells us
whether, and with what regularity, y iricreases ot decreases as X increases. But it
cannot tell us whether that increase ot decrease is due to any causal (or cause-effect)
relationship between the two variables. Age of husband and age of wife for a group
of couples are found to be highly correlated. But to say that one of the variabies is
the cause of the other would be preposterous. Indeed, quite often, the high
correlation between two variables is because of a third variable—a ‘lurking factor’,

simultaneously.inﬂuencing the two.

A strong correlation may often be found between two time series (i.e., series of
values of two variables corresponding to, say, points or periods of time) with no
conceivable causal nexus. You will find that the correlation coefficient between the
population of India and production of coal in India for the census years is very high.
You will aiso find a high correlation coefficient between school enrolment and
number of cars on the roads in the country. But this high correlation is entirely
fortuitous and is due to the fact that in each case the two series are showing an

increasing or decreasing trend. This type of correlation is often referred to as
nonsense (Or spurious) correlation.

Secondly, the correlation coefficient is a measure of linear statistical relationship

only, and may fail to be a proper index of statistical relationship in case it is °
non-linear.

For example, consider the following five pairs of observations.
y 4 \ 1 \ 0 1 4

\x —2\—1\0 1 2

You can check that here the correlation coefficient between x and y is zero. Yet, you
can see that y; = x for all i=1, 2, ....... , 5. Thus, even though y and x are related

by a mathematical relationship, y = x2, the correlation coefficient is zero. This is
because the relationship between 'y and x is not linear.

You should also note that a spurious correlation may be generated through the

combining of non-homogeneous sets of data, i.e., sets having different means for each
of the variables.

You may think of three groups of higher secondary science students: the first group

is from colleges that only admit highly meritorious students, the second from colleges
of the middle order where admission is less restrictive and the third from colleges
where admission restrictions are virtually absent. When taken separately, each group
will show a zero or near-zero correlation coefficient between score in the science
subjects(x) and score in the langnages(y). Butin case the groups are combined, you
will find. a rather high (positive) correlation coefficient between X and y. This arises
simply because the means of x for the three groups say, X;, X and X3, are unequal

and also the means of y, say, ¥1,¥2 and'ys. The situation is indicated in a somewhat
extreme form in Fig, 6. ; :

e

-

Score in languages (%)

00095
NP
9..® Group 1

T T T ¥ 1 1] Ty

» Score in Science (%) ) ' X

Fig. 6 : Scatter diagram for score in science and score in the languages for HS science students belonging
to three distinct Erollns.

o
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In the following exercise, we ask you to prove the same result algebraicaity.

E10) Let x; and y, (i=1, 2, ........ . k) be the means of x and y for k groups of
individuals, the ith group having n, individuals. Suppose I,y» and hence
Cov(x,y), is 0-for each group. Show that for the composite group, Cov(.. v)
and hence 1, will be non-zero, unless X; = X, = ........ =x.andy; =V, =

_ Xy’

We have seen that the correlation coefficient can be effective only whea there is a
linear relationship between the variables. In case of a non-linear relationship, we
have to think of some other measure. In such cases, we try to fit a polynomial of
degree p > 1 to the data. The measure of the “goodness of fit” is then pro=ided by
the correlation ratio. But we are not going to discuss non-linear regression heie, as
it is outside the purview of this course.

Now ler us summarise what we have done in this unit.

4.8 SUMMARY

In this unit we have seen

1) how to organise bivariate data.

We have seen how to tabulate and diagrammatically represent such data. ia
particular, we have scen that scatter diagrams are useful to judge what kind o1
relationship (if any) exists between the two variables.

2) that, in regression analysis, we try to find a mathematical model to describe the
relationship between two variables.

3) how the method of least squares is used to find the equation of the regression line
y - _); = byx (x - ;) ’ .
where b, is the regression coefficient of y on x, defined by
Syy iz(xi - X) -y
= -—-i- = —
S E(Xi - x)?
i

4) how to fit a regression line to given data and use it for prediction.

b

5) that the correlation coefficient

= S‘y

S, S, o

r

measures the strength of the linear relationship between x and y. We have aidso
seen how to geometrically interpret the correlation coefficient.

6) how the regression and correlation coefficients are related -
Irl = Vb, - b, '

We have also defined product moments :

, 1
m, =4 2 3 £(x; — a)" ;- by,
i

my =2 3 305 - B 0 )
Qo

7) that the correlation coefficient suffers from certain limitations :

® Sometimes spurious correlation is found to exist between unrelated variables.
® The correlation coefficient measures only linear relationships.

Correlation wag i.» ¢ -
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4.9 SOLUTIONS AND ANSWERS

El)

30
204

107

8]
]

e
10 200

i=]

= 2"131 =nXxy.
E3) a) The dosage : independent
Reduction in blood sugar : dependent.

b)

T L3 T X A S
1 2 3 4 5
c) .

X % xi )

2 30 04 6.

25 26 0625 6.5

25 40 0625 10

3 '35 0 10.5

4 54 16 216

5 56 25 28.0

5 65 25 2.5

2.4 306 0.9150 115.1

b = 1015.0) = (2.4) (306)
w = 70913 = (2.4)
N3
~ 0.645

= 110.54_




E4)

ES)

E6)
E7)

- 24
x= = =034

7
R (1
y=—=—=4371
! T
a=y-—bx=613

*. The regression line is :

y = 6.13 + 110.54 x.

Let A = 150, B = 600,

_x—150 v_y-—600

{ ? 1
Y \/ uy, u),
20 9% 1960 400
-3 - 82 245 9
16 125 2000 256
-25 —115 2875 625
12 145 4640 1024
-17 - 62 1054 289
-4 -115 460 16
-25 25 ~ 625 625
~14 ~129 1806 196
2 198 5742 841
9 88 20158 4281
b o 200788
w T 42729
= 4.7
b},x = 4.7
¥ =600 + ¥ = 608.8
X =150 + u = 150.9
a=—100.43
line : y = — 100.43 + 4.7x
d b.
byx = Ebu\r 4 bxyz-&buv
riv = bw buv byxbuy riy

H b and d have the same sign, then b, and b, have the same sign as byandb,,
Therefore, r,, has the same sign as r, . If b and d have opposite signs, by the
same argument, 1,, and r, have oppoate sigus.

a) +073, b)-073 ¢)—-0.73

Since only a pair of observations are given, they clearly fall on a line.

a) r= + 1(y increases as x increases)

by r=-—1

) ris not defined, since s, = 0.

o= g Sv - (Sw) (Sa)e]
_. bhCov Eww, x) % 0,

according as Cov(w,x) % 0,sincew,z0Vi,

ot kadbo wind Sepressly
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% 7 X ' v Xy,

8 59 64 3481 an

6 58 36 3364 348

11 56 121 3136 616

22 53 484 2809 1166

14 50 196 2500 700

17 a5 289 2025 765

18 43 324 - 1849 774

24 42 576 1764 1008

19 3 361 1521 741

2 38 529 1444 874

2 30 676 900 780

40 20 1600 400 800

228 533 - 5256 25193 ‘ 9044

o 9044 X 12 — 228 x 533
V12 x 5256 - (228)° /12 x 25193 — (533)°

r

_ —12996
T 1053 x 135

= — 0.914.

E10) Lets, be the covariance in the composite group and sf(y , the covariance in the
ith group. We have

1 k . k
m=;{;m%+§m@-@@—®}

. :
where n = E,ni and X, the composite mean of x, y, the composite mean of y.
1

sy =S G -D G-

Therefore, the result follows.
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Notations and Symbols

Q

P {w}
A
P(ATH)

XY, X

p.m.f.
f(x;)

b(. n. p)
h(j:n, N, M)

P(r, m)

Sample Space

Probability of ®

Probability of the event A

Conditional probability of A, given that H has occurred
Random variables

{we Qlx(w) =j)

Probability that X equals |

Probability mass function

PIX = x]

PIX = j]. where. X is a binomial variable witﬁ parameters. (n. p).

P[X = j], where X has a hypergeometric distribution with
parameters, (n, N, M).

alo-1...(a-j+1

; , where — o0 < 0L < oo, j is a non-negative
J: )

integer.

P[X =r], where X has a Poisson distribution with paramefer m>0..~

Also see the list in Block 1.
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BLOCK 2 PROBABILITY ON DISCRETE
SAMPLE SPACES

You have studied methods of representing and summarising statistical data of different types
in Block 1. The purpose of the techniques that you studied there, s to help in the
understanding and simplification of the information contained in data sets. The next stage in
this exercise is to try to understand the pattern and causes of observed variability. We can
then construct techniques of reaching objective conclusions about the population on the
basis of information provided by the sample. This is possible only with the help of
probability theory which we introduce in this block for the simplest of situations.

A French nobleman Chevalier de Mere, who had considerable experience in gambling,
noticed some contradictions between his theoretical conclusions and the observed results of
games of chanc®. He discussed his doubts with Pascal (1623-1662) who was a famous
mathematician of the time. Pascal solved de Mere's difficulties and a few more.problems.
On hearing about these problems from Pascal, another mathematician, Fermat (1601-1665),
became interested in them. Pascal and Fermat corresponded with each other and laid the
foundations of the theory of probability. It was mainly in Europe during the seventeenth and
eighteenth century that mathematicians like Huygens (1629-1695), Jacob Bernoulli.
(1654-1705), de Moivre (1667-1754), Laplace (1749-1827) and Poisson (1781-1840) made
important contributions and developed the theory of probability into a distinct new branch of
mathematics.

After this early development of probability theory in Europe, there developed in Russia a
very strong and important school of studies in Probability. The Russian
mathcmaticians who made substantial and lasting contributions to probability theory are
Chebychev (1821-1894), his students A. Markov (1856-1922) and Liapounov (1868-1918).
S. Bernstein. and A. Khintchine. .

* The subject has been put on a sound mathematical base only in the third and fourth decades

of this century. mainly due to the pioneering work of the great Russian
mathematician A.N. Kolmogorov (1903-1987).

In Unit 5 we shall analyse the nature of experiments whose results cannot be predicted in
advance. We shall explore the definition of the probability of an event and its simple
properties in Unit 6. Unit 7 deals with the concept of a random variable and its probability
distribution. The most commonly used probability distributions are discussed in Units 8
and 9. :

The mathematical background needed for this block is a knowledge of permutations and
combinations, an ability to undertake algebraic simplifications and logical thinking.
Although pen. paper and patience are sufficient for this block, a good hand-held scientific
calculator would be an asset to solve numerical problems.




UNIT S SAMPLE SPACE OF A RANDOM
EXPERIMENT

Structure

5.1 Introduction
Objectives

5.2 Random Experiments

5.3 Sample Space

54 Events

5.5 Algebra of Events

5.6  Summary

5.7 Solutions and Answers

5.1 INTRODUCTION

Many situations arise in our everyday life as well as in scientific, administrative or
organisational work, where we cannot predict the outcome of our actions or of the
experiment we are conducting. Such experiments, whose outcome cannot be predicted, are
called random experiments. We give a wide variety of examples in Sec. 5.2 to explain the
concept of a random experiment. The set of all possible outcomes of an experiment is called
its sample space. We have illustrated the different types of sample spaces that we generally
come across in Sec. 5.3. Section 5.4.deals with the study of events associated with a random
experiment whose sample space is either finite or countably infinite. In Sec. 5.5 we discuss
methods of combining events to generate new events. Here is a list of what you should be
able to do by the end of this unit.

Objectives
After studying this unit you should be able to :
& distinguish between random and non-random experiments,

3 specify the sample space of a random experiment and classify it as discrete or
continuous,

@ identify events with subsets of the sample space,
@ cxamine and identify relatioris between events,

@ generate new events out of a given collection of events.

* 52 RANDOM EXPERIMENTS

We give below some examples of a random experiment : .

@ A physicist performs an experiment to discover laws goveming the flow of an electrical
current or the propagation of sound, heat or light etc.

@ A chemist studies the reactions of chemicals and tries to understand the chemical
properties of matter.

@ A physician compares two or more drugs to find out the most effective one by trying
them out on experimental animals or on patients.

@ To describe the relationship between the price of-a commodity and its demand and
supply, an economist observes the values assumed by these variables by conducting a
market survey over a period of time.

With a little imagination, we can construct many more examples of such experiments.

Experimentation is not necessarily restricted to a laboratory or to a university or a college. It )
forms an important part of our everyday life. When you buy a dress or a shirt, when you.

Ve
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Probability on Discrete Sample vote for a candidate at an election, when you inspect a few grsins of rice to decide whether

Spaces the rice is cooked or not, when you decide to register for this course, you are performing an
experiment. Thus, experimentation constitutes an integral part of our lives as well as our
learning processes. In this unit we shall develop methods of describing the results of an
experiment. Once we can describe the results we’ll be able to talk about the chances of their
occurrence.

Consider the following simple experiments :

Experiment 1 : A stone is allowed to fall freely from height and we observe whether or not
the stone hits the ground.

Experiment 2 : Waicr in 2 potis heared for a sufficiently long time to a temperature greater
than 100°C. We observe whether the water turrs into stearmn.

ln these experiments, we have no doubt about the final outcome. The stone will eventually
hit the ground. The water in the pot will ultimately trn into steam. These experiments have
only one possible outcome. Even if these experiments are repeated again and again, every
such repetition will yield the same result.

On the other hand, in the following experiments there are two or more possible results,

Experiment 3 : A coin is tossed to decide which of the two teams A and B would bat first in
a game of cricket. The coin may turn up a head or a tail.

Experiment 4 : A person coming out of a polling centre is requested to disclose the name of
the candidate in whose favour he/she has voted. He/she may refuse to tell us or give the
name of any one of the candidate.

Experiment 5 : Three consecutive items produced by a machine are inspected and classified
as good or bad (defective). We may get 0, 1, 2, or 3 defective items as a result of this
inspection.

Experiment 6 : A newly invented vaccine against a disease is given to 30 healthy people.
These thirty people as well as another group of 20 similar people who are not vaccinated,
are watched over the next six months to see whether they develop the disease. The total
number of affected people may vary between 0 and 50.

Experiment 7 : A small town has 100 telephones. The number of busy telephones between
9 and 10 a.m. is noted for each day of a week. The number of busy telephones may be any
number between 0 to 100,

Experiment 8 : A group of ten personsis classified according to their blood groups 0, A, B
and AB. The number of persons in each group may vary between 0 and 10, subject to the
frequencies of all four classes adding up to 10.

Experiment 9 : The number of accidents along the Bombay-Bangalore national highway
during the month is noted. :

Experiment 10 : A radio-active substance emits particles called a-particles. The number of
such'particles reaching an observation screen during one hour is noted.

Experiment 11 : Thirteen cards are selected without replacement from a well-shuffled pack
of 52 playing cards. -

The nine experiments, 3-11, have two common features.
)] Fach of these experiments have more than one possibie outcome,
i) Itis impossible to predict the outcome of the experiment,

For example, we cannot predict whether a coin, when it is tossed, will turn up a head ora
tail (Experiment 3). Can we predict without error the number of busy telephones
(Experiment 7)? It is impossible to predict the 13 cards we shall obtain from a well-shuffled
pack (Experiment 1 1).

Do you agree that all the experiments 3-11 have the above-mentioned features (i) and (ii)?

Go through them carefully again, and convince yourself,

10
6 This discussion leads us to the following definition.
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Definition 1 : An experiment with more than one possible outcome and whose result cannot
be predicted, is called a random experiment.

So, Experiments 3 to ! | are random experiments, while in Experiments 1 and 2 the outcome
of the experiment can be predicted. Therefore, Experiments 1 and 2 do not qualify as
random experiments. You will meet many more illustrations of random experiments in this
and subsequent units.

You may now try this exercise.

El) Classify the experiments described below as random or non-random experiments.

a) A spark of electricity is introduced-in a cylinder containing a mixture of hydrogen
and oxygen. The end product is observed.

b) A lake contains two types of fish. Ten fish are caught and the number of fish of
each type is noted.

¢) The time taken by a powerful radio impulse to travel from the earth to the moon
and for its echo to return to the sender is observed.

d) Two cards are drawn from a well-shuffled pack of 52 playing cards and the suits
(Club, Diamond, Heart and Spade) to which they belong are noted.

In the next section we shall talk about the set of all possible outcomes of a random
experiment.

5.3 SAMPLE SPACE

In the previous section you have seen a number of examples of random experiments. The
first step we take in the study of such experiments is to specify the set of all possible
outcomes of the experiment under consideration.

When a coin is tossed (Experiment 3), either a head turns up or a tail turns up. We do not
consider the possibility of the coin standing on its edge or that of its rolling away out of
sight. Thus, the set Q of all possible outcomes consists of two elementis, Head and Tail.
Therefore, we write Q = {Head, Tail} or, more simply, Q = {H, T}.

In Experiment 4, the person coming out of the polling centre may give us the name of the
candidate for whom he/she voted, or may refuse to disclose his/her choice. If there are §
candidates C|, C,, C3, C,4 and Cs, seeking election, then there are six-possible outcomes,

' five corresponding to the five candidates and the sixth one corresponding to the refusal R of
the interviewed person to disclose his/her choice. The set of all possible outcomes is thus,
Qz{C],CZ,CB,C“,Cj,R}. ‘

Note that here we have ignored certain possibilities, like the possibility of the person not
voting at all or voting in such a manner that his/her ballot paper becomes invalid.

Experiment 5 is comparatively simple, if we agree that it is possible to classify each item as
Good (G) or Bad (B) without error. Then £ = {GGG, GGB, GBG, BGG, BBG, BGB, GBB,
BBB] where, for example, GBG denotes the outcome when the first and third units are good
and the second one is bad. ‘

The situation in Experiment 6 is a little more complicated. To test the efficacy of the
vaccine, we will have to look at the number of vaccinated persons who were affected (x) and
the number of non-vaccinated ones who were affected (y). Here X can be any integer
between 0 and 30 and y can be any integer between 0 and 20. The set Q of all possible
outcomes is

Q={(x,y)Ix=0,1,...,30,y=0,1,2,...,20}.

This specification of Q is valid only if we assume that we are able to observe all the 50
persons for the entire period of six months. In particular, we assume that none of them
becomes untraceable because of his/her leaving the town or because of his/her death due to
some other cause. .

e
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In the illustrations discussed so far, do you notice that the number of points in  is finité 1n
each case? It is 2 for Experiment 3, 6 for Experiment 4, 31 x 21 = 651 for Experiment 6. Buv
this is not always true.

Consider, for example, Experiments 9 and 10. The number of accidents along the
Bombay-Bangalore highway during the month of observation can be zero, one, two, ... or
some other positive integer. Similarly, the number of a-particles emitted by the radio-active
substance can be any positive integer. Can we say that the number of accidents or
o-particles would not exceed a specified limit? No. Because of this, and also in order to
simplify our mathematics, we usually postulate that in both these examples the set of all
possible outcomes is Q=1{0,1,2,...},ie.,itis the set of all non-negative integers.

We are now in a position to introduce certain terms in a formal manner.

Definition 2 : The set Q of all possible outcomes of an experiment E is called the sample
space of the experiment. Each individual outcome of E is called a point, a sample point or
an element of Q2.

You would also notice that in every experiment that was discussed, we made certain
assumptions like the coin not being able to stand on its edge or not rolling away, all the fifty
persons being available for the entire period of six months for observation, etc. Such

assumptions are necessary to simplify our problems as well as our mathematics.

In all the examples discussed so far, the sample space is either a finite set, i.e., a set
containing a finite number of points or is an infinite set whose elements can be arranged in
an unending sequence, i.¢., has a countable infinity of elements. We have a special name for
such spaces.

Definition 3 : A sample space containing a finite number of points or a countable infinity of
points is called a discrete sample space.

In this block we shall be concerned only with discrete sample spaces. However, there are
many situations where we have to deal with sample spaces which are not discrete. For
example, consider the age of a person. Although there are limitations to the accuracy with
which we can measure the age of a person, in the idealised situation we can think of age

" being any number between 0 and . Of course, no one has met a person with infinite age of

for that matter who is more than 150 years old. Nevertheless, most of the actuarial and
demographic studies are carried out assuming that there is no upper bound on age. Thus, we
may say that the sample space of the experiment of tinding out the age of an arbitrarily
selected person is the interval 10, °<|. Since the elements of the interval ]0, o[ cannot be
arranged in a sequence, such a sample space is not a discrete sample space.

Some other examples where non-discrete sample spaces are appropriate are (i) the price of
wheat, (ii) the amount of ozone in a volume of space, (iii) the length of a telephone
conversation, (iv) the duration one spends in a queue, (v) the yield of rice in our country in
one year.

In all these examples, it is necessary to deal with non-discrete sample spaces, However,
we’ll defer the study of probability theory for such experiments to the next biock.

Now see if you can solve this exercise.

E2) Write down the sample spaces of all those experiments from 3 to 11 which we have
not discussed earlier. Indicate in each case the assumptions made by you.

Now that we have seen how to specify the elements of a sample space, we can talk about the
events associated with it.

5.4 EVENTS

We have described a number of random experiments till now. We have also identified the
sample spaces associated with them. In the study of random experiments, we are interested
not only in the individual outcomes but also in certain events. As you will see later, events
are subsets of the sample space. In this section we shall formalise the intuitive concept of an
event associated with a random experiment which has a discrete sample space. We shall alsc



study methods of generating new events from specified ones and study their

inter-relationships. . Experiment

Consider the experiment of inspecting three items (Experiment S). The sample space has the
eight points,

GGG, GGB, GBG, BGG, BBG, BGB, GBB, BBB.
We label these points o, ,, . . . , @, respectively.

Suppose we are inierested in those outcomes which correspond to the event of obtaining
exactly one good item in the three inspected items. The corresponding sample points are
05 = BBG, 0y = BGB and ®, = GBB. Thus, the subset {ws, wg, w5} of the sample space

curtesponds to the “‘event’” A that only one of the inspected items is good.

On the other hand, consider the subset C = { s, Wg, 1, Wg } consisting of the points BBG,

BGB, GBB, BBB. We can identify the subset C with the event *“There are at least two bad
items.”” '

This discussion suggests that we can associate a subset of the sample space with an event
and an event with a subset. This leads us to the following definition.

Definition 4 : When the sample space of an experiment is discrete, any subset of the sample
space is called an event.

Thus, we also consider the empty set as an event.

You will soon find that the two extreme events, ¢ and €, consisting, respectively, of no
points and all the points of € are most uninteresting. But we need them to complete our
description of the class of all events. In fact, @ is called the impossible event and Q is called
the sure event, for reasons which will be obvious in the next unit. Also, note that an
individual outcome w, when identified with the singleton (), constitutes an event.

The following example will help you in understanding events.

Example 1 : Suppose we toss a coin twice. The sample space of this experiment is

Q= {HH, HT, TH, TT}, where HT stands for a head followed by a tail, and other points are
similarly defined. Let’s list all the events associated with this experiment. There are 16 such
cvents. These are :

¢.{HH}, (HT}, {TH}, {TT)

(HH, HT), (HH, TH), (HH, TT}, {HT, TH}

{HH, TT}, {TH, TT), (HH, HT, TH}, {HH, TH, TT},
{HH, HT, TT}, {HT, TH, TT}, Q.

Since we have identified an event with a subset of Q, the class of all events is the class of all
the subsets of Q. If Q has N points, for a fixed r, we can form Ij sets consisting of r points,

where r=0,1, ..., N. The total number of events is, thérefore,

() [y |

In Exampile 1, N=4. Therefore, we have 2* = 16 events. If N = 10, we shall 210 = 1024

events. The number of events thus increases rapidly with N. It is infinite if the sample space
is infinite. ‘

Let us now clarify the meaning of the phrase “The event A has occurred.”’

We continut; with Experiment 5. Let A denote the event {ws, s, o, } = {BBG, BGB,
GBB|. If, after performing the experiment, our outcome s W5 = BBG, which is a point of
the set A, we say that the event A has occurred. If, on the other hand, the outcome is Wg =

BBB, which is not a point of A, then we say that A has not occurred. In other words, given

the outcome ® of the experiment, we say that A has occurred if @ € A and that A has riot
occurred if @ ¢ A.

On the other hand, if we only know that A has occurred, all we know is that the outcome of

Ve
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Then ¢ = Q and Q" =¢. Fig. |
shows a Venn diagram representing
the sets A and A“.
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the experiment is one of the points of A. It is then not possible to decide which individual
outcome has resulted unless A is a singieton.

In the next section we shall talk about some ways of combining events.

5.5 ALGEBRA OF EVENTS

In this section we shall study different ways in which we can combine two or more events.
We shall also study relations between them. Since we are dealing with discrete sample
spaces and since any subset of the sample space is an event, we shall use the terms event and

subset interchangeable.

In what follows, events and sets are denoted by capital letters A,B,C, ..., with or without
suffixes. We shall assume that they all consist of points chosen from the same sample
space .

Let Q = {GGG, GGB, GBG, BGG, BBG. BGB, GBB, BBB] be the sample space
corresponding to Experiment 5. Let A = {BBG, BGB, GBB} be the event that only one of
the three inspected items is good. Here the point BGB is an element of the set A and the
point BBB is not an element of A. We express this by wriing BGB € Aand BEB ¢ A

Suppose, now, that the outcome of the experiment is BBB. Obviously, the event A has not
occurred. But, we may say the event ‘‘not A’" has occurred. In probability theory, the event

“not A”" is calied the event complementary to A and is denoted by AS.
Let’s try to understand this concept by looking back at Experiments 3-11.

Example 2
1) For Experiment 5, if A = {BBG, BGB, GBB}, then
A® = {GGG, GGB, BGG, GBG, BBB}.

ii)  In Experiment 6, let A denote the event that the number of infected persons is at most
40. Then _
AC={(x,y) | x+y>40,x=0,1,...,30.y=0.1,...,20}.

iti) In Experiment 11, if B denotes the event that none of the 12 cards is a spade, B
consists of all hands of 13 cards. each one of which has at least one spade.

Suppose now that A, and A, are two events associated with an experiment. We can get two

new events, A; MN-A, (A intersection Az) and A| U A, (A, union A,) from these two. With

your knowledge of set theory (MTE-04), you would expect the event A; N A, to correspond

to the set whose elements belong to both A, and A,. Thus,

AlﬂA2=lo)Io)e Ajandw e Ayl

Similarly, the event A; U A2_correspondé to the set whose elements belong to at least one of
Al and A2 .

AUA ={oloe Ajorw e Ayl

Fig. 2 (a) and (b) show the Venn diagrams representing A; N A, and A 'U A,.

Iy

Fig. 2 : The shaded region represents the set (a) A1\ Az (b) ArU Al



We'll try to clarify this concept with some examples.

Example 3 : In many games of chance, a small cube (or die) with equal sides, bearing
numbers 1,2, 3.4, 5,6, or dots 1-6 on its six faces (Fig. 3), is used. When such a symmetric
die is thrown, one of its six faces would be uppermost. The number (or number of dots) on
the uppermost faces is cailed the score obtained on the throw or roll of a die. The
appropriate sample space for the experiment of throwing a die is then Q = {1, 2, 3,4, 5, 6}.
Let A, be the event that the score exceeds three and A, be the event that the score is even.

Thean
A ={4, 5,6},A2= (2,4, 6}

Therefore, A; M A, = {4, 6]} and
AU A,=1{2,4,5,6}.

Suppose now that the score is 6. We can say that A| has occurred. But then A, has also
occurred. In other words, both A, and A, have occurred. Thus, the simultaneous occurrence
of A, and A, corresponds to the occurrence of the event A| M A,.

When the outcome is S, A has occurred but A, has not occurred. Further, when the
outcome is 2, A, has occurred and A has not. When the outcome is 4, both A and A, have
occurred. In case of each of these outcomes, 2, 5 or 4, we notice that at least one of A, and
A, has occurred. Note, further, that A| U A, has also occurred. Thus, the occurrence of at

" least one of the two events A and A, corresponds to the occurrence of A; U A,.

Example 4 : Suppose the die in Example 3 is thrown twice. Then Q is the set {(x, y)} I x,y =
1,2,3,...,6) consisting of thirty-six points (x, y), where x is the score obtained on the first
throw and y, that obtained on the second throw. If B, is the event that the score on the first

throw is six and B, the event that the sum of the two scores is at least 1 1, then
B, = {(6, 1), (6,2), (6, 3), (6,4), (6,5), (6, 6)}

«nd v
B, =1{(5,6),(6,5),(6,6)}.

‘What are B; M B, and B; U B,? You can check that

B, N B, = (6,5). (6,6))

. and

B, U B, ={(5,6), (6, 1), (6,2), 6,3), (6,4), 6, 5), (6, 6)}:.

The union and intersection of two sets can be utilised to define union and intersection of
three or more sets. :

So.if AL Ay, ..., A, are nevents, then we define
n ) -
N A ={olwe Ajforeveryjzl,...,n}
i j=1 :
and
n
i 'UAJ- ={(1)I0)eAjforatleastonej=1,...,n},

I 1=1

n .
Note that the occurrence of N Aj corresponds to the simultaneous occurrence of all the n
i=1
n
events and the occurrence of U Aj corresponds to that of at least one of the n events
s
A, . ... A, We can similarly define the union and intersection of an infinite number of

events, A, A, ... A ...
| 2 n

-
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Fig. 4 . The shaded portion
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Another set operation with which you are familiar is a combination of complementation and
intersection. Let A and B be two sets. Then the set A N B is usually called the difference of
A and B and is denoted by A - B. It consists of all points which belong to A but not to B.

Thus, in Example 4,

B, =B, =1{(6, 1), (6, 2), (6, 3),(6,4)}
and

B, - B, = {(5, 6)}

In this notation, A® is the set Q -- A. You can see the Venn diagram for A - B in Fig. 4.

Now, Asuppose A}, A, and A are three arbitrary events. What does the occurrence of
AN AS N AS signify?

This event occurs iff only A, out of A|, A; and A, occurs, that is, iff A; occurs but neither
A, nor Az occur.

If you have followed this, you should be able to do this exercise quite easily.

E3) If A|, A, and Aj; are three arbitrary events, what does the occurrence of the following
events signify?
a) E;=A NA,NA,

b E,=A$NASNAS
©) E3=(A;NANAHU A N A;NAS U(A,N A3 NAS)
d) E,UE,

The set operations like formation of intersection, union and complementation of two or more
sets that we have listed above and their combinations are sufficient for constructing new
events out of old ones. However, we need to express in a precise way commonly used
expressions like (i) if the event A has occurred, B could not have occurred and (i) the
occurrence of A implies that of B. We'll explain this by taking an example first,

Example 5 : Let us consider the following experiments.

i) Inthe experiment of tossing a die twice, let A be the event that the total score is 8 and
B that the absolute difference of the two scores is 3. Then

A=l(x,y)lx+y=8,x,y=‘1,2,3,...,6]
=1(2.6).3,5). (4.4).(5,3),(6,2)
and B={(x,y) | I x—yl=3xy=1,2,3,...6)
= {(1,4),(2,5),(3,6),(6,3),(5,2), (4, 1)}.

i) ' Consider Experiment 11, where we select 13 cards without replacement from a pack
of cards. Let .

event A : all the 13 cards are black and
event B : there are 6 diamonds and 7 hearts.

Note that in both the cases there is no point which is common to both A and B. Or in
other words, A M B is the empty set. Therefore, in both i) and ii) we conclude that if
A occurs, B cannot occur and conversely, if B occurs A cannot occur. :

Now let us find an example for the situation : the occurrence-of A implies that of B.
Take the experiment of tossing a die twice. Let A = {(x, y) Tx+ y = 12} be the event
that the total score is 12, and B = {(x, y) | x - y = 0} be the event of having the same
score on both the throws. Then

A=1{(6,6)} and
B={(1, 1).(2,2),(3,3),(4.4),(5,5),(6,6)};

so that whenever A occurs, B does. Note that A c B.




You were already familiar with the various operations on sets. In Sec. 5.4 we had Sample Space of a Randosr
identified events with subsets of the sample space. What we have done in this section Experiment
is to apply set operations 10 events, and to interpret the combined.events.

You can check whether you have grasped these ideas by doing the following exercises.

E4) LetAj, A, Ajand A, be arbitrary events. Find expressions for the events that
correspond to occurrence of
a) only Ay and A,,

b) none of A A, Aj and A,
¢) one ana only one of Ay, Ay, Ag, A,,
d) not more than one of AL Ay AgL A,
€) atleast two of AL A, Aj A,
ES)  Express in words the following events :
) ASNANA,
P} (AT NASNAD UA, NASN A
) (AjUA)-(A;UAy
o d) (AjUA)NA,
&) (AjNAYN(A, NAU(A;NA)

Now, before ending this unit et us £0 over its main points.

3.6 SUMMARY

In this introductory unit to the study of probability, we have made the following points ;

3 There are many situations in real life as well as in scientific work which can be
regarded as experiments having more than one possible outcome. We cannot predict,
the outcome that we will obtain at the conclusion of the experiment. Such experiments
are called random experiments.

2)  The study of random experiments begins with a specification of its'all possible
outcomes. In this specification, we have to make certain assumptions to avoid
complexities. The set of all possible outcome is called the sample space of the
experiment. A sample space with a finite nimber or a countable infinity of points is a
discrete sample space. :

3)  When we are dealing with a discrete sample space, we can identify é\}ents with sets of
points in the sample space. Thus, an event can be formally regarded as a subset of the
sample space. This definition works only when the sample space is discrete.

4)  Wecan use operations like complementation, intersection, union and difference to
generate new-events,

5)  Some complex events can be described in terms of simpler events by using the
above-mentioned set operations.

5.7 SOLUTIONS AND ANSWERS

El) a) Thisis anon-random experiment as the electrical spark would ignite the hydrogen
and it would combine with oxygen to produce water. -

b) This is a random experiment as one canniot predict the number of fish of each type

that would be caught.
¢) The radio impulse travels with the velocity of light which is known to be 13

’
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Probability on Discrete Sample a physical constant. The time for the radio impulse to reach the moon and
Spaces for its echo to return can be predicted without error. Hence this is a non-randoim
experiment.

d) A random experiment.
E2). The sample space for the random experiment described in
i) Experiment7isQ=1{0,1,..., 100}
ir) EXpenmcnt 8, is
Q= {(Xg, X5, Xg, Xop) | Xo + Xp+tXg+Xpp=10])

where X, x4, g and x5 are the number of persons with blood-groups 0, A, B
and AB, respectively, in the group of 10 persons.

- 1i1) Experiment 11, is the set of all possible, i.e.,

[ﬁ)z 2.476552 x i(,)”, suits of 13 cards that can be formed out of 52 cards.

E3) a) TheeventE; =AM A, M Ay occurs if all the three occur.
b)  None of the three events AL Ay A oceurs iff AT N AS N A§ occurs.
¢) The event E; occurs if exactly two of the three events occur.

d) E; U E;, corresponds to occurrence of at least two of the three events
Al‘ A2 and A3

Ed) a) A NnA, VAN AS
b (ASNASN AN A =E, say.
c) (A; AN AT A U (AT N A, N AS N A3 U (AT N AS) N(A; NAY)
UATN ASNAS N A =E,, say.
d) E UE,
e) (E UE,)".
E5) These events corresponds to occurrence of
a) A,andA;butnot A, |
b) None of A, and A;,
. ©) Atleastone of A| and A,, but ﬁone of Ajand Ay,
d) Ajand atleast one of A| and A,

e) Atleasttwooutof A, A, and A;.

-
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UNIT 6 PROBABILITY ON A DISCRETE
SAMPLE SPACE

Structure
6.1 Introduction
Objectives
6.2 Probability : Axiomatic Approach

Probability of an Event : Definition
Probability of an Event : Properties

6.3 Classical Definition of Probability
6.4 Conditional Probability

6.5 Independence of Events

6.6 Repeated Experiments and Trials
6.7  Summary

6.8  Solutions and Answers

6.1 INTRODUCTION

In this unit, we shall introduce you to some simple properties of the probability of an event
associated with a discrete sample space. Our definitions require you to first specify the
probabilities to be attached to each individual outcome of the random experiment.
Therefore, we need to answer the question : How does one assign probabilities to each and
every individual outcome? This question was answered very simply by the classical
probabilists (like Jacob Bernoulli). They assumed that all outcomes are equally likely.
Therefore, for them, when a random experiment has a finite number N of outcomes, the
probability of each outcome would be 1/N. Based on this assumption they developed a
probability theory, which we shall briefly describe in Sec. 6.4. However, this approach has a
sumber of logical dnfﬁcultxcs One of them is to find a reasonable way of specifying
“eyually likely outcomes.’

tiowever, one possible way out of this difficulty is to relate the probability of an event to the-

relative frequency with which it occurs. To illustrate this point, we consider the experiment
of tossing a coin a large number of times and noting the number of times ‘‘Head’’ appears.
In fact, the famous mathematician, Karl Pearson, performed this experiment 24000 times.
He found that the relative frequency, which is the number of heads divided by the total
number of tosses, approaches 1/2 as more and more repetitions of the experiment are
performed. This is the same figure which the classical probabilists would assign to the
probability of obtaining a head on the toss of a balanced coin.

Thus, it appears that the probability of an event could be interpreted as the long range
relative frequency with which it occurs. This is called the statistical interpretation or the
frequentist approach to the interpretation of the probability of an event. This approach has its
own difficulties. We’ll not discuss these here. Apart from these two, there are a few other
approaches to the mterpretatlon of probability. These issues are full of philosophical
controversies, which are still not settled.

We, shall adopt the axiomatic approach formulated by Kolmogorov and treat probabilities as
numbers satisfying certain basic rules. This approach is introduced in Sec. 6.2.

in Sec. 6.2 and 6.3 we deal with properties of probabilities of events and their computation.
We discuss the important concept of conditional probability of an event given that another
cvent has occurred in Sec. 6.4. It also includes the celebrated Bayes’ theorem. In Sec. 6.5 we
discuss the definition and consequences of the independence of two or more events. Finally,
we talk about the probabilistic structure of independent repetitions of experiments in Sec.
6.6. After getting familiar with the computation of probabilities in this unit, we shall take up
the study of probability distributions in the next one. -




Probabiity en Discrete Sumple Objectives
Spaces After studying this unit you should be able to :

@ assign probabilities to the outcomes of a random experiment with discrete sample space,
@ cstablish properties of probabilities of events,
calculate the probability of an event,

o
@ calculate conditional probabilities and establish Bayes theorem,
@ check and utilise the independence of two or more events.

6.2 PROBABILITY : AXIOMATIC APPROACH

We have considered a number of examples of random experiments in the last unit. The
outcomes of such experiments cannot be predicted in advance. Nevertheless, we frequently
make vague statements about the chances or probabilities associated with outcomes of
random experiments. Consider the foliowing examples of such vague statements :

i) Itis very likely that it would rain today.
ii)  The chance that the Indian team will win this match is very small.

iii) A person who smokes more than 10 cigarettes a day will most probably developing
lung cancer.

iv)  The chances of my winning the first prize in a lottery are negligible.
v}  The price of sugar would most probably increase next week.

Probability theory attempts to quantify such vague statements about the chances being good
or bad, small or large. To give you an idea of such quantification, we describe two simple
random experiments and associate probabilities with their outcomes.

Example 1

i) A balanced coin is tossed. The two possible outcomes are head (H) and tail (T). We
associate probability P{H} = /2 to the outcome H and probability P{T} = 1/2to T.

if) A person is selected from a large group of persons and his blood group is determined.
It can be one of the four blood groups O, A, B and AB. One possible assignment of
probabilities to these outcomes is given below

Blood group 0 A B AB
Probability 034 . 027 0.31 0.08

Now'look carefully at the probabilities attached to the sample points in Example 1 (i) and
(it). Did you notice that

i) these are numbers between O and I, and
i)  the sum of the probabilities of all the sample points is one ?

This is not true of this example alone. In general, we have the following rule or axiom about
the assignment of probabilities to the points of a discrete sample space.

Axiom : Let Q be a discrete sample space containing the points @, @, . . . ; i.e.,
Q={w, 0 ...}
To each point o) of Q, assign a number P{ (oj}, 0<P{ wj) < 1, such that
 Plo}+P{oy) +..... =1 : B
. We call P{w;], the probability of ;. '

Now see if you can do the following exercise on the basis of this axiom.

El) A sample space Q consists of eight points 0, @, ..., @g. Which of the following

16 assignments of probabilities are valid ones ?
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Assignment , W, 03 0y W5 g W, g
(a) 1/8 1/8 /8 1/8 1/4 0 0 1/4
(b) 1/4 0 0 /4 0 0 0 0
(c) /16 2/16 3/16 4/16 5/16 6/16 7716 ~12/16
()] 1/8 1/8 1/8 1/8 1/8 1/8 1/8 3/8
(e) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

If you have done E1, you would have noticed that it is possible to have more than one valid
assignment of probabilities to the same sample space. If the discrete sample space  is not
finite, the left side of Equation (1) should be interpreted as an infinite series. For example,
suppose 2 = {®, ®,, ... } and

Ploj =172, %j=1,2,.......

Then this assignment is valid because, 0 < P{mjl <1, and

Plo} +Ploy}+...=

So far we have not explained what the probability P{ ;) assigned to the point o, signifies.

We have just said that they are all arbitrary numbers between 0 and 1, except for the
requirement that they add up to 1. In fact, we have not even tried to clarify the nature of the
sample space except to assert that it be a discrete sample space. Such an approach is
consistent with the usual procedure of beginning the study of a mathematical discipline with
a few undefined notions and axioms and then building a theory based on the laws of logic
(Remember the axioms of geometry ?). It is for this reason that this approach to the
specification of probabilities to discrete sainple spaces is called the axiomatic approach It
was introduced by the Russian mathematician A.N. Kolmogorov in 1933. This approach i is
mathematically precise and is now universally accepted. But when we try to use the
mathematical theory of probability to solve some real life problems, that we have to
intcrpret the significance of statements like ‘‘The probability of an event A is 0.6.”

Ve now define the probability of an event A for a discrete sample space.

6.2.1 Probability of an Event : Definition

Let 2 be a discrete sample space conSisting of the peints @, &3, ...
iy number. Let P{w, }, P{a,}, ..

, finite or infinite in
. be the probabilities assigned to the points @, ®,, . . .

Uefinition 1 : The probability P(A) of an event A is the sum of the Probabilities of the
points in A. More formally,

P(A)= ), Ploj...... )

€ A
j

where Z stands for the fact that the sum is taken over all the points ;€ A. Ais, of
o€ A ' )

course, a subset of Q. By convention, we assign probability zero to the empty set.. Thus,
P(®) =0.

The following example should help in clarifying this congept. '

Example 2 : Let Q be the sample space corresponding to three tosses of a coin with the
following assignment of probabilities.

Sample point HHH HHT HTH THH TTH THT HTT TIT

Probabilityon a Dlscre(e Saiipic
Space’

If | r | <1, the sum of the infinite
geometric seriesa + ar+ar” +. ..

is —2—
I-r

P(A) is also called the probability of .
occurrence of A.

17
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Probability  1/8 /8 1/8 1/8 1/8 1/8 /8 1/8

Let’s find the probabilities of the events A and B, where

" A :There is exactly one head in three tosses, and

B : All the three tosses yield the same result
Now A = {HTT, THT, TTH}
Therefore, ‘

P(A)=1/8 + 1/5 +1/8 = 3/8.

Further, B = {HHH, TTT}. Therefore, P(B) =~ +

=1
=4

00 |—
Q0 | r=e

Proceeding along these lines you should be able to do this exercise.

E2) Let’s denote the possible outcomes of Experiment 5 in Unit 1 as follows :
®, = GGG, w, = GGB, w3 = GBG, w4 = BGG,
s = BBG, wg=BGB, o, = GBB, wg = BBB.
Consider the following assignment of probabilities.

Ploy) = (9/10)°, Plw,} = P{a,} = P{a,} = (9/10)2 (1/10)

Plas) = Plag) = P{a,)} = (9/10) (1/10)% P{ag} = (1/10)%,
a) Verify that the above assignment of probabilities is valid.
b)  Find the probability of getting

i) exactly one bad item (B)

ii) at least one good item (G).

A word about our notation and nomenclature is necessary at this stage. Although we say that
P{ ;} is the probability assigned to the point w; of the sample space, it can be also

interpreted as the probability of the singleton event {o)j }.

In fact, it would be useful to remember that probabilities are defined only for events and that
P| ;} is the probability of the singleton event { ;}. This type of distinction will be all the

more necessary when you proceed to study probability theory for non-discrete sample
spaces in Block 3. :

Now let us look at some properties of the probabilities of events.

6.2.2 Probability of an Event ; Pl:pperties

By now you know that the probability P(A) of an event A associated with a discrete sample
space is the sum of the probabilities assigned to the sample points in A, In this section we
discuss the properties of the probabilities of events.

P1:Foreveryevent A,0<P(A) < 1.

Proof :This is a straightforward consequence of the definition of P(A). Since it is the sum of
non-negative numbers, P(A) 2 0. Since the sum of the probabilities assigned to all the points
in the sample space is one and since A is a subset of Q, the sum of the probabilities assigned
to the points in A cannot exceed P(Q), which is one. In other words, whatever may be the
event A,0<P(A) <1,

Now here is an important remark.

Remark 1:IfA=¢, P(q)j) =0. However, P(A) = 0 does not, in general, imply that A is the
empty set. For example, consider the assignment (i) of E1. You must have already shown
that it is valid. If A = {wg, ®;}. P(A) =0 but A is not empty.
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Simtlarly roe, - 0oL L - e waunow that B = Q ? No. Can you think of a
counter example ? What about E1) i) again ? If we take B = {o, 0y, W3, Wy, 05, Wg}, then

P(B) = 1 but B # Q. In this connection, recall that the empty set ¢ and the whole space Q
were called the impossibie event and the sure event, respectively. In future, an event A with
probability P(A) = 0 will be called a null event and an event B of probability one, will be
cailed an almost sure event,

This remark brings out the fact that the impossible event is a null event but that a null event
is not the impossible event, Similarly, the sure event is an almost sure event but an almost
sure event is not necessarily the sure event,

Let us take up another property now. -
P2:P(AUB)=PA) + P(B) - P(AN B).

Proof : Recall that according to the definition, P(AU B) is the sum of the probabilities
attached to the points of A U B, each point being considered only once. However, when we
compute P(A) + P(B), a pointin A N B is included once in the computation of P(A) and
once in the computation of P(B). Thus, the probabilities of points in A N B get added twice
in the computation of P(A) + P(B). If we subtract the probabilities of all points in A N B,
from P(A) + P(B), then we shall be left with P(A U B), i.e.,

PAUB)=P(A)+P(B)~ ¥ Ploy.
©,eANB

The last term in the above relation is, by deﬁnitioﬁ, P(A N B). Hence we have proved P2.
We now list some properties which follow from P1 and P2.

P3:If A and B are disjoint events, then
P(A U B)=P(A) + P(B).

P4:P(A%) =1 - P(A).

PS5 : P(A UB) <P(A) + P(B)

Why don’t you try to prove these yourself? That’s what we suggest in the following exercise.

Probability on a Discrete Sample

Space

E3}  Prove P3, P4 and P5.

R

We continue with the list of properties.
P6 : If A < B, then P(A) < P(B).

Proof : If Ac B, Aand B - A are disjoint events and their union, A U (B —A) is B. Also
see Fig. 1. Hence by P3,

PB)=P(AUB-A)) = P(A) + P(B - A).
Since by P1, P(B - A) 20, P6 follows from the above equation.
Now let us take a look at P5 again,

"The incquality P(A U B) < P(A) + P(B) in PS5 is sometimes called Boole’s inequality, We
im that equality holds in Boole’s inequality if A N B is a null event. Do you agree?

An easy induction argument leads to the following generalisation of P5.
Boole’s inequality : If A, Ay, ..., Ayare N events, then

N N
P[ U Aj]SZ P(A)
j=1

i=1

Proof : By P5, the result is frue for N = 2. Assume that itis true for N < r, and observe that
AjUAU...UA, | isthe same as B UA ,whereB=A, UA,U...U A, Then by P5,

r+1
P[ u AJ=P(B UA,, D<PB)+PA,, )
J:

&g

P . . T e e e
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Spaces <3 PA)+PA, L),
j=1
where the last inequality is a consequence of the induction hypothesis. Hence, if Boole’s
inequality holds for N <, it holds for N =1 + 1 and hence for all N 2 2.

A similar induction argument yields

P7:1f A}, A, ..., A, are pair wise disjoint events, i.e., if A; ) Aj=¢,i# ], then

P[ U Aj)=P(A,)+P(A2)+...+P(An). (3
j=1 -

We sometimes refer to the relation (3) as the Property of finite additivity.

We can generalise P7 to apply to an infinite sequence of events.

P8 :If {A,,n2 1] is a sequence of pair wise disjoint events, then

P[ U AJ: Y P(A) . ce (@)

=1 j=1
P8 is called the c-additivity property.
In the general theory of probability, which covers non-discrete sample spaces as well,

o-additivity and therefore finite additivity is included as an axiom to be satisfied by
probabilities of events.

We-now discuss some examples based on the above properties.

Example 3 : Let us check whether the probabilities P(A) and P(B) are consistent}y defined
in the following cases.

i) PA)=03PB)=04,P(ANB)=04

i) PA)=03PB)=04,P(ANB)=0.8

Here we have to see whether P1, P2, P3, P5 and P6 are satisfied or not. P4, P7 and P8 do not
apply here since we are considering only two sets. In both the cases P(A) and P(B) are not
consistently defined. Since A N B < A, by P6, P(A N B) < P(A). In case (i), P(A N B) =

0.4 > 0.3 = P(A), which is impossible. Similar is the situation with case (ii). Moreover, note
that case (ii) also violates P1 and P2. Recall that by P2,

P(AUB)=P(A)+P(B)~-P(ANB)
but P(A) + P(B) - P(A N B) = 0.3 + 0.4 — 0.8 = —0.1 which is impossible.

Example 4 : We can extend the property P2 to the case of three events, i.e., we can show
that

» P(A UB U C) =P(A) + P(B) + P(C) - P(A N B)
Fig. 2 ~PBNC)-P(CNA) +P(ANBNC) N C))

Denote BUCby H. Then AURUC=AUHandby P2, PLAUBUC)
=P(AUH)=P(A)+P(H)-P(ANH) ()]

But P(H) =P(B U C) =P(B) + P(C) -P(B N C) (M
andPANH)=PANBUC)) |
o =P(ANB) UANC)
=P(ANB)+P(ANC)-P{(ANB)N(ANC)]
. =P(ANB)+P(ANC)-P(ANBNC) ... (8)
Substituting from (7) and (8) in (6) we get the required result. Also see Fig. 2.

20 Here are some simple exercises which you can solve by using P1-P7
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E4) Prove the following - ' ;’;:::hility on a Discrete Sample
a) IfP(A)=P(B) =1, then P(AUB)=P(ANB)=1.

' b) If P(A) =P(B) = P(C) = 0, then PAUBUC)=0.

X ¢)  We have mentioned that by convention we take P($) = 0.

But see if you can prove it by using P4.

E5) Fill in the blanks in the following table :
CPA) P(B) | P UB) P(AN B)

|
0.4 08 | 0.3 7,
e 0.5 j 0.6 025 |

E6) Explain why each one of the following statements is incorrect.

) The probability that a student will pass an examination is 0.65 and that he would
fail is 0.45. '

b) The probability that team A would win a match is 0.75, that the game will end in
adraw is 0.15 and that team A will not loose the game is 0.95.

¢) The following is the table of probabilities for printing mistakes in a book.
No. of printing mistakes 0 1 2 3 4 3 or more
Probability -0.12 025 036 014 009 007

3 ) d)  The probabilities that a bank wil] get 0, 1, 2, or more than 2 bad cheques on a
‘ given day are 0.08, 0.21, 0.29 and 0.40, respectively.

E7)  There are two assistants Seema (S) and Wilson (W) in an office. The probability that
Seema will be absent on any given day is 0.05 and that Wilson will be absent on any

given day is 0.10. The probability that both will be absent on the same day is 0.02.
Find the probability that on a given day,

a) both Seema and Wilson would be present,
b) at least one of them would be present, and

¢) only one of them will be absent.

LA LU

£3} A large office has three xerox machines M,
given day

M, works is 0.60

M, and M;. The probability that on a

M, works is 0.75
M; works is 0.80
both M, and M, work is 0.50

both M, and M, work is 0.40
both M, and M; work is 0.70
all of them work is 0.25.

Find the probability that on a given day at least one of the three machines works.

Through the examples and exercises in this section we hope you have grasped the axiomatic
approach to probability. In the next section we'll describe the classical approach.

—
ETiMCLASSICAL DEFINITION OF PROBABILITY

—_—

In the early stages, probability theory was mainly concerned with its applicétions to games
of chance. The sample space for these games consisted of a finite number of outcomes,
These simple situations led to a definition of probability which is no

Ww called the classical
lefinition. It has many limitations. For example, it cannot be applied to infinite sample
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space. However, it is useful in understanding the concept of randomness so essential in the
planning of experiments, small and large-scale sample survcys, as well as in solving some
interesting problems. We shall motivate the classical definition with some examples. We
shall then formulate the classical definition and apply it to solve some simple-problems.

Suppose we toss a coin, This experiment has only two possible outcomes : Head (H) and
Tail (T). If the coin is a balanced coin and is symmetric, there is no particular reason to
expect that H is more likely than T or that T is more likely than H. In other words, we may
assume that the two outcomes H and T have the same probability or that they are equally
likely. If they have the same probability, and if the sum of the.two probabilities P{H} and
P{T} is to be one, we must have P{H} = P{T} = 1/2. -

Similarly, if we roll a symmetric, balanced die once, we should assign the same probability,
viz. 1/6 to each of the six possible outcomes 1,2,...,6.

The same type of argument, when used for assigning probabilities to the results of drawing a
card from a well-shuffled pack of 52 playing cards leads us to say that the probability of
drawing any specified card is 1/52.

In general, we have the following :

Definition 2 : Suppose a sample space £ has a finite number n of points @, @5, . . . , 0.
The classical definition assigns the probability 1/n to each of these points, i.e.,

1.
P{mj}=;,1=l,...,n.

The above assignment is also referred to as the assignment in case of equally likely
outcomes. You can check that in this case, the total of the probabilities of all the n points is

n x — = 1. In fact, this is a valid assignment even from the axiomatic point of view.
n

Now suppose that an event A contains m points. Then under the classical assignment, the

- probability P(A) of A is m/n. The early probabilists called m, the number of cases

favourable to A and n, the total number of cases. Thus, according to the classical definition,

Number of cases faveurable to A

P(A) = Total number of cases

We have already mentioned that this is a valid assignment consistent with the Axiom in Sec.
6.2. Therefore, it follows that the probabilities of events, defined in this manner, possess the
properties P, — P-.

We now give some exampies based on this definition.

. Example 5 : Two identical symmetric dice are thrown. Let us find the probability of

obtaining a total score of 8.

The total number of possible outcomes is 6 X 6 = 36. There are 5 sample points, (2, 6),
(3, 5). (4, 4). (5. 3). (6, 2), which are favourable to the event A of getting a total score of 8.
Hence the required probability is 5/36.

Example 6 : If each card of an ordinary deck of 52 playing cards has the same probability ¢
being drawn, let us find the probability of drawing.

i) . aredking or a black ace
ii) a3,4,5,60r8?
Let’s tackle these one by one

1) Since there are two red kings (diamond and heart) and two black aces (spade and
club), the number of favourable cases is 4. The required probability is 4/52 = 1/13.

ii)  There are 4 cards of each of the 5 denominations 3,4, 5, 6 and 8. Thus, the total
number of favourable cases is 20 and the required probability is 20/52 = 5/13.

You must have realised by this time that in order to apply the classical definition of
probability, you must be able to count the number of points favourable to an event A as we
as the total number of sample points. This is not always easy. We can, however, use the
theory of permutations and combinations for this purpose.
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To refresh your memory, here we give two important rules which are used in counting.

1) Multiplication Rule : If an operation is performed in n | ways and for each of these n,
ways, a second operation can be performed in n, ways, then the two operations can be
performed together in n;n, ways. See Fig. 3.

<vnz
-< n
é‘ n,
<- n,

Fig.3

ny

2)  Addition Rule : Suppose an operation can be performed in n| ways and a second
operation can be performed in n, ways. Suppose, further that it is not possible to

perform both together. Then the number of ways in which we can perform the first or
the second operation in n; + n,. See Fig. 4.

Fig. 4

.

We now illustrate the use of this theory in calculating probabilities by considering some
examples. We assumie that all outcomes in each of these examples are equally likely. Under
this assumption, the classical definition of probability is applicable.

Example 7 : We first select a digit out of the ten digits, 0, 1,2, 3, .. ., 9. Then we select
another digit out of the remaining nine. What will be the probability that both these digits
are odd? ' L

We can select the first digit in 10 ways and for each of these ways we can select the second
digit in 9 ways. Therefore, the total number of paints in the sample space is 10 x 9 = 90. The
first digit, can be odd in S ways (1, 3, 5, 7, 9), and then the second digit can be odd in 4
ways. Thus, the total number of ways in which both the digits can be odd is 5 x 4 = 20. The

. S 20_2 -
required probabilityis therefor 90-9

Remark 2 : In Example 7, every digit had the same chance of being selected. This is
sometimes expressed by saying that the digits were selected at random (with equal
probability). Selection at random is generally taken to be synonymous with the assignment
of the same probability to all the sample points, unless stated otherwise.

We now give a number of examples to show how to calculate the probabilities of events in a
variety of situations. Please go through these examples carefully. If you understand them.
you will have no difficulty in doing the exercises later.

Example 8 : A box contains ninety good and ten defective screws. Let us find the
probability that 5 screws selected at random out.of this box are all good.

Let A be the event that the 5 selected screws are all good.

o test PDF Combine only

Probability on a Discrete Sa
Space ‘

’ This is called selection without

replacement since we do not
replace the first selected digit bac
before the second selection.
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Recall De Morgan's laws from

Unit 1, MTE-04

The adjective ‘unbiased’ attached to
dice implies that ail the sample

points are equiprobable, i.e:, have
equal probabilities of occurrence.
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Now we can choose 5 screws out of 100 screws in [120) ways. If the selected 5 screws are

to be good, théy will have to be selected out of the 90 good screws. This ciin be done in (950)

ways. This is the number of sample points favourable to A. Hence the probability of A

[90!
5
_90x89 x 88 x87x86 0.53.

[IOO)— 100X 99 X 98 x 97 x 96 ~ "

5

Example 9 : A government prints 10 lakh lottery tickets of value of Rs. 2 each. We wouid
like to know the number of tickets that must be bought to have a chance of 0.5 or more to
win.the first prize of 2 lakhs.

The prize-winning ticket can be randomly selected out of the 10 lakh tickets in 10° ways.

Now, let m denote the number of tickets that we must buy. Then m is the number of points
favourable to our winning the first prize. Therefore, the probability of our winning the first

prize, is, -ﬂﬁ.
10

6

1 10 .
=, therefore m 2 BE This means that we must buy at least

, m
Since we want that — >
1062

6
% = 500, 000 tickets, at a cost of at least Rs. 10 lakhs ! Not a profitable proposition at al} !

Example 10 : In a study centre batch of 100 students, 54 opted for MTE-06, 69 opted for
MTE-11 and 35 opted for both MTE-06 and MTE-11. If one of these students is selected at
random, let us find the probability that the student has opted for MTE-06 or MTE-11.

Let M denote the event that the randomly selected student has opted for MTE-06 and S the
event that he/she has opted for MTE- 11. We want to know P(M U S). Accerding to the

. .. 54 69 _ _35 )
classical definition, P(M) = 100° PS) = 100 andPIMNS) = 100" Thus

P(MUS)=PM)+P(S)-P(MN S;

54 69 35 88
100 T 100 ~ 700 ~ 100 = 88

Suppose now we want to know the probability that the randomly selected student has opted
for neither MTE-06 nor MTE-1 . This means that we want to know P[M® N §€]. -

Now,
M‘NS“=MUS)*
Therefore, ’
PM NS =1-PMUS]=1 ;0.88=O.12.

Lastly, to obtain the probability that the student has opted for MTE-06 but not for MTE-1 I,
i.e., to'obtain P(M N S°), observe that M = (M N SYUM NS andthat MN S and M N ¢
are disjoint events. Thus.

P(M)=P(M N'S) + P(M N 5%)
" orPMMN.S)=PM)-P(MNS)

Example 11 : A throws six unbiased dice and wins if he has at least one six. B throws
twelve unbiased dice and wins if he has at least two sixes. Who do you think is more likely
to win?

We would urge you to make a guess first and then go through the following computations.

Check if your intuition was correct.

The total number of outcomes for A is'n, = 6% and that for B is ng=6'2. We will first



calculate the probabilities q A and qg that A and B, respectively, loose their games. Then the Probability on a Discrete Sample
probabilities of their winning are P A=1l—-gqpandPg=1- qp, respectively. We do this Space
because q, and g are easier to compute,

Now A loses if he does not have a six on any of the 6 dice he rolls. This can happen in 56
different ways, since he can have no six on each die in 5 ways. Hence q = 55/60 and

therefore, P, = 1 - (5/6)° = 0.665.

In order to calculate qg, observe that B loses if he has no six or exactly one six. The
probability that he has no six is S 12/‘612 =(5/6)'2. Now the single six can occur on any one

i of the 12 dice, i.e., in 112 ways. Then all the remaining 11 dice have to have a Score, other

than six. This can happen’in 5! ways.

Therefore, the total number of ways of obtaining one six is (112] 5!!. Hence the probébilit'y ‘

. 11
: that B has exactly one six is 125

612
‘f ‘ The events of “‘no six’’ and ‘‘one six’’ in the throwing of 12 dice are disjoint events. Hence
2 "~ the probability
w‘ 1 :
3 ! qB=(5/6)'2+12%EO.381 ~

Thus, Pg = 1-0.381 =0.619.

Comparing P, and Py, we can conclude that A has a greater probability of winning.

Now here are some exercises which you should try to solve.

E9) Two cards are drawn in succession from a deck of 52 playing cards with replacement.
What is the probability that both cards are of denomination greater than 2 and less
than 5?

E10C) If 3 books are selected at random from a shelf containing 5 novels, 3 books of poems
and a dictionary, what is the probability that :

a) dictionary is not selected
b) 2novels and 1 book of poems are selected.

El1) A person has 4 keys of which 6nly one fits the lock. He tries them successively at
random without replacement. This procedure may require 1,2, 3 or 4 attempts. Show

that the probability of any one of these 4 qutcomes is 1/4. v

E12) In an experiment to study the dependence of blood pressure on smoking habits, the
following data were collected on 220 individuals.

Non-smoker Moderate smoker Heavy smoker
High blood 20 40 40
pressure '
Normal blood ' 60 30 30
pressure

One of the persons is selected at random. What is the probability that he is
a) asmoker with high blood pressure

b) anon-smoker with normal blood pressure

¢) asmoker.

E13) Two balanced dice are thrown. What is the probability that the tofal scoreexéeeds 8?

(XS]
(2]

So far we have seen various examples of assigning probabilities to samplé points and have
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Probability on Discrete Sample also discussed some properties of probabilities of events. In the next section we shall talk
Spuces about the concept of conditional probability.

6.4 CONDITIONAL PROBABILITY

Suppose that two series of tickets are issued for a lottery. Let 1, 2, 3, 4, 5 be the numbers on
the 5 tickets in series [ and let 6, 7, 8, 9, be the numbers on the.4 tickets in series II. I hold
the ticket bearing number 3. Suppose the first prize in the lottery is decided by selecting one
of the 5 + 4 = 9 numbers at random. The probablhty that I will win the prize is 1/9. Does this
probability change if it is known that the prize-winning ticket is from series I? In effect, we
want to know the probability of my winning the prize, conditional on the knowledge that the
prize-winning ticket is from series I. :

In order to answer this question, observe that the given information reduces our
sample-space from the set {1, 2, 3, 4 5,6,7,.8,9} toits subset {1, 2, 3, 4, 5} containing 5
points. In fact, this subset {1, 2, 3, 4, 5] corresponds to the event H that the prize winning
ticket belongs to series I. If the prize winning ticket is selected by choosing one of these 5
numbers at random, the probability that I will win the prize is 1/5. Therefore, it seems
logical to say that the conditional probability of the event A of my winning the prize, given
that the prize-winning number is from series I, is

P(A1H)=1/5.

Here P(A | H) is read as the conditional probability of A given the event H. Note that we can
write

P(A1H)= ]jg = JP—(Q)H)

This discussion enables us to introduce the following formal definition. In what follows we
assume that we are given a random experiment with discrete sample space Q, and all -
relevant events are subsets of Q.

Definition 3: Let H be an event of positive probability, that is, P(H) > 0. The conditional
probability P(A | H) of an event A, given the event H, is

P(A|H)-—£TH)H) )

Notice that we have not put any restriction on the event A except that A and H be subsets of
the same sample space Q and that P(H) > 0.

Now we give two examples to help clarify this concept.

Example 12 : In a small town of 1000 people there are 400 females and 200 colour-blind

persons. Tt is known that ten per-cent, i.. 40, of the 400 females are colour-blind. Let us find
the probability that a randomly chosen person is colour-blind, given that the selected person
is a female.

Now suppose we denote by A the event that the randomly chosen person is colour-blind and
by H the event that the randomly chosen person is a female. You can see that

P(A M H) = 40/1000 = 0.04 and that
P(H) = 400/1000 = 0.4.
Then

N )
P(A | H)=ﬂ%§=g%=o,1.

Now can you find the probabilvity that a randomly chosen person is colour-blind, given that
the selgcted person is a male ?

If you denote by M the event that the selected person is a male, then
600

POM) = 2L = 0.6 and
160
8 5 PANM) =52-=0.16.
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Therefore, P(A | i1 = - =yt Probability on a Discrete Sample
(.6 Space

| You must have nouced that P(a | Mi> P(A | H). So there are greater chances of a man
. : being colour-blind s compaied to a woman.

- Example 13 : A munufacturer of autesgbile parts knows from past experience that the _
probability that an order will be compilieed on time is 0.75. The probability that an order is
completed and delivered on time is O.88 Can you help him to find the probability that an
order will be delivered on time given that it is completed ?

Let A be the event rhat an order is delivered on time and H the event that it is completed on
time. Then P(H) = 0.75 and P(A N H) = 0.60. We need P(A | H).

P(ANH) _ 060

PATH) =50 =075

=0.8. ’ ‘

Have you understood the definition of conditional probability? You can find out for yourseif
by doing these simple exercises.

E14) If A is the event that a person suffers from high blood pressure and B is the event that
he is a smoker, explain in words what the following probabilities represent.

! a) P(A|B}
b) P(A° | B)
) P | BY
d) pA°® | BY).

E15) Two unbiased dice are rolled. They both show the same score. What is the probability
that their common score is 6?

We now state some of the properties of P(A | H).
P’1: Forany set A, < P(A | Hys t.
Recall that since A N H < H, P(A N H) < P(H). The required property‘ follows immediately.

72:P(A | H)=0if and only if A N H is a null set. In particular, P(¢ | H)=0and
P(A | H)=0if A and H are disjoint events.

N P3:PA | Hy=1ifand only if P(A N H) = P(H).
In particular, )
PQ|Hy=1andP(H| H)=1
. P4:PAUB|H)=P@A | H)+PB | H-PANB | H).
How do we get P’'4 7 Well, since
(AUBYNH=(AMNH)U(BNH),
P, gives us
PLAUBYNH)=P(ANH)+P(BNH)-P(AN B NH).
Now use the definition of the conditionai probability to obtain P4,
Using P'4 and P3 and P4 of Sec. 6.2.2, we get
. P’S . If A and B are disjoint events, LA U B I H)=P(A | H) + P(B | H)
E and P(A® | H) = 1 - P(A | H)

Compare P, — P’5 with the properties of (unconditional) probabilities given in Sec. 6.2.2.

You will find that the conditional probabilities, given the event H, have all the properties of
unconditional probabilities, which are sometimes called the absolute properties.

27
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Prabability on Discrete sampie We can use the conditional probabiiitics to compute the unconditional probabilities of
Spaces events by employing the following obvious fact, ’

P(AN H):P(H)P(AIH). L {10)
obtained from Definition 3 of P(A 1 H).

Here is an important remark related to (10).

Noe Db for the interpretations of ) . . . )

Co b and A | H), Remark 3 : Relation (10) holds even if P(H) = 0, provided we Interpret P(A | H) = 0 if P(H)
= 0. In words. this means that if the probability of occurrence of H is zero, we say that the
probability of occurrence of A, given that H has occurred, is also zero. This is so, because
P(H) =0 implies P(A N H) = 0, (A M H) being a subset of H,

We now give an example to illustrate the use of Relation (10).
Example 14 : Two cards are drawn at random and without replacement from a pack of 52
playing cards. Let us find the probability that both the cards are red.
Let A| and A, denote, respectively thz events that cards drawn on the first and second draw
are red. Then by the classical definition, P(A|) = 26/52, since there are 26 red cards. If the
first card is red, we are left with 25 red cards in the pack of 51 cards. Hence P(A, | A
=25/51. Thus, the probability P(A; N A,) of both cards being red is
P(A| TV Ay =P(A) P(A, | A))
26 25
=0 222 0.045.
52 51 0
) Relation (10) specifies the probability of AN H in terms of P(H) and P(A/H). We can
extend this relation to obtain the probability, P(A, N A, MN-Az) in terms of P(A)),
P(A, , Ay)and P(A; | A, 1Y Ay). We, of course, assume that P(A,) and P(A| N A, )are
both positive. Can you guess what this relation could be? Suppose we write
: AL () Ad < PlA PAAINA) PAN AN Ay
P, VT AL) = . =
A MAY =PA)) P(A)) P(A; N A,)
Does this give you any clue? This gives us, )
PAATTYA; VA =P(A) - P(Ay | A) - P(A; | AN Ay).
Now let us use this to compute some probabilities.
Example 15 : A box-of mangoes is inspected by examining three randomly selected
mangoes drawn without replacement. If all the three mangoes are good, the box is sent to the
market, otherwise it is rejected. Let us calculate the probability that a box of 100 mangoes
containing 90 good mangoes and 10 bad ones will pass the inspection,
Let A, A, and Az, respectively denote the events that the first, second and third mangoes
are good. Then P(A ) = 907100, P(A,LA) = 89/99, and P(A; 1A N A;) = 88/98 according
to the classical definition. Thus, '
90 89 88
NAY="+.—.—==(727.
PAIN AN AY =106 95 o ,
We end this section with a derivation of a well-known theorem in probability theory, called
the Bayes’ theorem.
Consider an event B and its complementary event B. The pair (B, B) is called a partition of
Q, since they satisfy B N B = ¢, and B U B s the whole sample space Q. Observe that for
any event A, ' S
A=ANQ=AN (BUB°)=(AOB)U(AﬂB°).
Since A M B and A N B€ are subsets of the disjoint sets B and B¢, respectively, they
themselves are disjoint. As a consequence, P(A)=P(AN B) + P(A N B°).
Now using Relation (10), we have
’g : P(A)=P(B) P(A | B) + P(BS) P(A | BY). NE))
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Here we do not insist that P(B) and P(B®) be positive and follow the convention stated in
Remark 3.

It is now possible to extend Equation (11) to the case when we have a partition of
consisting of more than two sets. More specifically, we say that the n sets B, B, ..., B

constitute a partition of Q if any two of them are disjoint, i.e.,
Biﬁﬁqu),i;tj,i, j=1...,n

and their union is £, 1.¢.,

U B, =Q.
T
i=1

We can now write for any event A,
l/ n n
A:AﬂQzAﬁL U Bjj= U (AN By).
j=1 =1
Since A N B;and A N B;are respectively subsets of B; and B, i # j, they are disjoint.
“onsequently by P7,
n
P(A)=Y, P(ANB)
j=1
n
or P(A) = Z P(Bj) P(A | Bj), ... (12)
j=1 ‘
which is obtained by using (10). This result (12) leads to the celebrated Bayes’ theorem,
which we now state.

Theorem 1 (Bayes’ Theorem) : If B;, B,, ..., B, are n events which constitute a partition
of Q and A is an event of positive probability, then

P(B,) P(AIB)
P(B, | A)=——

> P(B) P(AIB)
j=1

feranyr, l€r<n.

Pioof : Observe that by definition,

P(ANB,) -
P(B, 1 A)= ”W
_P(BIPAIB) by (10)
=TT Ray '
_ _PBIPAIB) by (12)

Y. P(B) P(A1B, '
j=1
The proof is complete.

In the examples that follow, you will see a variety of situations in which Bayes’ theorem is
useful. ’ S

Example 16 : It is known that 25 per cent of the people in a community suffer from TB. A

test to diagnose this disease is such that the probability is 0.99 that a person suffering from it

will show a positive result indicating its presence. The same test has probability 0.20 that a
person not suffering from TB has a positive test result. If a randomly selected person from
the community has positive test result, let us find the probability that he has TB.

Let B, denote the event that a randomly selected person has TB. Let B, = BY{. Then from the
given information, P(B,) = 0.25, P(B,) = 0.75. Let A denote the event that the test for the
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This is an example of a Markov
chain. named after the Russian
mathematician A. Markov
(18561922 who initiated their
studdy

This procedure is called Polya’s urn
scheme,
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randomly selected person yields a positive result. Then P(A | B 1) =0.99 and P(A | B, =
0.20. We need to obtain P(B, l A). By applying Bayes’ theorem we get -

pB | A= P(B,)PA | B))
B )—P(B,)P(A|B])+P(B2)P(A|B2)

_025%0.99
0.25x0.99 + 0.75 x 0.20

= 0.623.

Example 17 : We have three boxes, each containing two covered compartments. The first
box has a gold coin in each compartment. The second box has a gold coin in one
compartment and a silver coin in the other. The third box has a silver coin in each of its
compartments. We choose a box at random and open a drawer at random. It contains a gold
coin. We would like to know the probability that the other compartment also has a gold coin.

Let B}, B,, By, respectively, denote the events that Box 1, Box 2 and Box 3 are selected. It
is easy to see that B, B,, B; constitute a partition of the sample space of the experiment.

Since the ques are selected at random, we have
P(B,) = P(B,) = P(B,) = 1/3.

Let A denote the event that a gold coin is located. The composition of the boxes implies that
P(AIB)=1,P(A] By =1/2,P(a | By)=0.

Since one gold coin is observed, we will have a gold coin in the other unobserved
compartment of the box only. if we have selected Box 1. Thus, we need to obtain P(B, | A).

Now by Bayes Theorem
bE. | A= P(B))P(A | B))
' PB)P(ATB)+P®B,) P(A By +P®,) PAl B;)
B (1/3)x 1
/)X 1+ (1/3) x 1/2+(1/3) X 0

=2/3.

Do you feel confident enough to try and solve these exercises now? In each of them, the
crucial step is to define the relevant events properly. Once you do that, the actual calculation
of probabilities is child’s play.

E16) In a city the weather changes frequently. It is known from past experience that a rain
day is followed by a sunny day with probability 0.4, and that a sunny day is followed
“by arainy day with probability 0.7. Assume that the weather on any given day
depends only on the weather of the previous day. Find the probability that

a) arainy day is followed by a rainS/ day
b) it would rain on Saturday and Sunday when Friday was rainy

¢) the entire period from Monday to Friday is rainy given, that the previous Sunday
was sunny.

E17) An urn contains 4 white and 4 black balls. A ball is drawn at random, its colour is
noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are
put in the urn and then a ball is drawn at random. What is the probability that the
second ball is black?

E18) In a community 2 per cent of the people suffer from cancer. The probability that a
doctor is able to correctly diagnose a person Wwith cancer as suffering from cancer is
0.80. The doctor wrongly diagnoses a person without cancer as having cancer with
probability 0.05. What is the probability that a randomly selected person diagnosed as
having cancer is really suffering from cancer?

E19) An explosion in a factory manufacturing explosives can occur because of (i) leakage
of electricity, (ii) defects in machinery, (iii) carelessness of workers or (iv) sabotage.
The probability that

i)  there is a leakage of electricity is 0.20
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i) the machinery is defective is 0.30 Probability on a Discrete Sample

iii) the workers are careless is 0.40 Space
iv) there is sabotage is 0.10

The engineers feel that an explosion can occur with probability (i) 0.25 because of
leakage of electricity, (ii) 0.20 because of defects in the machinery, (iii) 0.50 because
of carelessness of workers, and (iv) 0.75 because of sabotage. Which is the most likely
cause of explosion?

Using the concept of conditional probability, we now introduce independent events in the
next section. ’

6.5 INDEPENDENCE OF EVENTS

From the examples discussed in the previous section you know that the conditional
probability P(A | H) is, in general, not the same as the unconditional probability P(A). Thus,
the knowledge of H affects the chances of occurrence of A. The following example
illustrates this fact more explicitly.

Example 18 : A box has 4 tickets numbered 1, 2, 3 and 4. One of these tickets is drawn at

random. Let A = {1, 2} be the event that the randomly selected ticket bears the number ! or
2. Similarly define B = { | }. Then

P(A) = 1/2, P(B) = 1/4; and P(A N B) = 1/4.
Therefore, P(B | A) = (1/4) / (1/2) = 1/2.

So we have P(B | A) > P(B).

On the other hand, if C = {1,2,3} and D = {1,2,4}, then P(C) = P(D) = 3/4 and P(CND)
= 1/2. Thus,

PD|C)= —;% =2/3, and in this case,

P(D | C) < P(D).

This example illustrates that additional information (about the occurrence of an event) can
‘ncrease or decrease the probability of occurrence of another event” We would be interested
1 those situations which correspond to the cases when P(B | A)=P(B), as in the following
example. :

Example 19 : We continue with the previous example. But now define Hv= {1,2} and
K={1,3}. Then

P(H)=1/2, P(K) = 1/2 and P(H N K) = 1/4.

Hence

P(K | H) = % = 172 =P(K).

In this example, knowledge of the occurrence of H does not alter the probability of
occurrence of K. We call such events, independent events. '

Thus, two events A and B are independent, if
P(B | A)=P(B). ..(13)

However, in this definition, we need to have P(A) > 0. Using the definition of P(B 1 A), we

- can rewrite (13) as

P(A N'B) = P(A) P(B), ’ La(14)

. which does not require that P(A) or P(B) be positive. We shall now use (14) to define

independence of two events.

Definition 4 : Let A and B be two events associated with the same random experiment.

They are said to be stochastically independent or simply independent if

31
P(A N B) = P(A) P(B).
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Probability on Discrete Sample So the events A and B in Example 18 are not independent. Similarly, events C and D are
Spaces also not independent. But events K and H in Example 19 are independent.

See if you can apply Definition 4 and solve this exercise.

E20) Two unbiased dice are rolled. Let
A/ be the event “*odd face with the first die”

A, be the event “*odd face with the second die”’

B, be the event that the score on the first die is 1
B, be the event that the total score is at most 3.

Check the independence of the events
a) A, and A,
b) B,andB,

We now proceed to study some implications of independence of two events Ajand A,
Recall that

P(A)=P(A; N Ay) +P(A, N AS).
Then
P(A; N AD=P(A)) -PA, N A,
Now, if A| and A, are independent, we get
P(A| N A5 =P(A)) {1 - P(A,))
=P(A) P(AS).

Thus, the independence of A, andA, implies that of Ay and AS. Now interchange the roles
of A, and A,. What do you get? We get that it A} and A, are independent, then so are

A§ and A,. The independence of A{ and A, then implies the independence of A and A§
too.

Now here is an interesting fact.
If A is an almost sure event, then A and another event B are independent.

Let us see how. Since A is an almost sure event, P(A) = 1. Hence P(A®) = 0 and therefore,
P(A® N B) = 0. In particular, '
| "P(B)=P(ANB)+P(A°N B) =P(A N B),
One consequence of this is that :
P(A N B) = 1.P(B) = P(A) P(B),
which implies that A and B are independent.'

Can you prove a similar result for a null event ? You can check that if A is a null event, then
A and any other event B are independent.

Now, can we extend the definition of independence of two events to that of the
independence of three events? The obvious way seems to be to call A, A,, Aj independent

ifP(A; N Ay NAj) = P(A,)P(AZ)P(A3). But this doés not work. Because if 3 events are

, independent, we would expect any two of them also to be independent. But this is not
S ensured by the condition above, To appreciate this, consider the case when A=A, =A,

0<P(A)<1,and P(A;) = 0. Then P(A|N A)) =P(A) # P(A) P(A,) = P[(A)]z.
Thus, A and A, are not independent, but PAIN AyNAY)= P(A)) P(A,) P(A,) is satisfied.

S0, to get around this problem we add some more conditions and get the following
definition.
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Definition 5 : 1 hree cvens A Ay and Aj corresponding to the same random experiment Probability on a Discrete Sampl

are said to be stochastically or mutually independent if Space
P(AIN A= P(A)) P(A,)
P(A, M Ay = P(A,) P(A3) ... (15)
P(A;NA)= P(A3) P(A))
and P(A; 0V AN A3)=P(A)) P(A,) P(A,).
Let’s try to understand this through an example.
Example 20 : An unbiased coin is tossed three times. Let AJ- denote the event that a head
turns up on the j-th toss, j = 1, 2, 3. Let’s see if A, Ay and Aj; are independent.
Since the coin is unbiased, we assign the same probability, 1/8, to each of the eight possible
outcomes.
Check that
P(A)=P(A,) = P(A;) =102
P(A|N Ay = P(A,N Ay = P(A;M A}) = 1/4, and
Thus, all the four equations in (15) are satisfied and the events AL A, Agjare mutually
independent.
We have seen that the Jast condition in (15) alone is not enough, since it does not guarantee
the independence of pairs of events,
Similarly, the first three equations of (15) alone are not sufficient to guarantee that all the
four conditions required for mutual independence would be satisfied. To see this, consider
the following example.
Example 21 : An unbiased die is rolled twice. Let A denote the event ““odd face on the
first roll”, A, denote the event *‘odd face on the second roll’’ and A denote the event that
the total score is odd. With the classical assignment of probability 1/36 to each of the sample
oINS, you can easily check that
P(A))=P(A)) =P(A;) = 18/36 = 1/2, and that
Thus, the first three equations in (15) are satisfied. But the last one is not valid. The reason
for it is that P(A;n AN A3) is zero (Do you agree ?), and P(A)), P(Az), P(Aj3) are all
positive. :
If the first three equations of (15) are satisfied, we say that A|, A, and Aj are pairwise
independent, Example 21 shows that pairwise independence does not guarantee mutual
independence. ' :
Now we are sure you can define the concept of independence of n events. Does your
definition agree with Definition 6? ‘ If n events are independent then any
) .25 1< nevents out of them should
Definition 6 : The n events ALA,, ..., A, corresponding to the same random experiment also be independent.
are mutually independent if for all r = 2. canISii<i,<, < i, < n, the product rule
i ,
P(A,-l N...NA)=n P(A)) . (1D
r j=1 i
holds.
Since r of the n events can be chosen in [I:Jways, (17) represents
n} (n n n
+... =2"-n-
conditions. i3
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Try to write Definition 6 for n = 3 and see if it matches Definition 5.

We have alréady seen that if A| and A, are independent, then

Af§ and A, or A and AS or A{ and A$ are independent. We now give a similar remark about
n independent events.

Remark 4:If A, A,, ..., A, are n independent events, then we may replace some or all

of them by their complements without losing independence. In particular, when
Ay, A,, ..., A, are independent, the product rule (17) holds even with some or ali of

Ail’ ceey Air are replaced by their complements.

We shall not prove this assertion, but shall use it in the following examples.

Example 22 : Suppose A}, A,, A; are three independent events, with P(A;) = P; and we
want to obtain the probability that at least one of them occurs.

We want to find P(A; U A, U A;). Recall that (Example 8)

P(A, U A, U A3 =P(A)) + P(A)) + P(A3) — P(A, N Ay) - P(A, U Ay)
~P(A;N A +P(A,N A, NA,)
=P, + P, +P;~ P\P, ~ PPy~ P;P, + P,P,P;
=1-(1-P) 1 -Py(1-Py).

‘We could have arrived at this expression more easily by using Remark 4. This is how we *
can proceed.

= 1 - P(AS N AS N AS)

= 1 = P(AS) P(A9) P(AS) by virtue of Remark 4.
Example 23 : If A}, A, and A are independent events, then can we say that
A, U A, and Aj; are independent? Let’s see.
We have
P(A; U Ay =P(A)) +P(Ay) -P(A| N Ay
=P(A]) +P(Ay) — P(A)) P(Ay)
and P((A, U Ay)) N A =P((A; N AU (A; NAy))
= P(A, N Ag) +P(Ay N Ag) — P(A; N Ay N Ay
={P(A) + P(/;,z) — P(A)) P(A)|P(Ay)

=P(A|; U'A;) P(A;),
implying the independence of A} U A, and Aj. _
Example 24 : An automatic machine producesl bolts. Each bolt has probability 1/10 of being,
defective. Assuming that a bolt is defective independently of all other bolts, let’s find
i)  the probability that a good bolt is followed by two defective ones.

ii) the probability of getting one good and two defective bolts, not necessarily in that
order. :

Let A, denote the event that the j-th inspected bolt is defective, j = 1,2, 3. The assumption of
independence implies that A, A, and A; are independent.

i) We want P(AS N Ay N A3). By Remark 4, we can write

P(AS N AN A5) = P(AD) P(Ay) P(A3)

v
PR
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i) We want to find the probability of »
(ATN AN AU A NASN Ay U(A NA, N A3).

Notice that these events are disjoint and that each has the probability 0.009 (see (i)).
Hence, the required probability is

PAATN A2 N A +P(A] N ASN Ay + (AN A, N AS)
=3%0.009 =0.027.

Example 25 : The probability that a person A will be alive 20 years hence is 0.7 and the
probability that another person B will be alive 20 years hence is 0.5. Assuming
independence, let’s find the probability that neither of them will be alive after 20 years.

The probability that A dies before twenty years have elapsed is 0.3 and the corresponding

probability for B is 0.5. Hence the probability that neither of them will be alive 20 years
hence is

0.3x0.5=0.15,

by virtue of independence.

We now give you some exercises based on the concept of independence.

E21) If A, A, and Aj are independent events, examine for independence the following
pairs of events :

a) Ajand Ay, MNA,

b) A)and AS U A

) A{and AS N AS.

E22) Obtain the probabilities of

a) A] U (Az m A])

b)Y A, N(A§NAY

) A{N(ASNAY)

under the assumptions of E21, if
P(A|) =P(Ay) =P(A;) = 173,

i

\ 8

i 1:23) Suppose that a sample space €2 consists of six permutations of (a. b, ¢) and three

‘ additional points (a, a, a), (b, b, b) and (¢, ¢, ¢). Each one of the nine points is assigned
{ the probability 1/9. Let Ay denote the event that k-th place.is occupied by the letter ¢,
I
t
i
{

k=1,2,3. Are A|, A, and A3 mutually independent events?

E24) Let A}, A,, Ajand A, be four independent events with the same probability 1/3.
Obtain the probability that exactly two of them occur.

Hint : You have to first find the probabilities
| P(A; N AN AS N A, P(A, N AS N AS A
| P(A; N AS N AL N AD, PASN ASN A, N A
PAT N A; MASN A, PAS N A, N AN Al

E25) Let Q= ((a, a), (a, b), (b; a), (b, b)}. Let A, be the event that letter ‘a’ appears at the

k-th place, k = 1, 2. Examine A, and A, for independence under the following
assignments of probabilities.
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Probability on Discrete Sample Sample point

Spaces (a, a) (a, b) (b, a) (b, b)
Assignment 1 1/4 1/4 1/4 1/4
2 1/18 5/18 1/2 1/6

In E25 you must have found that A| and A, are independent under Assignment 1 but not
under Assignment 2. This shows that independence of events depends on the assignment of
probabilities to the sample points and is not their intrinsic property.

The discussion so far has related to a random experiment performed only once. But usually
scientists carry out the same experiment more than once and preferably under identical
conditions. In the next section, we shall consider the extension of our study to cover such
cases which involve repetition of an experiment or which involve performing two or more
distinct experiments.

6.6 REPEATED EXPERIMENTS AND TRIALS

We must mention that we have earlier discussed rolls of two dice or three or more tosses of
a coin without bringingin the concept of repeated trials. The following discussion is only an
elementary introduction to the topic of repeated trials.

To fix ideas, consider the simple experiment of tossing a coin twice. The sample space
corresponding to the first toss is S| =(H, T} say, where H = Head, T = Tail. Similarly the
sample space S, for the second toss is also {H, T}. Now observe that the sample space for

two tosses is & ={(H, H), (H, T), (T, H), (T, T)}, where (H, H) stands for head on first toss
followed by a head on the second toss. The pairs (H, T), etc. are also similarly defined. Note
that €2 consists of all ordered pairs that can be formed by choosing a point from S, followed

by a point from S,. Mathematically we say that Q is the Cartesian product S, x S, (read, S,
cross S,) of §, and S,.

Now consider an experiment of tossing a coin and then rolling a die. The sample space
corresponding 1o toss of the coin is S| = {H, T} and that corresponding to the roll of the die

158, =1{1,2, 34,5, 6}. The sample space of the combined experiment is
Q={(H, 1), (H,2),(H,3), (H,4),.H,S),H,6),
(T, 1), (T, 2),(T, 3), (T, 4), (T, 5), (T, 6)} =S x S,.

Taking a cue from these two examples we can say that if S| and S, are the sample spaces for
two random experiments €, and &,, then the Cartesian product S| x S, is the sample space of
the experiment consisting of both €, and €,. '

Sometimes we refer to S| X S, as the product space of the two experiments.

We are sure that you will be able to do this simple exercise.

E26) Find the sample spaces of the following experiments
a) Rolling two dice )

b) Drawing two cards from a pack of 52 playing cards, with replacement.

Do you remember the definition of the Cartesian product of n(n 2 3) sets? We say that the
Cartesian product ‘

. Slszx...xSn={(xl,...,xn)!xjeSj,j=1,...n}.
Now, if S|, S,, ..., S represent the sample spaces corresponding to repetitions
€], €y, ..., g, of the same experiment ¢, then the Cartesian product Sl X8y, X...x8,

represents the sample space for n repetitions or n trials of the experiment €.

36 We now return to the experiment of two tosses of a coin. The sample space is Q = {(H, H),

{

- “Sample outpit to test PDF Combine only
& SR R T T L . - e S »



: "Sample outpit to test PDF Combine only

(H, T), (T, H), (T, T)| which is the Cartesian product of {H, T} with itself. Suppose the
coin is unbiased so that P{H} = P{T} = 1/2 for both the first and the second toss. Since the
coin is unbiased, we may regard the four points in Q as equally likely and assign probability
1/4 to each one of them. However, another way of looking at this assignment is to assume
that the results in the two tosses are independent. More specifically, we may conisider
specifying P{(H, H)}, say. by the multiplication rule/available to us under independence,
i.c., we may take

P{(H. H)} =P{H]}. P{H]—* —=—,

and make similar calculations for other points.

When such a situation holds, we say that the two tosses or the two trials of tossing the coin
are independent. This is equivalent to saying that the events Head on first toss and Head on
second toss are independent and that we may make similar statements about the other points
also. The following example illustrates the method of defining probabilities on the product
spaces when we are unable (or unwilling) to assume equally likely outcomes.

Example 26 : Suppose the successive units manufactured by a machine are such that each
unit has probability p of being defective (D) and (1 ~ p) of being good (G). We examine
three units manufactured by this machine. The sampie space for this experiment is the
Cartesian product S| X8, x8;, where S*=§, = S;={D, G}, ie.

= {(D.D, D), (D, D, G), (D, G, D), (G,D, D),
(G. G, D), (G,D,G), (D, G,G), (G, G, G)}.

The statement that *‘the successive units are independent of each other’’ is interpreted by
assigning probabilities to points of Q by the product rule. In particular,

P{(D,D, D)} =P{D} P{D} P{D} =p3
P{(D,D,G)} =P{D} P(D} P{G} =P%q
=P{(D,G,D)} =P{(G, D, D)},
P{(G, G, D)} =P{G} P{G} P{D] = (1 - p)*p
=P{(G,D,G)} =P{(D, G, G)},
and lastly,
P{(G, G,G)}) =P{G} P{G} P{G} = (1 - p)*.
Notice that the sum of the probabilities of the eight points in Q is
p*+3pX(1 = p) + 3p(L - p)? + (1 - p)°
3
=fp+(-pf =
which is as'it should be.

Summarising the discussion so far, consider two random experiments €, and €, with sample
spaces S; and Sz, respectively. Let u, u,, . . . be the points of S, and let Vi, V5..., bethe
points of Sy. Suppose py, p,. ..., and gy, qs, . . . are the associated probabilities, i.c., P{y;} =
J; and P{vj} =q;, with p;, q; 2 0, Z pi=1, Z q;= 1. We say that ¢, and €, are independent

i i
experiments if the events **first outcome is u;’’ and the event ‘‘second outcome is vj". are
" independent,
i.e., if the assignment of probabilities on the product space Sy x S, is such that :

P{(u, vj)} = P{uj} P{v;} = p; q;.

This assignment is a valid assignment because P{ (u;, vj)} 20 and
Y Y Pl v)i=Y Y g,
i i
=X 2 g=1
i i

Probability on a Discrete Sample
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Can you sce the parallel between
three independent Bemnoulli trials
and the situation in Example 26?

48

v

. ' Sample outpjit to test PDF Combine only _ )

where the sums are taken over all vaiues of i and J.
Can we extend these concepts to the case of n {n > 2) random experiments?

Let us denote the n random experiments by €8, € Let S, Sy, LS be the

corresponding sample spaces. Let P{ X;} denote the probability assigned to the outcome X; of

the random experiment & We say thate, .. ., €, are independent experiments, if the
assignment of probabilities on the product space S$; X S, X ... x S, is such that

PUG K0 X)) b = P{xy ) Pixy) .. Plx, ).
The random experiments €ps- -, €, are said to be repeated independent trials of an

experiment € if the sample space of €, ..., & are all identical and so are the assignment of

probabilities, it is in this sense that the experiment discussed in Example 26 corresponds to 3
independent repetitions of the experiment of inspecting a unit, where the probability of a
unit being defective is P.

Before we conclude our discussion of product spaces and repeated trials, let us revert to the
case of two independent experiments ¢ 1 and &, with sample spaces S, and §,.
Suppose

S, = {uj,uy,... 1 Ply) =p,iz1

Sy={vi,va ...}, P{vj] =qj,j2 1.
LetA = {ui], Uj,...}and A, = {vjl, Vis - ] betwoevents in S| and S,. Then A XA, is
aneventin §; x S, and

AIXA2=[(ui,vi)lr,szl,Z,... }.

Under the assumption that €| and ¢, are independent, we can write

PlAxA)) =Y T Pl(y; , v)))

T s

=2 Y pig
=2n X g,
=P(A)) x P(A;).

Thus, the multiplication rule is valid not only for individual sample points of S; xS, but -
also for events in the component sample space$ S; and S, also. Here we have talked about v

events related to two experiments. But we can easily extend this fact to events related to
three or more experiments.

The independent Bernoulli trials provide the simplest example of rcpeated independent =
trials. Here each trial has only two possible outcomes, usually called success (S) and failure

(F). We further assume that the probability of success is the same in each trial, and therefore,

the probability of failure is also the same for each trial. Usually we denote the probability of -

success by p and that of failure by g = 1 — p. - :

Suppose, we consider three independent Bernoulli trials. The sample space is the Cartesian
product {S, F} x {S, F} x {8, F}. It, therefore, consists of the eight points

SSS, SSF, SFS, FSS, FFS, FSF, SFF, FFF.
1 .
In view of independence, the corresponding probabilities are
P>, P4, %0, p°q, pa?, pe?, p?, .
Do they add up to one? Yes.

In general, the sample space corresponding to n independent Bernoulli trials consists of 2"
points. A generic point in this sample space consists of the sequence of n letters, Jj of which

areSandn-jareF,j=0,1,.. ., n. Each such point carries the probability pJ q" 7,
irrespective of the arrangement of j S's and (n - j) F’s. Suppose we want to find the

aay
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probability of j successes in n independent Bemoulli trials. We first note that there are i Sp
Jpace

points with j successes and (n — j) failures (we ask you to prove this in E27). Since each such
noint carries the probability p' " 77, the probability of j successes, denoted by b(j, n, p) is

b, n, p)=['j‘]pi " ,j=0,1,...n.

These are called binomial probabilities and we shall return to a discussion of this topic when
we discuss the binomial distribution in Unit 8.

E27) Prove that there are G]points with j successes and (n — j) failures in n Bernoulli trials.

Now we bring this unit to a close. But before that let’s briefly recall the important concepts
that we studied in it.

6.7 SUMMARY

In this rather lengthy unit, we discussed the following main points :
1)  We have introduced you to the axiomatic approach to the definition of probability. In
this approach we assign probabilities P(w;) to the points of a discrete sample space
Q={w,w,...}
such that
i) 0sPlo)<l,j=12,...
1i) ) =
2 Pw)=1.
j .
2)  We have seen how to compute the probability of an event A and have discussed its
various properties.

We have noted that the classical definition of prbbability assigns equal probabilities to
each of the points of a finite sample space.

{5 We have acquainted you with the concept of conditional probability P(A | B) of a
given the event B.
_P(ANB)
P(AIB) = “P(B) ,P(B)>0.
3)  We have stated and proved Bayes"theorem : 5
If B;, B,, ..., B, are n events which constitute a partition of Q, and A is an event of
positive probability, then '

P(B)P(AIB
bes, 142 C2PALB)

D P(B)P(AIB)
1

foranyr,! <r<n.

6)  We have defined and discussed the consequences of independence of two or more
events. 1

o . 73 We have seen the method of assignment of probabilities when dealing with
independent repefitions of an experiment.

e

6.8 SOLUTIONS AND ANSWERS

££1) a) and e) are valid.

b) is not valid as the sum of the probabilitics is less than one. 3¢
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Ez)

E3)

E4)

ES)

E6)

E7)

E8)
E9)

¢) is not valid since P{(ox} <0
d) is not valid since the sum of all the probabilities is greater than one.
a) OSP(a)i)Slfori=1‘2,...,8and

8
Z P(coi) = 1 (using binomial theorem),
1

Therefore, the assignment is valid.
b) i) The probability of finding exactly one bad item
= Play, 0y, , ]

(2

243

~ 1000
ii) P{GGG, GGB, GBG, BGG, BBG, BGB, BBG}

@3(%)(5)3[%%%)

= 1000
If A and B are disjoint, A~ B = ¢ and P3 follows from P2.
ANA°=¢and AUA=Q
Hence PAU A% =p () = |
P(A) +P(A®) = 1 by P3,
P4 follows,
P5 is a simple consequence of P1 and P2, :

a)  Use P6 10 claim P(AUB) =1, and write P(A N B)=1-PA°U BC) to obtain
P(ANB)=1.

b) Use Boole’s inequality
¢) PO)=PQ%)=1_ P(Q) =0,
Use P(A U B) =P(A) +P(B)-P(AN B)

a) violates P4
b) violates PS5
¢) and d) violate the Axiom.

Let S and W also denote the events that they are absent.

Then P(S) = 0.05, P(W) = 0.10, P(S N W) = 0.02. Then a) P(S° NW°) = 0.87,
b) P(S° U W) = 0.98 ang A PSN W% 4+ pisen W)=0.03+0.08=0.1].

Use result (5) in Example 4 to obtain the required probability which is 0.80.

4x4
2x52 =0.0059.

3

E10) a) m/ (13()}50.467.

40
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Ell) Letp,, P2, P3 and p, denote the pro‘babilities that the number of attempts is 1, 2, 3, and Probability on a Discrete Samp

4, respectively. Then, ’ Space
Ixi 1 3x2x1 1
P p = BT X2
IX2xix1
M Py axax1 =

-~

E12) a) 80/200=04
b) 60/200=0.3
¢) 120/200=0.6.

(4+3+2+_Q
36

| e

Ei3) =0.278.

E14) You should first interpret A® and B® and then explain. For example, b) is the
probability that a randomly selected person does not suffer from high blood pressure
given that he/she is a smoker.

E15) Required conditional probability = %% =1/6.

El16) a) 1-04=06

b) 0.6x0.6=0.36

¢) 0.7x0.7x0.7x0.7x0.7= 0.168.
E17) Required probability = (1/2) (4/10) + (1/2) (6/10) = 0.5.
E18) By Bayes’ theorem, the required probability is

0.02 x 0.80
0.02 x 0.80 + 0.98 x 0.05

=0.246.

E19) LetA}, A, Ajand A4 denote the four causes of explosion and E denote the event of
explosion. We need to compute P(A; | E), P(A, | E), P(A, | E) and P(A, | E). We
have P(A;) = 0.20, P(A3) = 0.30, P(A;) = 0.40, P(A) = 0.10 and P(® | A,) =0.25,
P(E | A;)=020,PE | A;)=0.50,PE | A,)=0.75. :

Using Bayes’ theorem, we get
P(A,; | E)=0.181,P(A, | E)=0.218

P(A; | E)=0.327,P(A, | E)=0.273.

. Thus, the most likely cause of explosion is the carelessness of workers.
18 1 '
E20) a) P(A)) =P(A,) = %2
. A _9 1
v and P(Al Az) = g — Z

= PA;NAy)= P(AI) - P(A,), and hence, A | and A, are independent.

b) P(B) =g P(By= =

1
N B,)=—-.
P(B, M B,) 18
B, and B, are not independent.

E21) The pairs in all the three cases are independent. You need to verify that the product
rule holds. This is obvious in a). In establishing b), use P2 and P4. The result in c)

follows on using P(A] N ASNAS = 1 - P(A| U'A, U. Ay), result (5) in Example 4,
followed by algebraic simplication.

E22) a) 11727
b) 8/27

41
c) 8/27
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Verify that P(A|) = P(A,) = P(A;) = 1/3.

PAAINA)=19=PA,NA)= P(A; N A)) and that P(A| N A, M A3) = /9. Thus
A}, A, and A4 are not mutually independent. In fact, this is one more example of
pairwise independence not implying independence.

Each of the probabilities given in Hint is 4/81. The required probability is the sum of

all these six probabilities, i.e., z—?

A, =1{(@, a), (a, b))
AZ = '(av a)! (b, a),
< A N A, = {(a, a))

P(A|NA)#P(A) - P(A,) in Assignment 2.

a) Let S be the sample space of the experiment of rolling a die.
~85={1,23,4,5,6}.
The required sample space = § x S.

b) The required sample space is S x S, where S = {52 playing cards]}.

We have mentioned that a point in the sample space of n Bernoulli trials is a sequence
of n letters, j of which are S and the remainingn-jareF,j=1,2,...,n.

Now consider the situation where we have n vacant slots and Jjcopies of the letter S. In
how many ways can we put these j letters in the n slots ? You know that this can be
done in | n ways. Once the Ss are in place, the remaining vacant slots can be filled

\J

with Fs.

So, in each of these [;1) ways, we have j, Ss and (n - j), Fs occupying the n slots.
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UNIT7 DISCRETE RANDOM VARIABLE
AND ITS PROBABILITY
DISTRIBUTION

Structure
7.1 Introduction
Objectives
7.2 Random Variahie
7.3 Two or More Random Variables

Joint Distributicn of Random Variables
Marginal Distributions and Independence

7.4 Mathematical Expectation

7.5 Variance, Covariance and Correlation Coefficient
7.6 Moments and Moment Generating Function

7.7 Distribution of Sum of Two Random Variables
7.8 Summary

7.9 Solutions and Answers

——————

7.1 INTRODUCTION

We have seen a number of examples of sample spaces of random experiments in the
previous two units. You must have noticed that in most practical applications:a numerical
value is associated with each outcome of a random experiment. Mathematically speaking,
we have a real-valued function defined on the sample space. Such a function is called a
random variable. This unit is devoted to the study of a random variable, defined on a
discrete sample space. We introduce the concept of such a random variable and its
provability distribution in Sec. 7.2. In Sec. 7.3 we describe the Joint probability distribution
of two or more random variables which leads to a discussion of marginal distributions and
independence of random variables. The mathematical expectation (mean), variance of a
random variable, covariance and correlation of two random variables are discussed in
Sections 7.5 and 7.6, respectively. Then we generalise these concepts to introduce moments
and moment generating functions. You have already come across these terms in the context
of a frequency distribution in Block 1. Here we are going to discuss them in the context of a
discrete probability distribution. We conclude this unit with an introduction to the problem
of obtlaining the distribution of the sum of two random variables,

Objectives

A study of this unit wouid enable you to : .

® define a random variable and specify its probability distribution,

@ specify the joint distribution of two or more random variables,

® obtain their marginal distributions and examine them for their independence,

define and calculate the means, variances, covariances and correlation éoefficients of
random variables,

define moments and obtain moment generating functions,

@ obtain the probability distribution of the sum of two random variables,
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We could be also interested in the
number X of girls in familes with
three children.

X = k means that there are k heads in
the outcome.

IX=k).k=0,1.2, 3, is a subset of
Q, and hence is an event.

44
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7.2 RANDOM VARIABLE

In the first two units of this block we have introduced the concepts of a random experiment,

associated sample space and probability of an event. With the help of these we study the
uncertainties associated with such experiments. We usually find that a numerical
measurement or quantity is associated with a random experiment. Consider the following
examples :

1) A person invests Rs. | in purchasing a lottery ticket. He either wins the first prize of
Rs. 100 or loses his rupee. His net gain is either —1 or 99. This net gain cannot be
predicted in advance.

2)  The authorities of IGNOU cannot predict in advance the number of studgnts who
would join and complete this course. This number couldbe 0, 1,2, .. ..

3)  The number of calls that a telephone exchange would receive ina speéiﬂed time
intervalcanbe 0, 1, 2,. ...

4)  The total number of defects in a motor cycle coming off a production line can be any
number like 0, 1,2, .....

4]
~

The maximum temperature of Delhi on June 05, can be anywhere between 40° and
50° C.

All these examples have one common feature. They describe a numerical characteristic
associated with a random experiment. This characteristic depends on the outcome of the
experiment and therefore its value cannot be predicted in advance.

The numerical characteristic associated with a random experiment is a variable quantity
which behaves randomly and so we may call it a “random variable”. This is of course, not a
technical definition of the term “random variable”.

In order to make our ideas precise, we consider an example. Suppose we are interested in the
number X of heads obtained in three tosses of a coin.

The sample space 2 consists of the eight points
®; = HHH, o, = HHT, w; = HTH, w4 = THH, w5 = TTH, oy = THT,
o, =HTT, &g =TTT.

L et us denote by X(wj) the number of heads obtained when the outcome of our experiment is
o;, where j=1,2,....8. You can easily check that

X(wy) =3, X(0;) = X(ws) = X(ay) =2,
X(ws) = X(0g) = X(e) = 1, X(00g) = 0

Do you agree that, the number X of headsjin three tosses of a coin is a function defined on
the sample space Q7 It assumes the values 0, 1, 2 and 3, as you have been above. Observe,
now that .

(0 iff the outcome is g
1 iff the outcome is @, W¢ Or G4
2 iff the outcome is ®,, @3, or (n-,;
3 iff the outcome is ®,.

We can, therefore, make the following identification of events:
(X =0} ={ag}, [X=1] = {ag, 0, 07}
[X = 2] = {0y, w3, 0}, [X = 3] = (o).
Suppose now that
Plo;} =P{w,) =.". . =Plawg} = 1/8.
Then because of the above identification of events [X =j},j =0, 1,2, 3, we can write
P[X =0] =P{wg] = 1/8, P[X = 1] = P{ws, 0, ®;} = Plas} +
P{oy) + P{w;} =3/8,



PIX=2]=3/8
and P[X =31 =1/8.

shere we read P[X = j]as “‘probability that X equals . Have you noticed that X =]l
= 0. 1,2, 3 are mutually disjoint sets, and that

3
U X=j1=Q7
j=0

Also note that
P[X=0]+P[X=1+P[X=2]+P[X=3]= 1,

which is as it should be (see Axiom in Unit 6).

row let us sum up and list the essential properties of the number X of heads obtained in
three tosses of a coin.

i) Xis afunction defined on the sample spéce Q.

if) Tt assumes a finite number of real values.

iii) We can assign a probability to the event that X assumes a particular value.
iv)  The sum of the probabilities that X assumes tﬁe different values is or;e.

in this unit (and in this block) we shall restrict our attention to discrete sample spaces. So, on
the basis of the above discussion we give the following definition.

Definition I : A random variable is a real-valued function on a discrete sample space €.

in what follows we shall denote random variables by capital letters, X, Y, W, U, V..., with
or without suffixes. The value of a random variable X at a point @ in the sample space Q,
will be denoted by X (w). We shall also write r.v. for random variable.

Recall that a discrete sample space has either a finite number of points or its points can be
arranged in a sequence. Since an r.v. is a function on the sample space, it can take either a
finite number of values or its values can be arranged in a sequence. Suppose, therefore, that
anr.v. X takes the values x; X5..... Denote the probability P[X = xj] that X takes the

value x; by f(x;), j=12,..... Then we have the following definition.

Definition 2 : The function f(xj) =P[X= xj],j =1,2,..., defined for the values x; X,,...
assumed by X is called the probability mass function of X.

Sometimes it is also called the probability distribution of X.

Do you agree that f(xj) > 0? What about the sum

fx)+f(xy)+...7

Now X is a function from € to R. Therefore, the sets [ X = xj] ={lone QI X(w)= xj},j =1,
2, ..., are all mutually disjoint. Because, if

we [X=x] N [X = x,] for some j #k, then
X(w) =X and X () = x,, where Xj # Xy
this is impossible since X is a function.

Further, U [X = xj] =Q.
i

Hence. Y, f(x) = > P[X=x] =P[U[X =x;]]
i i b

=P(Q)=1.
We now give some examples concerning probability mass functions.

Example 1': We have seen that the probability mass function of the r.v. X denoting the
number of heads obtained in three tosses of a coin is,

f(0) = 1/8, f(1) = (2) = 3/8, f(3) = 1/8.
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Example 2 : 41 unbiased die is rolled twice. Let X denote the tiial score so obtained. The
sample space of this experiment is the set Q = {(x, y) I x,y = 1,... 6} of all ordered pairs
(X, y), x being the score obtained on the first throw and y that on the second throw. Each of
the 36 points in €2 carries the probability 1/36. Now what values does X take © X tuke the
values 2, 3,. .., 12. In the following table we identify the subjects corresponding to the
events [X =jI,j=2.3, ..., 12, as well as the corresponding probabilites, f(2), . . . f(12).

Table 1 : Probability Mass Function of X

L0 Bl | Subset of ©2 £G)=P X = ]
T =y | (. 1136
3 =3 {(1.2), 2. D) 2/36
ﬁ 4 (X = 4] (1,3 (2.2), 3. 1)} 3/36
s (X =5] [(1,4) (2,3), 3, 2), (4, 1)) 436
e i [X=6] 1, 5),(2,4),(3,3),4.2), (5, ) : 5/36
7 (X =7 [(1.6), (2, 5), 3, 4), (4, 3), 5, 2), (6, DI 6/36
g (X = 8] [ (2.9, (3. 5). (4,4),(5,3),6.2) ) 5136
] 9 [X=9] {(3,6),(4,5),(5,4),(6, 3)} 4/36
T (X = 10] (4, 6), (5,5), (6, )] 3/36
l [ [x =11} (5, 6),(6, 5)} 2/36
2 x= L e 136

You can see that f(j) > 0 for all j.
You can also check that f(Z) + f(3) + .. . f(12) = 1.
Example 3 : An r.v. X takes the values 1, 2, . . . . k, with probabilities
PIX=jl=f)=cj,j=1...,k
Let us find the constant ¢ such that f(j) is a probability mass function.
If f is a probability mass function, we must have
f(H+f2)+... +fk)y=1.

e.cfl+2+. . +ki=1,

(e 3
fe.c »‘—-:2_.1 = 1, implying that ¢ = i\‘(k—:_—l) Clearly, ¢ > 0,

which implies that {(3) > O—Vj . Thus, the probability mass funciion of X is

.
il ek

o~ ‘
Yoy

Now you can extend the arguments used ir Example 3 to solve this exercise.

El) * Anr.v. X takes the values 0, 1, 2, . . . with probabilities
fG)=cp).j=0,1,2,...,

where (0 < p < [. Determine ¢ ruch that f(j) is-a probability mass function.

In E1 you must have seen that f(j)s are terms of a convergent geometric series. Therefore,
we say that the r.v. X with the probability mass function in E1 has a geometric distribution.

Let us return to the discussion of the three tosses of an unbiased coin. The r.v. X, denoting
the number of heads so obtained, has the probability mass function

1 3 3 1
Oy =2 () =3.f2) =4, f3) =7

'

Suppose we want to know the probability P[X <2]. Since X <2 iff, X=0or1or2,and
since the events [X = 0], [X = 1] and [X = 2] are disjoint, we can write,

P[X<2]=P[X=0]+P[X=1]+P[X=2]
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_1,3.3.7
T8 8 8§
Similarly, we can obtain the probability that the sum of the scores obtained by rolling a die
twice is greater that 8. In fact, for r.v. X of Example 2,

P[X>8]=P[X=9]+P[X =10] +P[X = 11} + P[X = 12]

3 2 1

36361 36

4,
36
S
18°
More generally, let H be any subset of the set of possible values of an r.v. X. Then

PIXe Hl= 3} f(x).

X € H

using the properly P7 or P8 of Unit 6. Here the sum is taken over all points X in the

subset H.
Suppose we have a random variable X assuming values X, X2, ... with probabilities f(x,),
3 fx), ..., respectively. You may also visualise this as an illustration of a frequency

distribution. The values x| x,, ... assumed by the random variable correspond to the values
of the variable or to mid-values of the class-intervals, and the probabilities f(x), f(xy), . ..

play the role of relative frequencies. We will find this interpretation useful when studying
expectation and variance of a random variable.

In what follows, we shall study the properties of a random variable only in terms of its
probability mass function. That is, we may not always refer to the underlying sample space
or to the specification of the function on the sample space which yields random variable
with specified probability mass function. However, we can always visualise a random
experiment which leads to a random variable with specified probability mass function. To
see this, imagine a box containing cards bearing the numbers Xp» Xy ... , and let f(xj) be the,

proportion of cards bearing the number X;,j=1,2,....If we choose one of the cards at
random from this box, then it will bear the pumber X with probability f(xj),j =1,2,....

Thus, we have a random experiment which yields a random variable with a specified
probability distribution. Did you notice that we said that we can visualise a randomn
¢xperiment and not that we can construct an experiment? This is because we will not be
able 1o construct the box or any other mechanical device if some or all of probabilities f(x,),
t(x5), . . . are irrational numbers or if the discrete random variable takes infinitely many

4 values.

Thus, although for technical reason it is necessary to consider the sample space on which
ourr.v. is defined, all its properties can be studied with the help of only the probability mass

J function. In what follows, we shall use the short form p.m.f. for probability mass
function.

But before we go any-further, it is time to do some exercises.

E2) Let X, be the score obtained on the first throw and X, be the score obtained on the
second throw of an unbiased die. Define W = X} = X,. Obtain the p.m.f. of W,

(Hint : Follow the method of Example 2.)

E3) Three cards are drawn without replacement from a deck of 52 playing cards. Find the
R p-m.f. of the number Y of spades in the three cards.

E4) A person has 4 keys with which to open a lock. We selects one of the keys at random
from the 4 keys on the first attempt. Subsequently, he discards the keys already used
and selects one key at random from the remaining keys. He may require 1,2, 3 or4
attemnpts to open the lock. Obtain the probability distribution of the number of
attempts. ’
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Recall that you have already come
across joint frequency distributions
in Unit 4.
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If you have done these exercises, you would have got a fairly good grasp of p.m.f. Next we
study the joint distribution of random variables.

7.3 TWO OR MORE RANDOM VARIABLES

There are many situations where we have to study two or more r.vs. in connection with a
random experiment. The following are some examples of such situations.

i) Astore sells two brands, A and B, of tooth-paste. The sales X and Y of brands A and
B, respectively, in one week are of interest. Here X and Y are r.vs., both taking
values 0, 1,2. ..

ii)  Let X denote the number of boys born in a hospital in one week and Y that of girls
born in the same hospital in the same week. Then X and Y are r.vs., both taking the
values 0, 1,2 ...

i) A group of 50 people is vaccinated against a disease and another group of 40 people is
not vaccinated. Let X and Y denote the number of people affected by the disease from

the two groups. Then X and Y are r.vs. taking values 0, 1...50,and 0, 1 . .., 40,
respectively.

iv)  Suppose we classify the persons according to the day of the week they were
born. If X, X, ..., X5 denote the number of students with birthdays on Monday,
Tuesday, . . .., X5 arer.vs. taking
values 0, 1, .. ., 100 subject to the restriction X; + X, +. ...+ X; =100.

.» Sunday from a class of 100 students, then X, .

We begin this section by describing methods of studying the joint distribution of two or
more random variables.

7.3.1 Joint Distribution of Random Variables
Let us consider the following artificial example.

Example 4 : A committee of two persons is formed by selecting them at random and
without replacement from a group of 10 persons,.of whom 2 are mathematicians. 4 are
statisticians and 4 are engineers. Let X and Y denote the number of mathematicians and
statisticians, respectively, on the committee. The possible values of X are 0, 1, 2, which are
also the possible values of Y. Thus, all the ordered pairs (x, y) of the values of X and Y are
(0,0), (9, 1),(0,2),(1,0),(1, 1), (2,0),(1,2), (2, 1) and (2, 2).

The total number of ways of selecting two persons from a group of 10 persons is 120 1: 45.
Since the persons are selected at random, each of these 45 ways has the same probability,

%. Consider the event [ X = 1,'Y = 1] that the committee has one mathematician and one

statistician. One mathematician can be selected from two in [1 ]= 2 ways and one statistician

can be selected from 4 statisticians in (1 )= 4 ways. Hence the total number of committees

with | mathematician and | statisticianis 2 x4 =8. Thus P[X=1,Y=1}= %
To obtain the probability of the event [ X =0, Y = 1], observe that if X =0, Y = 1, this
means that 1 statistician is on the committee and no mathematician is on it. Then the other

person on the commiittee has to be one of the 4 engineers. This engineer can be selected in

[é:j: 4 ways. Hence

P[X=0,Y=1]= 45 =25
Similarly, we can obtain
4
P[X=0,Y=0]= : =5
' 45 45
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2
P[X=0,Y=2]=‘Z§“=E

2\(4
PIX=1,Y=0]=- 45 =Z§

2

2) 1
P[X=2,Y=O]=45 =5

Since the committee has only two members, it is obvious that there are no sample points
corresponding to the events [X =1, Y=2],[X=2,Y = 1} and [ X =2,Y =2]. Hence, their
probabilities are all equal to zero

We now summarise these calculations in the following table.
Table2: P[X=x,Y =y] for x,y =0, 1,2.

M~ y 0 1 2

| =

? 6/45 16/45 6/45
i _ 8/45 8/45 0

| 2 1/45 0 0

Note that if we denote by f(x, y) the probability P[X = x, Y = y}. the function f(x, y) is
defined for all pairsi(x, y) of values x and y of X and Y, respectively. Moreover,

f(x,y)=20

and

2 2
> Y fxy=1.
x=0 y=0

We say that the function f(x, y) is the joint probability mass function of the r.vs. X, Y. More
generally, we have the following definition.

*efinition 3: Let X and Y be two r.vs. associated with the same random experiment. Let
Xy« X, . . . denote the values of X and y,, y,, . . . denote those of Y. The function f (xj, Yi)

defined for all ordered pairs (X}, ¥ J. k=1,2.. . by the relation
f(x;, i) =P[X =x;, Y = y; ]

is called the joint probability mass function of X and Y.

Note that by definition,
f(x; v 20

and
Y fxpy=1.
i ok

Moreover, we should clarify that [X = X;, Y =y, really stands for the event [X = xj]
N{Y =y,]and that [X = X5, Y=y, ] is a simplified and accepted way of expressing the
intersection of the two events [X = xj] and [Y =y, ]. Notice also that in Example 4, we had

used x and y as the arguments of the p.m.{. and in the definition given above we are using
o x; and y, as the arguments. We shall use both notations and trust that it will not cause any

confusion.
Now here is an example.
Example § : Suppose X and Y are two r.vs. with p.m.f.

fx,y)=c(x+y),x=1,2,3,4,and y = 1, 2. What do you think is the value of ¢ ?

: Sample output to test PDF Combine only




Probability on Discrete S o
Spaces

¢ should be such that ¢ > 0 and

4 2
Z Z f(x,y)=1.

x=1 y=1

The left side of the above equation is

4 2 4
¢ 2 (x+y)=cy, fx + 1)+ (x +2))
x=1 y=1

x=1
4
=c Y (2x+3)=32%.

x=1

Hence, ¢ = 1/32 and the joint p.m.f. of X, Y is
oy = * 5 = L2 ey =12

Let ué also obtain P[X = 2], P{Y = t}and P[Y = 2].

Since Y takes the two values | and 2, we can write
[X=2]={X=2,Y=1]U[X=2,Y=2].
Moreover, [ Y = 1] and [Y = 2] are disjoint events and therefore the events [X =2,Y = 1]
and [X =2, Y = 2] are also disjoint. Hence,
P[X=2]=P[X=2,Y=1]+P[X=2,Y=2]
3,41
32 32 32
Similarly,
PlY=1]=P[X=1,Y=1}+P[X=2,Y=1]
+P[X=3Y=1]+P[X=4,Y=1]
2 3 4 5 14

RETRETRE AR TRE TS
Now since Y takes only two values 1 and 2.

14 18
PIY=2]=1-PlY=1]=1-35=2.

Note that P[Y = 1] = % and P[Y =2] = % specify the p.m.f. of Y when X and Y have the

given joint p.m.f. It is called the marginal probability mass function of Y. We will discuss
this concept in more detail in the next section.

Example 6 : Let us obtain the conditional pfobability P[X =4|Y= 2], that is, the
probability that X = 4 given Y = 2 for Example 5.

By definition of the conditional probability,

P[X =4, Y=2]

P[X:4IY=2]= PLY = 2]

_6/32 1
T18/32 7 %

Examples 5 and 6 illustrate that we can obtain probabilities of events associated with r.vs. X
and Y by using the joint p.m.f. Hence, as in the case of a single r.v., the joint pmf. of X
and Y is said to specify the joint probability distribution of X, Y. It is therefore enough to
specify the joint p.m.f. of X and Y to answer any question about them.

The concept of joint distribution of two r.vs. is easily extended to that of three r.vs. X, Y and
Z. We now need to specify the p.m.f.
f(xj, Yo ) =P[X = Xjs Y=y.,Z=2]

St for all ordered triples (xj; Yk Zj)» of values Xp Yk and z; of X, Y and Z.
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We can now further exten these CONCEPIS 10 AT Man tiee 1.vs. But we omit the details Discrete Random Variable and

since, in this course. we shall be mostly dealing with joint distribution of a pair of r.vs. See if ~ Probability Distribution
you can solve these exercises now

ES)  The joint p.m.f. f(x, y)oftwor.vs. X and Y is given in the following table.

| <X ~ y | o 1 2 3

- N

I 0 1727 3/27 3/27 1/27
o 3/27 6/27 3/27 0

2 327 3/27 0 0

- 3 um ) 0 | 0 0

a) Obtain (i) P[X =2}, (i) PLY =0] ii) P[X = LY <2] (iv) P[Xs2.Y=0]
WVPX=2]Yv=0)

b) Are the events [X = 2]and [Y =0] independent ?
¢) Calculate P[X + Y = 4].
E6) The joint p.m.f. of two r.vs., X, and X, is given by

i 10! (1/2)*1 (1/8)*2 (3/8)10- %1 —x,
f(x), x5} = T e e,
Xt Xt (10— %) = x,)!
where x;, x, =0, 1, ..., 10, subject to the restriction that X; +x,<10.

Find the following probabilities
a) P[X;=3]

b) P(X,24]
o) PIX,=3]X,24]
d) P[X,=3,X,>5].

Let’s turn our attention to marginal distributions now.

7.3.2  Marginal Distributions and Independence

In unit 4 we have discussed the notion of marginal frequency distributions, where we fix one
of the variables and study the frequency distribution of the other. We now study the p.m.f,
of the marginal distribution. Later we shall use this to define independent random variables,

Let X and Y be r.vs. with values Xy Xy -..andyy,y, ..., respectively and joint p.m.f.
f('xj. Yi)=P[X= Xjs Y= Yl '

We define new functions g and h as follows :

gD =D fx, v j= 1.2, O
k

and h(y) =Y, foy k=1,2,.... )
j .

In (1), we keep the value X of X fixed and sum f(xj, ¥i) over all values Yi of Y. On the other
hand, in (2), ¥y is kept fixed and f(xj, ¥i) 1s summed over all values of X. We wish to
interpret the function g(xj) defined for all values, X of X and the function h(y,) defined for
all values y, of Y. Notice that both g and h being sums v non-negative numbers, are

themselves non-negative. Further,

2 gx) =3 X fixi,y) = 1.
i ik

| Sample output to test PDF Combine only

51



Probability on Discrete Sumple

Thus, &(x;) hus all the properties of a p.m.f. Similarly, you can verify that h(y, ) also has all
the properties of a p.m.f. We call these the p.m.f. of the marginal distributions of X ang Y.

Spaces
as you can see trom the following definition.

Definition 4 : The function g(x; defined for all values X; of the r.v. X by the relation

-3
b

is called the p.m.1. of the marginal distribution of X. Similarly, h(y,) defined for all the
values y, of the r.v. Y by the relation

h(yk) = z f(xj, Vi)
i
is called the p.m.f. of the marginal distribution of Y.
Let’s try to understand this concept by taking an example.

Fxample 7ot X, Y he two v, with joint p.m.f. f(x, y) defied by the following table.
Table 3 : Joint p.m.f. f(x, v)

\ y 0 ] 2 3 g(x)
L

0 0 1/6 1/12 1/12 173

1 1/24 1/24 1/8 0 5124
2 5/24 4724 1724 1724 11724
h(y) 6/24 9/24 6/24 34 1

The marginal p.m.f. g(x) of X is obtained by summing ali the elements in each of the rows,
Similarly, the marginal p.m.f. of Y is obtained by summing all the elements in-each of the
columns. This procedure is a straightforward consequence of the definition of g(x) and of
h(y) when the joirit p.m.f. is defined by the above tabular form. In fact, we have

g =P[X=0]= 173
g()=P[X =1]=5/24
g2} =P[X=2]=11/24
Similarly,
h(0) =P[Y =0]=6/24
h(1) =P[Y = 1} =9/24
h(2) = P[Y = 2] = 6/24
h(3) = P[Y = 3] = 3/24 :
In this example, we have g(x) = P[X =x] and ‘h(y) =P[Y =y] for all x and y.

Is it a coincidence ? No.

Notice that in the general situation,
g0 =2 fxpy)=Y, PIX=x,Y=y,]
k k

and recall that the events [X = x; Y =y, ] for fixed x;and different y, values are disjoint.
Hence, by property P7 and P§ o% Unit 6,

8(x;) =P [u [X=x, Y= ykl]
k

=P[X=Xj]j= 1,2,...
Similarly,
hiy)=P[Y=y ] k=1,2,...

DF Combine onl
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":lill"[)lf 8 Lol the Joint p-n.L. of X and Y be given by f(x, y) = Xty forx=01721 and  Discrete Random Variabie and
. R 30 TV 4, 4,0, s :

Probability Distribution

y=0,1,2.
Then
g(x) - }“ f(x,yi - Itx, 0) *?‘(X. I)H(,‘(,Z]
Y
L X X+] x+2
307 30 7 30
X+ 1 .
=30 ,x=0,1,2,3.
Similarly,
h(y) =3 f(x, y)
X
¢ =00, y) + (1, y) + (2, y) + (3, y)

=X 1ty 2+y 34y
T307730 " 30 Y ag

2y +3
=, y=0,1,2.
5 Y 1

The discussion, so far, tells us that we can determine the marginal p.m.fs. from a knowledge
of the joint p.m.f. of the two r.vs. But is it possible 1o determine the joint p.m.f. froma -
knowledge of the marginal p.m.fs. ? To answer this, we consider the following two distinct
joint p.m.fs. f, and f, and the corresponding marginal p.m.fs. The first p.m.f. is given by

£, (0,0) = 1/4, £,0,1)=1/4

fi (1,0 =18, f; (1, 1)=3/8.
The corresponding marginal p.m.fs. are

g8 O=12, g (=12,

hy (0)=3/8, h, (1)=5s.
How we define the second p-m.f. as

f, (0, 0) = 3/16, f, (@, 1) = 5/186,

f5 (1, 0) = 3/16, f, (1, 1) = 5/16.
For this joint p.m.f., the marginal p.m.fs. are

8 O0)=172, g, (1)=1/2,

h, (0) = 38, hy (1) =5/8.

So, what do we find ? Although the joint p.m.fs. f| and f, are different, they lead us to the
same marginal p.m.fs., 81 = 8 hy =h,. In other words, the marginal distributions of X and

Y do not determine their Joint distribution uniquely. However, there is one particular
situation where this is possible. We now discuss this situation in detail.

Let X and Y be two r.vs, with Joint p.m.f. f(x, y) specified in the following table :
Table 4
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. E8) Obtain the marginal p.m

VYol | [y = s L Bt )~ = )= hand
b3 = MY = 3] = 112, we have the refation

P(X=1,Y=13] =1f(1,3) = g(1) h(3)
=P[X =1]P[Y=3].

This means that the events {X = 1] and [Y = 3] are independent. In fact, notice that Table 4
is so constructed that

P[X =x, Y =yl =f(x,y) = g(x) h(y)
<Px=x]P[Y =Y]

forallx =0, 1,2, and y =0, 1,2, 3. In other words, for all possible values x of X andyof Y.
the events [X = x] and [Y =y] are independent. In such a situation, we are justified in
asserting that the r.vs. X and Y are independent r.vs. More formally, we have the following
definition for independent r.vs.

Definition 5 : Let X and Y be two r.vs. with joint p.m.f. f(xj, ) and marginal p.m.fs. g(xj)
and h(y,) of XandY, respectively. If for all pairs (X, Vi

f(xj, Vi) = g(xj) h(yk)’ .3
ihen we sy (hat (e T.VS. X and Y qre s[ochastically independent or, simply, independent.

Now we give an equivalent definition in the following remark.
Remark 1': An equivalent definition of independence of X and Y would be as follows : The
r.vs. X and Y are independent if for all pairs (xj, ¥y)» the events X= xj] and [Y = y,] are
independent, i.e., if

P[X=xj,Y=yk]=P[X=xj] PlY =yl RN C))
for all pairs (xj. Yi)-
Note that we have defined independence of .vs. in terms of independence of events. Thus,
no essentially new concept is involved in the definition of independence of two r.vs. except

that the product relation (3) or equivalently the product relation (4) should hold for all pairs
(x, y) of values x of X and y of Y.

Note that the r.vs. X and Y of Examples 7 and 8 are not independent. You can check that
£(0, 0) # g(0) h(0) in Example 7.

’

Similarly, in Example 8,

£(1,2) # g(1) h(2).

With this baékground, can you extend the concept of independence of two I.vs; tO that of
n(>2) r.vs? ‘

Definition 6 : Let X, , . . . , X, be nr.vs. They are said to be independent if
PIX, =X, - - > X = %] =PIXy =x) P[Xy=x%,] .- . P[Xp= Xl

for all n-tuples (x,, . . - » Xp) of values X; of X|,xp0fXp,. .- X, of Xy

If you have followed the ideas introduced in this section, then you should be able to solve
these exercises. '

E7) Determine the value of ¢ so that the following functions represent the joint p.m.f. of
ther.vs. Xand Y. .

a) f(x,y):c,x=1,2,3,y=1,2,3.

b) f(x,y)=c(x2+yD x=-11y=-22.

c) f(X,y)=C(X+y+1),x=0,1,2,3,y=0,1,2.

fs. of X and Y in each of the cases of E7.

o e e s b ~f tha caces Of E7.
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E10) Suppose the r.vs. X and Y have the joint p.m.f. f(x, y) specified by the following table

) y 0 I
l (.20 0.13
2 0.20 0.30
N R 0.10

a)  Obtain the marginal p.m.fs. of X and Y.

by Determine if X and Y are independent.

So far. you have seen that the p.m.f. of one or more random variables can be visualised as
their frequency distribution where probabilities correspond to relative frequencies. You also
know that given a frequency distribution, we can find its mean, variance, covariance and
moments. Let us study these concepts for the p.m.f. of ar.v. now.

i4 MATHEMATICAL EXPECTATION

Suppose that the scores obtained by five students in a class are
40, 50, 55. 60 and 75.

What is the average or arithmetic mean score of these five students ? This average is

(40+50+555+60+7‘5)=56.00

The problem becomes a little more complicated if we have the following frequency
distribution of the scores of 100 students in the class.

[ score | 40 50 55 60 - 75

tﬁl;;equency l\ B 10 15 35 25 15

v the usual formula you can compute the average score as

1
100

=57.00

{‘10><40+15x50+35.x55+25><60+15x75}

However, let us rewrite this in a slightly different form as follows. The required average is

10 15 o 35 eox B g5l
40><100+50><100+55*lm+60x100+75x100.

Note that the fraction 10/100, 15/100, 35/100, 25/100 and 15/100 are, in fact, the relative

. frequencies or the proportions of the students who obtain the scores 40, 50, 55, 60 and 75,

respectively.

As you know, the arithmetic mean is a measure of central tendency giving a single number
around which the observations are distributed. Now we want to define a similar measure of

central tendency for the probability distributions of ar.v. X, which assumes different values -

with their associated probabilities. The only difference is that the role of relative frequencies
is now taken over by the probabilities.

The simplest situation is to consider a r.v. X which takes two values 1 and 2, and suppose

that P[X = 1] =1/3 and P[X =2]= 2/3. The mean, or the mathematical expectation, of this

r.v. X is defined to be
1

2
1.3+2.3_

W |tn

t to test POVo@dhabid is@nyaverage value and is not necessarily a possible value of the r.v. X (see

Example 9).

Discrete Random Variable and it:
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Probability on Discrete Sample Suppose now that a r.v. X takes a finite number n of values x,. X2+ .., X, with probabilities
Spaces
paces f(x)), f(x,), . . ., f(x,).

Then we defipe the expestatin of X 4

i i,fi(liugﬂq‘,) AN

= X X; .f(;;j) ... (5
j=1
Suppose now that the r.v. X assumes an infinity of values X1, X5, ... with associated
probabilities f(x,), f(x3), - . . The expectation of X is now defined by the infinite series.
E(X) = Xy f(x;) + Xp f(xo) +. ..
‘The symbot E(X) is read as the
expectation of X. g
- = xf(x) ... (6)

=1

oo
provided the infinite series converges absolutely, i.e., provided Z | X; | f(xj) isa
j=1
convergent series.

Notice that if Z l X | f(xj) Is a convergent series, then
j

A series Z ajis called a | EX)| =] Z X; f(xj) ,
i

J

n
convergent series if S, = 2 a

- SZ'let(xj)<oo,

tends toa finte limit as n — 0, But j
do'nt spend much time over this . . .
definition. You will be asked to sum Le. E(X) is a finite number or we say that E(X) is finite,

iy geowmetric series in this course.
Formally, we have the following definition which is valid both when X assumes a finite
number of values and when it assumes a countably infinite number of values,

Definition 7 : The expectation E(X) of the r.v.X assuming values x,, x,, . . . with
probabilities f(x)), f(x,), ... is given by

EX)= Y xPX=x]=Y x, f(x)),
j j

provided 3 | x; | f(x;) is finite.
j

We shall not discuss the definition of E(X) whe the infinite series 3 | x; | £(x;) does not
converge. The discussion of such cases is beyond the scope of this course and so, we shall

consider only those r.vs, which have a finite expectation,

The mean of X, expected value of X, mathematical expectation of X, mean of the
distribution of X are some of the synonyms in use for E(X). o

We now illustrate the computation of E(X) through some examples.

Example 9 : Let us find the expected score obtained on the roll of an unbiased die,

The score X obtained on the rollof adieis 1,2, 3,4, 5 or 6 and each has probability 1/6, i.e,
P[X=x]=1/6forx = L,2,...,6. Hence,

1

1 1 1 1
E(X)-6x1+6><2+6><3+6x4+6

1
x5+6x6

mbine ortigket and would gain
Sample OUtplet o test PDF Co expected gain if the Winﬂing ticket is selected at randams e & o



The probability that the person wins the prize is 1/100 and that he loses is 99/100. His net Discrete Random Variable and its
ain Xis Rs. O if he wins, and is Rs. (=2) if he loses. Thus, we need to find E(X) when P[X Probability Distribution
~2)=99/100 and PIX = YR = 1/100. We get

1 99
- :( - _ - = —
E(X) )8><IOO+( 2)><100 1.

{he his ney CxP(-(‘,leq ggin s Rs. (-1, i.e his expected loss is Rs. 1.
Now we consider two situations. where the r.v. takes an infinite number of values.
Example 11 : Suppose we want 1o find the expected value of ai.v. X which has the p.m.f.
5 .
f(x) :;(1/3)\. x=0,1,2

By definition

oo o

EX)y= Y, xf(x) =2, 2(

1]‘
3
x =0 x=0
2w (1Y}
22
0

1
=5

Many a times, we need to calculate not E(X) but the expected value of a function of X, like

bl . .
X=. cos X, exp(tX), etc. Of course, ali such functions are again r.vs. and we can use the
definition to calculate their expectation. However, the following example suggests-a simple
solution.

Example 12 : Let X be ar.v. with p.m.f. ziven by the following table.

() 1/10 210 410 2/10 1/0

We want to compute E(Xz).
Since X assumes the values -2, -1, 0, 1. 2, the values of X2 are 0, 1 and 4. Do you agree that
P[X?=0]=P[X =0}=4/10?
Now, since X2=1liff X=lorX=-1,
P[X*=1]1=P[[X=1U[X=1]]
=P[X = 1]+ P[X =-1] = 4/10.
Similarly, PIX? = 4] = P[X = 2] + P[X = -2] = 2/10.

in short, the n.m.f. of X% is specified by

P[X2 = 0] = 4/10, P[X? = 1} = 4/10. P[X? = 4] = 2/10.

Hence,

NP3 4 2
E(X°)=0x ]0+|>< I0+4>< 10

=1.2 .

Here we first obtained the p.m.f. of X? and then used the definition of E(X?). This, in
general, could be a cumbersome procedure. So let’s try another way.

2
Lct us calculate Z xzf(x).

x=-2

.
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We'li be interested in functions of
e type & (xj, yk) = x, + yi

O (xay)=x;

b x5 vi) = X y.
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: 1 2 4 2 1
X :Z—szf(x) =4 [TGJ+ 1 [1—0]+ 0 (EJ+ 1 (1_6)+ 4 [BJ
=12 ... (8)
2
The equality E(XZ) = z xzf(x), brought out by (7) and (8) is not an accident. Itis a

x==2
consequence of some detailed analysis which leads us to the following theorem.

Theorem1:LetXbeary assuming values X[, X3, . . . with probabilities f(x), f(xy), ...

Let ¢(X) be a r.v. which is a function of X.i.e., when X = Xj» ¢(X) = ¢(xj). Then

BI0CO] = 3 6(x)) f(x;) O
i

provided the series on the right hand side of (9) is absolutely convergent.

We shall not prove this theorem. But we would like to bring out some important points
concerning it.

Remark 2 ;
i) We have the following useful interpretation for
E[¢(x)] :

E[000) =3 0(x) P[X =x].

J

ii)  The illustration in Example 12 is not a proof of the above theorem. The proof is
beyond the scope of this course.

iii)  Suppose X and Y are two r.vs. with Joint p.m.f, f(x;, Yi)- Let ¢ be a real-valued
function defined on the product set G x H: where G = l X[, X3, .. .} is the set of values
of XandH = {y1 Y2 . . .} is the set of values of Y.

Let us denote by (X, Y), the r.v. which assumes the value ¢(x;, Yi) when X = X and
Y =y,. We define, by analogy with the result of Theorem 1,

EOX. V1= 30 (x;.y,) fix;, y,), ... (10)
i Kk

provided, of course, the infinite series on the right is absolutely convergent.

Now, consider the random variable ¢(X) =aX + b, where a and b are constants, What will be
then the expectation of aX + b? Suppose X assumes the values X|» X2, . . . with probabilities

f(x)), f(x,), . .. We have

E[aX +b] = ¥ (ax; +b) f(x;) - by (9)
j

=a Z X f(xj) +b Z f(xj)
j j

=aE(X) + b, since Z X f(xj) = E(X) and Z f(xj) =1.

We can generalise this result and find a simple way of calculating the expectation of the sum
of twor.vs. X and Y. This is given in the following result.

Suppose X and Y are two r.vs. with jointp.m.f, f(x,, ) j.k=1,2,... Suppose E(X) and
E(Y) are finite. Then E(X + Y) is finite and
E (X +Y)=EX) +E(Y)..

This result is true when X and Y take either finite or countably infinite values, We shall not
worry about the proof in the countably infinite case here. The proof in the finite case is very.
easy and we are sure you can write it yourself, .
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E11) If X and Y are two r.vs, with joint p.m.f. f(xi, y)-1=1. 2.0 .. nk=1,2,...m, and Probability Distribution

E(X), E(Y) are finite, then prove that
E(X +Y)=EX)+ E(Y)

A stmple induction argument Icads us to the following result

11D ST NN X, are r.vs, such that E(X;) is finite for all i. then X, +. ..+ X also has a
finite expectation and

E(X, +Xo+ .o+ X = EX)+. .+ E(X).
We now list a simple but useful property of E(X).

fa<X<b. ab.R.ic.ifthe values x|, x5, ... of the r.v. X are such that a S x; < b for all
=120, then a E(X) b.

Proof : Observe that because a S X, < b forall j= 1, we have
a Y M) < 2 X f(x) € b X f(x).
) ] i

Equivalently. since Z f(xi) =l.a<EX)<hb.

See if you can solve these exercises by using the results of this section.

E12) Prove :
) 1F X =0, and E(X) is finite than E(X) svmbol 0.
b) Let X>Y.ie. ther.v. X — Y assumes only non-negative values. Then =

E(X) 2 E(Y).
E13) Letthe pan.f.ofar.v. X be

f(x)=3-x)/10,x=-1,0,1,2
a) Calculate E(X).

b) Calculate E(X?) by using (9) and also by determining the p.m.f. of X? and verify
that both give the same result.

¢} Use the results of (a) and (b) to calculate

E[(4X + 5)°].

Calculate E[exp(tX)] for the distribution discussed in Example'11. Here t is a fixed
number. K

| *-. An unbiased die is rolled. We say that a success occurs if the score obtained is 1 or 2.
Any other score (i.e. a score of 3,4, 5 or 6) is called a failure. Let X, =0or |
according as the k-th trial results in a failure or a success. Notice that X +... + X, is
the number of successes obtained in n rolls of the die. Obtain E(X,) and hcnce the

expected number of successes in n rolls of the die.

S0 far we have discussed some of the properties of the expectation of ar.v. X. You have
seen that expectation is regarded as a measure of central tendency of the probability
Jistribution of X, with the probabilities f(x y=P[X=x; ] playing the role of relauve

rrequencies. In the next section we will exxend these concepts to obtain measures of
nspersion of X around its mean value.

7.5 VARIANCE, COVARIANCE AND CORRELATION
' COEFFICIENT

' How we will talk about measures of dispersion of X around its mean value. We shall also
introduce measures of correlation between two r.v.s. These measures are similar to the
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measures of dispersion and correlation you studiea 1 Block 1. In what follows, we assume
that all the relevant expectations are defined.

Definition 8 : Let X be ar.v. assuming values X,, X, . . . with probabilities (). f(xy) . ..
Let p denote E(X). The variance of X, denoted by Var (X), is

Var (X) = E[(X - )] = 3 (x; - ) f(x) .. (15)
i

Note that as we have seen in the case of the expectation, Var (X) has a close similarity with
the variance (or the second moment about the mean) of a frequency distribution discussed in
Block 1.

The expression (15) for Var (X) is not suitable for purposes of computation. The following
lemma provides a simplification.

Lemma 1 : Var (X) = E(X?) - 2. .. (16)
Recall that we have proved a similar result in Sec. 2.4.3 of Block 1.
The proof of this lemma follows on exactly similar lines.
It is also convenient to write (16) as
Var (X) = E{(X - p)?) = B(X3) - [E(X)1® .M
The positive square root of Var(X) is called the standard deviation of X. We denote it

by o(X).

The variance of X, being the expectation of the non-negative r.v. (X — )2, is always
non-negative, i.e. Var(X) = 0 (see E12 a). Also Var(X) is finite, whenever E(Xz) is finite

(sec E12 ).

For, suppose E(Xz) is finite. Then since| X | < X2 + LE[IX] 1= E(Xz)_ + 1, and hence '
E[| X |1 is finite. So, whenever E(X2) < o, E{| X | ]is finite and 50, be definition, E(X) is
finite. Then (17) implies that Var(X) is finite.

Note further that if X is a r.v. such that P{X = a] =1, then E(X) = a. It also follows that
P[X-a=0]=1, implying E[(X - a)2] = 0. Hence, if the r.v. X assumes only one value,
its variance is zero. Conversely, if Var(X) =0,

2. (= P £(xy) =0,
i

This implies that (xj - )? =0 for ali Jj such that f(xj) > 0. This means that X takes only one

value 1, orthat P[X=p]=1.1In short,l Var (X) is zero iff the r.v. X assumes only one value
or is a constant. Such ar,v. is said to have a degenerate distribution or is said to be a
degenerate r.v,

Now look at some examples, where we have calculated the variance or some r.vs., which
you have already met. ‘

Example 13 : Here we calculate the variance of the score obtained on the throw of an
unbiased die.

Let X denote the score obtained on the throw of the unbiased die. Then
00 =PX=xl=g, x=1,2,....6.

In Example 9 we have seen that

E(X)=35.

Further, E(X?) = é{ 12+22432 4424 5% 1+ 67

2\
=7

Hence, Var(X) = % - (3.5)2 - %%



Example 14: Let us caiculate the variance of the gain of the person of Example 10. Discrete Random Variable una i
Probability Distribution
Reeall that P[X = -2} = V(T() and P[X =98] = (O and that E(X) = -1, Hence,
o, 77 PR Y
Var (X) = (-2)°- +(93) lOO - (-1
=99,

Example 15 : Suppose we want to obtain the variance of the r.v. X of Example 11

X
Since P[X = x] :;[;] ,x=0,1,2,... we have

2
Thus, Var (X) =1 - (%] =0.75.

In Example 11 as well as in the above example, we were required to calculate the sums of
some infinite series. Here is how we find the sums of series of the type,

$0-3 p 5= ip’ S;=2 pl0<p<l

j=1 =1 i=1

Using the formula for the sum of a geometric series, we get

p

Sh =
0 1 - p
To compute S|, note that

=

(1-pS; =2 ipl-Xjpi*'=3Y {j-(i-}p!

J:] J:l )=]

:SOZ-ITB’

Therefore, S| = __p_i
(I-p)

Similarly,

(1-p) S, = th G- 1 p] '

j=1
=2 f2i-1]p!
j=t
=25, -8,
This gives us
p(1+p)
2=
(1 -p?

The calculations in Example 15 are for p = 1/3.

Now here is an.exercise for you. 61
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Probability on Discrete Sample :
Spaces E16) Prove that Var(aX + b) = a’ Var (X).

We now give some important observations concerning the result in E16 in the following
remark.

Remark 3:

i) If we treat Y zs a r.v. obtained from X by a change of origin and scale, then E16
implies that the variance is unaffected by change of origin.

ii)  The standaid deviationof Y =aX +bis | a ! times the standard deviation of X.

ii1) Suppose E(X) = p and Var(X) = 02, where o is the standard deviation of X.

Then the mean and variance of Y = gigl,‘are zero and one, respectively. The r.v.
Y= (X_;}l_), is called the standardized or normalized version of X.

Our next aim is to obtain Var(X+Y). For this purpose we need to introduce the concept of
covariance of the twor.vs. X and Y.

Let X and Y be two r.vs. with joint p.m.f. f(x;, y; ), j,k=1,2,...Then

E(XY) =2, > % i fx} Yih e (19)
ik

where the sum of the series on the right is assumed to be finite'(see remark 2(ii1)). Let

(xjty)?z0 . . "
' My and p, denote the means of X and Y, respectively. Now we are in a position to define the

2 2
Xy + YK .
= —=— > | .
2 Re covariance.

Definition 9 ;: The covariance between X and Y, is defined to be

Cov(X, Y) = E[(X - p,) (Y =)l

= 2 2 (6= By (i~ Hy) 055 1) )
ik

We can simplify this as follows :
Cov(X, Y) = E{XY - u, Y —py X+, By}
= E(XY) - 1, E(Y) - My E(X) +u, Ky
= E(XY) — iy Hy» .. 2D
We can also write

Cov(X, Y) = EXY) - E(X) E(Y). ... (22)

o (Xzi ‘1+ Y|2<)
The elementary inequality | X; Yk | < ) implies that

) 1
i k i k .

Hence, we conclude that

X2 +Y?
2

It follows that if Var(X) and Var(Y) are finite, then Cov(X, Y) is finite.

E[l XY |]< E[ J: % [E(X?) + E(Y?)].

We illustrate the procedure for the computation of Cov(X, Y) by means of an example now.

Example 16 : Suppose the joint p.m.f. of X, Y is given by the following table :
62

Sample output td test PDF Combine ohly



Table § Discrete Random Variable and its
- R Probability Distribution

X \~.\\\\ ; l

T T T T T T T 15/28
| SR R
. | 1/28 0 v I8
T 1s28 | e -

tet’s compute the covartance Cov (X, Y).

We have
2
B =ECO = 3, xg(x)
x=0
15 3 1
e — = N —
= ><28+1><7+2><28
_J
=7
Similarly,
2
iy = E(Y) = 2 yh(y)
y=0
5 15 3
=0x 14+1><28+2><28
3
=5
Moreover,

R
E(X‘Y):OxOx-z;g+0xlxz%+0x2x~23§+l xOx—l%

+1><lx€;+1x2><0+2x0x5l§+2x1x0+2x2x0

3

s
Hence, Cov (X, Y) = E(XY) - p, Hy
3 _1
4 2
_9
56

&

You must have noticed that the troublesome step in this calculation is the computation of
E(XY). But for some r.vs., this is simplified. We establish this in the following theorem.

Theorem 2 : If X and Y are independent r.vs. and have finite expectations, then
E(XY) = E(X) E(Y).
Proof : Since X and Y are independent r.vs., their joint p.m.f. is
f(xj, yi) = g(x)) hiyy),
Where g(x;) and h(y,) are the marginal p.m.fs. of X and Y, respectively (see Definition 5).

We, therefore, have

E(XY) =2, 2 % i f(x;, 3,
]k

= Z z X; ¥y &(x;) h(y) il
ik :
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Probability on Discrete Sample
Spaces = {Z X g(xj)} {Z Yx h(Yk)}
j k

= E(X) E(Y).
We generalise this result for n independent r.vs in the following corollary.

Corollary : If X, X,, ... X, are n independent r.vs with finite expectations, then

,’/

LL ﬂ X;’J‘:E(Xl) E(X,).... E(X,)
=1

We are not going to prove thus corollary here,
Here is another useful result which follows from Theorem 2:

Corollary: If X and Y are independent r.vs. with finite variances, then Cov (X,Y) = 0.

Caution : If Cov(X, Y) =0, it does a0t follow that X and Y are independent. For example,
consider the r.vs. X and Y with joint p.m.f. as in Table 6.

Table 6
y 0 1 2 3 g(x)
___x )
T 227 0 0 1127 327
2 6/27 6/27 6/27 0 18/27
3 0 6/27 0 0 6/27
h(y) 8/27 | 12727 6/27 127 1
Obseive that
3 L 36 1819
EX) =0+ 7=y
12 12 3
LYY= — 4 = 4 —— ==
E¥ =gty y=t
and
. 1 6 6 6
E(XY)—1-3~27+2~1-27+2~2+-27+3-l-27'
_19
=5

Thus, Cov (X, Y) = 0.

However, f(1, 1) = 0= g(1) h(1}, "I“nis:shows that X and Y are not independent.
This, X apd Y are independent = X and Y have zero covariance.

But the converse is not true.

We are now in a position to obtain Var (X + Y).

If X and Y are random variables with finite vaﬁmces, then
Var (X + Y) = Var (X) + Var (Y) + 2Cov (X,Y).

Let’s prove this »
Proof : Let X and Y be r.vs. with joint p.m.f. f(xj, Y- Then E(X +Y) = p, + 1, and.
2
Var(x+Y)=F{{x+Y—ux—uy} ]
2
=2 2ty -y gy
i Kk

64
= z Z {XJ - ux + Yk - u'y}z f(xja yk)
ik
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=Var (X) + Var (Y)+2 Cov (X, Y)
as required.
Corollary: If X and Y are r.vs. with Cov (X, Y) =0, then
Var (X +Y) = Var(X) + Var (Y) .. (23)
Note that if X and Y are independent r.vs., then (23) automatically holds.
We now give a result about the variance of the sum of nr.vs:
If X, X,. . . ., X, are r.vs with finite variances,

n n n
Var (X, +...+ X =3, Var(Xp+2 3, D, Cov(X; Xy).
i=1 i=l k=j+l

We omit the proof of this result. The result about n independent r.vs now follows:

Corollary : if Xy, ..., X, are independent r.vs., with finite variances, then

n
Var (X, +...+Xp) =, Var(X).
j=1
In fact, it is enough to assume that the r.vs. Xy, .. ., X, have pairwise zero covariances to

claim this result. Try to do this exercise now. It concerns the definitions and results which
we have just discussed.

E17) Let the joint distribution of X and Y be as specified in Example 16. Obtain
Var (X +Y).

"The following theorem expresses the covariance between aX +band cY +d, where a, b, c,d
are constants, in terms of Cov(X, Y).

Theorem 4 : Cov(aX + b, cY +d) = ac Cov (X, Y).
Proof : LetZ, =aX +bandZ, = cY +d Then E(Z|) = ap, + band E(Z) = CHy + d. Now
Cov (aX +b,cY +d) = E (Z, Z,) - E(Z,) EZ)) :
=E [(aX +b) (CY +d)] - (an, +b) (Cuy +d)
= E[acXY + adX + bcY + bd]
—acpy My —adp, — bep, — bd
- =ac E(XY) +adp, + bc},xy +bd —acjL,py
—adp, —becp, — bd
= ac[E(XY) - Hykty )
= ac Cov (X, Y), as required.
We can use this theorem to arrive at the following result.

Corollary : If X and Y are r.vs. with Cov(X, Y) =0, then
Var (X - Y) = Var (X) + Var (Y).

Proof : Applying Theorem 4, we get
Cov (X.—-Y)=-Cov (X, Y)
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lfr<'lw;xhilit)' on Discrete Sample Also, be using the result in Eie, We can write Va.r -Y)=Var Y).
e Hence, in general,
Var (X -Y) = Var (X) + Var (-Y) +2 Cov (X, -Y).
= Var (X) + Var (Y)-2Cov (X, Y).
Var (X -Y) = Var (X) + Var (Y).

We conclude this section with the discussion of the correlation coefficient between X and Y.
The definition of the correlation coefficient is very similar to that of the correlation
coefficient you encountered in Unit 4 in connection with bivariate data.

Definition 10 : The correlation coefficient between X and Y is defined to be

__Cov(X,Y)
P, Y) = Var (X) Var (Y)"

In this definition we assume that Var (X) and Var (Y) are both finite and positive and that
the square root in the denominator is the positive square root. We give below some simple
properties of the correlation coefficient.

1) Lth]=aX+band22=cY+d.Thcn
[ pX. Yyifac>0,
P2y, Zy)= {—p(X, Y)ifac<0.

Proof : Recall that Cov (Z,,Z,y) =ac Cov (X, Y) and that Var Z) =a’ Var (X) and
Var (Z,) = c? Var (Y). Hence

XY
P2y, Zy) = (aC)l af: )’

from which the require;d result follows.

X-pn) (Y-pn,) .
In particular, if X* = 5 a and Y* = —TuL are the standardised versions of X and Y,

X y
respectively, then p(X*, Y*) = pP(X, Y), since G, and O, are both positive.

2) -1<p(X, V)< +1.

Proof : You have already seen this result in Unit 4. Here is an alternative proof. Let X* and
Y* be the standardised r.vs, Since Var (X*) = Var (Y*) = 1, we find that Cov X* Y%=
PX*, Y*)=p(X, Y). Moreover,

Var (X* + Y*) = Var (X*) + Var (Y*) + 2Cov (X*, Y*)
=2{1+p(X, Y)
Since Var (X* + Y*) 20, we have
. 2[t+p(X, V)] 20,
orp(X,Y)z>-1.

Similarly ‘ ‘ '
0< Var (X*-Y*)=2{1 -pX, Y)}
implies that p(X, Y) < 1. Hence the result.

3)  The correlation coefficient P(X, Y) = £ 1 if and only if there exist connstants a and b
such that Y = aX +b,

Proof : Let Y = aX + b. Then
Var (Y) = a% Var (X) and
Cov (X, Y) = Cov (X, aX +b) =a Cov (X, X) = a Var (X).
Hence p(X, Y) = *_E*X?L(&?
fa Var ()]
=2 1l accordingasa> 0 ora <0,

66 - Conversely, suppose p(X, Y) = 1. Then from the proof of the second property above, we
h
have ‘
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Var (X*-Y*)=0.

This implies that X* - Y* is a degenerate r.v. or that
X* —Y* =, a constant

Since E(X*) = E(Y*) = 0, ¢ = 0. Equivalently,
Xom You o

X Gy

o

c G
orY="YX+pu -y
o, Yoo,

=aX +b,

o, o,
where a = gi* and b =M, - Ef by
The proof for the case when p(X, Y) = -1 is similar. In that case we use the result
Var (X* + Y*) = 0.

We have given a number of examples in this section to show how to obtain the mean,
variance, covariance, etc. for random variables. Now would you like to try your hand at
these exercises?

Ei8) Compute the means, the variances, the covariances and the correlation coefficients for
the joint distribution of E7 and E10.

E19) Obtain the variance of the total number of successes in E15 under the assumption that
Xy, X5, ..., X, are independent r.vs. :

$20) Obtain Var (aX + bY).

So far we have discussed many concepts for a random variable with a given p.m.f. We had
talked ahout the same concepts in relation 1o a frequency distribution in Block 1. In the next
section we will take up the study of yet another concept.

7.6 MOMENTS AND MOMENT GENERATING
FUNCTION

We have studied the properties of E(X) and Var(X) in the previous two sections. There are
expectations of some functions of r.vs associated with a probability distribution, which play
an important role in statistical theory. We plan to study properties of somie of these in this
section. ‘

Let r be a positive integer. The r-th moment of arv. Xorof its probabilit\y distribution is
We=BXD =3 < fl(x)),
j .

provided, of course, the series on the right is absolutely convergent. Sometimes we need to
use

- — r = . — r .
my(a) = E[(X - a)'] = ¥ (x; - a) f(x)),
i
which is called the r-th moment of X about a. In this sense url is the r-th moment about the

origin (a = 0).

Of course, when r = 0, X° = 1 and therefore, W= 1. The first moment W',is, the, by now

familiar, expected value or mean of X. The variance, Var(X), is the second moment of X
about its mean, m,( X ).

-1
Let u be a real number. If | u | >1,then | u Ir <lu Irandifl u|$l,then
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-1 r-1 r
Probability on Discrete ».inpte fu Ir < 1. Hence we can assert that whatever be the real number u, | u | Slul"+1.
Spaces A consequence of this inequality is the following :

Z | . ,,Jf(xj)sz {l X; I +1}f(xj)
] J
=1+ 3 I f(x).
j

Thus, whenever, the r-th moment of X is finite, so is the (r - 1)-th moment. In particular, all
the moments W' s <r, would be finite.

We do not enter into any detailed study of the properties of moments of a rv. except to
introduce the so-called moment generating function which will be useful to us in Units 8
and 9.

Let t be a real variable and suppose that

Exp (1X) = ¢'% M, () = E{exp(tX)} = Z exp(tx;) f(x;)
: J

is finite for all values oftina neighbourhood of the origin t = 0. Then the function M, (t) of t
is called the moment generating function of X, We abbreviate it as m.g.f.

You may be wondering why we call M, (t), the moment generating function. Recall that
Maclaurin’s expansion of exp(tx) is

2.2 3,3
tz)f o+ t% + ... (Calculus, Unit 6)

exp(tx)=1+1tx +

It, therefore, follows that

*x2 t'x!

Mx(t)=2{1+txj+—2—!i+...+~r!-i+...}f(xj)
J

2., ’
W 'y,
Tt

=1+t + +...

In other words, W', is the coefficient of '/ in Maclaurin’s expansion of the m.g.f. In fact, we
can write

[ dM,()
o

’
t=0

In this sense, the m.g.f. generates moments. '

In the following example we find the m.g.f, of a random variable,

Example 17 : Let X be a r.v. with
~ P[X=0]=2/3and P[X=1]=1/3.

Its m.g.f. is

0.2 1
Mx(t)=e‘ ~§+e”~—3-

_(2+eh

3

Since here

M, 1) =

w N

1 1+t+ﬁ+
3 ot
we find that
M'o=§+3l=1 and p.’,:%,r=l,2,».-.

68 We now give some simple results about the m.g.f. which we shall use later.
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D IfY =aX + b, then Discrete Random Variable and its
Probability Distribution
M, (1) ="M, (ar)
Proof : By definition
My (1) = E[exp(ty)]
= Elexp(taX + tb)]
=eht Elexp (atX)]
= eb‘Mx (at).

X

—t
M, (D) = exp{: P } M, [—‘—]
OX o'X .

We shall use this result in some later units of this course.

(
In particular, if X* = is the standardised version of X, then

The importance of the m.g.f. does not lie only in its ability to generate the moments of the
r.v.X. Under certain conditions, the m.g.f. can uniquely identify the probability mass
function of X and hence its probability distribution. But we’ll not go into the details here.

Now we prove another result which is useful in the study of the distribution of the sum of
two or more independent r.vs.

II) LetXandY be independent r.vs with m.g.fs. M, (t) and My (8). Then the m.g.f. of
X+Yis

M, . y(t) =M,(1) My(t).

Proof : Since X and Y are independent r.vs, their joint p.m.f. is f(xj, Y= g(xj) h(y; ), where
g and h'are the p.m.fs. of X and Y, respectively. Hence,

M, 4 y(1) = E[exp{t(X + Y) ]

= Z 2 el +¥)) f(xj’ )
ik

=3 [ et} e ey
ik

={Z et g(xj)} {Z ek h()’k)}
] k

= M, (1) M,(t),
which is the required resuft.

We shall talk more about the probability distribution of the sum of two r.vs. in the next
section. But before that we are giving you a simple exercise to do.

E21) Obtain the m.g.f. and the moments of the r.v. in Example 13.

7.7 DISTRIBUTION OF SUM OF TWO RANDOM _
5 VARIABLES

In Example 2 we have discussed the probability distribution of the sum of scores obtained

on two rolls of an unbiased die. In this section we are interested in the methods of obtaining -
the probability distribution of the sum of two r.vs. We begin with the following simple

example.

Example 18: The joint p.m.f. of (X, Y) is as specified in Table 7. 69
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Probabiiity on Discrete Sample Table 7
Spaces
y 0 1 2 3
X
0 1127 3127 3/27 127
1 3/27 6/27 327 0
2 4/27 327 n 0
We want to obtain the p.m.f. of X + Y.
Observe, first of all, that since X takes the values 0,1,2,and Y takes the values 0, 1, 2, 3, the
r.v. X+Y can assume the values 0,1,2,3,4,5. Now we list the different possibilities.
[X+Y=0]=[X=0,Y=0],
X+Y=1]=[X=0,Y=1U[X=1,Y=0],
X+Y=2]=[X=0,Y=2]UX=2Y=0JU[X=1,Y= 1],
[X+Y=3]=[X=0Y=3]Uu[X= LY=2U[X=2Y=1],
X+Y=4]=[X= LY=3UX=2Y=2),
(X+Y=5]=[X=2,Y=3.
It immediately follows that
P[X+Y=O]=P[X=0,Y=O]= 1727
PX+Y=1]=P[X=0,Y=1]+P[X = LY=0]
‘ _3.,3_6
& TR ALY
PIX+Y=2]=P[X=0,Y=2) +P[X=’;‘/2’,,‘Y=0] +P[X=1,Y=1]
3.6 4 13 ’
= -+t ==
27 27 27 .27
: PIX+Y=3]=P(X=0,Y=3]+P[X= LY=2]+P[X=2,Y=1]
_1,3.3_ 17 o
27727727 27 .
and P[X + Y =4] =P[X + Y =5] = 0. '
Thus, the pm.f. of X + Y is )
f(0) = 1/27,.£(1) = 6/27, £(2) = 13/27, f(3) =7/27.
This example illustrates the general method _(')f obtaining the p.m.f. of X+Y from the joint
p.m.f.of X and Y. The basic steps are '
i) Identify the possible distinct values of X + Y. .
i)y Hu, Uy, . . . denote these distinct values of X + Y, identify all the sets [X = X;js Y =yl
for which Xj +yy =u, say.
iti) Then
PX+Y=ul=3 fix,yy.
where the sum extends over all those (xj, ¥x) which add up to u.
This general procedure, though valid in principle forjal]'discrete r.vs., is cumbersome,
except in very simple situations. We, therefore, investigate a special case in which
’: simplification is possible.
Suppose X and Y are _independeht r.vs. which assume non-negative integral values
0,1,2,.. . LetP[X=x] = f(x), and P[Y = yl=g(¥),x,y=0,1,2,...Because of the
independence of X and Y,
70 PX=x,Y=y]=f(x)g(y)
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for all x and y. in orucr io votan tie p.mLf, of X + Y, observe that X + Y assumes the values Discrete Random Variabie and its
0,1.2, ... Moreover, the event [X + Y =r] is the union of the dronind events., Probability Distribution

(X=0,Y=r},[X=1.Y=r~-1]..... AX=r Y =0
where 1 is a non-negative integer. It follews that

PIX+Y=rl=), P[X=j, Y=r—j
i=0

T
= Z U)g(r— Lr=0,1,2,.

This procedure is illustrated in the following example.

Example 19-: Let X and Y be independent r.vs. with

»-)/

PIX=x}=%- } x=0,1,2,.."
33
2

P[Y =y] = JJ y=0,1,2,.

¢.. X and Y are independent r.vs. with the same p.m.f. The p.m.f. of 3 + Y is given by

PIX +Y =r1] = 3 PIX=jP[Y=r~j]
j=0

BIESE

2 r
=(r+l)(%j (%],r:O,l,Z,...

When you study geometric distribution in Unit 9, you will come soiass » more general result
of which this example is a particular case.

Here are some exercises for you.

£222) Obtain the distribution of X+Y when the joint p.m.f. of X and ¥ 15 s specified in
Examples 7 and 8.

L e

This brings us to the end of this unit. In it we have discussed the prohability distribution of a
random variable at length. Let’s now briefly recall the various cv . 1+ which we have
covered here. :

7.8 SUMMARY

In this unit we have covered the following points.

1) Arandom variable is a function defined on a samp]e space. ity probability distribution
is specified by its p.m.f. f(xj) =P[X= xj],j =1,2,... We can riudy two (or more)
r.vs. X and Y in terms of their joint p.m.f., f(xj, yi) =P[X = by Yeyhik=142,...
The marginal p.m.f., g(xj) =P[X= xj] of Xand h(y,) =P{Y = yk] of Y can be
calculated from f(xj, ¥i)» but the converse is not true. The r.vs. X and Y are said to be
independent if

f(xj, Vi) = g(xj) h(y,) for all pairs (xj, Yi)- ‘
2)  The expectation E(X) = Z X f(xj) of ar.v. X with p.m.f. f(:} ir. variance
]
a2
Var (X) = F(X” - {E(x)|” and the covariance Cov(X, Y) = 1Y) - ECOE(Y) are 7
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Probability on Discrete Sumple important characteristics of the r.vs. They have some simple properties like
e E(X +Y) = E(X) + E(Y), E@X) = aE(X),
Var (ax + b) = aZ Var (X),
Var (X +Y) = Var(X) + Var (Y} +2Cov (X.Y), etc.
3) IfXandY are independent r.vs., they have zero covariance. Butr.vs. with zero

covariance are not necessarily independent. The correlation coefficient

__Cov(X\Y)
PXY) = i) Var(Y)

is a measure of the correlation between X and Y. It is such that -1 < p(X, Y) 1, the
extreme values p(X, Y) =+ | being attained iff Y is a linear function of X.

4)  Them.gf ofarv.Xis M, (ty = E{exp (tX)}, provided it is finite for all values of t in

a neighbourhood of zero. It has the important property thatif X and Y are
independent, the m.g.f. M, ., y(1) of X + Y is the product M, (t) My(t) of their m.g.fs.

5)  Itis possible to obtain the p.m.f. of X + Y from the jointp.m.f. of X and Y . Some
simplification is possible when X and Y are non-negative integer-valued r.vs.

7.9 SOLUTIOY\fS AND ANSWERS /

ED c+p+p?+..)=1, 0<p<l.
pP+p p

=1

. _C
“1op
=c=1-p.
E2) The possible values of W are -5, 4, ... 0, 1, . .. , 5 and its p.m.f. is given by
£(=5) = £(5) = 1/36, f(—) = f(4) = 2/36,
£(=3) = £(3) = 3/36, {(-2) = f(2) = 4/36,
f(-1) = f(1) = 5/36, f(0) = 6/36.

‘

E3) The possible values of Y are 0, 1, 2, and 3. To obtain PLY = 2] for example, observe
that there are 123 ways of selecting 2 spades out of 13 spades and the third card

39

can be chosen in { |ways out of the remaining 39 cards. Hence

a1 {13Y(39 52
PIY=21= 507 / 3
Similarly,
_m{131(39 52
_ 47 {13}(39 52
PlY=1]= 112 / 3
and

wen)5) )

E4) If X = Number of attempts, the possible values of X are 1, 2, 3, 4. Itis edsy to check -
that P[X = 1] =P[X = 2] =P[X = 3] = P[X = 4] = 1/4 which gives us the p.m.f. of X.
To obtain its probability distribution, we need to specify P[X . H], where H is a subset
of § = {1, 2,3, 4. There are 16 subsets of S. In fact, we have ‘

P[Xe9] =0, P[XES] =1,
P[X=1]=P[X=2]=P[X=3]=P[X =4]=1/4
PIXE(1,2}]=P[XE(1,3}]1=P[XE(1,4}]

~d
&

=PIXE€(2,3}]=PIXE(2, 4} =P[Xe(3,4)] =112
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PIXE(1,2.3}]1=P[XE|1.2.4}} Discrete Random Variable and its
Probability Distribution

=P[XE(2,3,4}]=P[XE[1.3,4]]=3/4

ES) ) 2/9
(i) 8&/7
(i) 4/9
(iv) 7/27
(v) /8.

‘- E6) 1) (1()](1/7) (127,

iy 10
¥ (‘?](1/8)1 (1/8)10-1.

=4\

i) ?]'07!]{;‘}—(1/8) (3/8) + —(1/8) (3/8)%

6' T (1/8)0(3/8)

10
+:/'~0—'(1/8)J Z[ )(1/8)1(7/8)“)1

E7) a) 19
b) 1/20
c) 1/42
E8) a) g(x)=1/3,x=1,2, L hiy)=1/3,y=1,2.3.
b)) g(x) = (x> +4)/10,x =1, 1
h(y) = (y?+ /10, y.= 2,2
<) g(x)=(x+2)/]4,x=0,l,2,3.
hiy)= 2y +5)/21.y=0,1,2.

E9) X and Y are independent-in cases a) and b).

E10) a) g(1) =035, g(3) =0.50, g(5) = 0.15,
| 2(0) = 0.45, h(1) = 0.55.

by They are not independent.

EID B =Y x gx) =2, 2% {05 ¥
j ik

E(Y) =3 3 i £ )
k

Since E(X) and E(Y) are finite, the series above are absolutely convergent.

EZIX*’YkH(X yk)<z Z{ X; 1+lyk }f(xj,)k)
_Z 2|x It(x yk)+22|yk|f(xj,yk)

< oo,
- E(X +Y) is defined and
E (X +Y)=EX) +E(Y).
E12) a) X2z ()::>xj2-Vj =0,1,2,...
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= E(X) =3 x; f(x)) 0.
b) X2Y=X-Y20 = EX-Y)20
= E(X)~ E(Y)) 20 = E(X) 2 E(Y).
El13) ) E(X)=0,
b) ExX¥=1,
c) 41.
E14) E(e™) js % {1-e3)"" provided] 1 I< In3.
E15) P[X, =0] = 4/6 =23, P[ X, = 1] = 113,
Hence E (X,) = 1/3and E(X, +. .. + X_] = /3,
E16) If Y =aX + b, then E(Y) = aE(X) + b.

Var (aX +b) =E [{y - E(Y)}2 ]
=E [{ax - aE(X)}2 ]

=E [az{X - E(X)}2 ]

=a’Var X,
E17) From Example 15 we get

Cov(X,Y)= ;—2-

2
Var(X)=02x£+12x§+22x'-l~—(lJ

28 7 28 {2
=35
T 28
. 5
Var ((Y) = 2
45 -9
Var(X+Y) 28+112+2(56J
45

E18) InE7), E(X) = E(Y) =2, ;

Var(X) = Var(Y) = 2/3, Cov(X, Y) =p(X, Y) =0,

E(X) =E(Y) =0, Var(X) = 1, Var(Y) = 4,

Cov(X, Y) =p(X,Y)=0. '

E(X) = 1.619, E(Y) = 1.191, Var(X) = 1.950.

Var(Y) =0.630, Cov(X, Y) = 0.215, p(X, Y) = 0.194,

In E10), E(X) = 2.1, E(Y) = 0.55, Var(X) =4.19

Var(Y) =0.2475, Cov(X, Y)=0.395, p(X, Y) =0.388.
E19) Var (X) = (1/3) - (1/3)* = 2/9 and hence

Var (X, +...+X,)=2n/9.
E20) Var (aX +bY) = a? Var (X) + b2 Var (Y) +2ab Cov (X, Y).
E21) M.gf. = E[exp(tX)]

Now x takes valyes, 1, 2, . . .6, .

Mgf. = E e f(xj)



Sample outpuyt to test PDF Combine only

2
1 91t
=g 6+21[+—2!—+...+ o1 +.
’ , 1., 91
M()“:]le:E,Mz:E,...

In Example 7, the possible values of X + Y are 0, 1, 2, 3, 4, 5 and its p.m.f. is
PIX+Y= l]=5/24,P[X¥Y=2]= 1/3
P{X+Y=3]=3/8,P[X+Y=4]=1/24, and

PIX+Y =5]=1/24;since P[X + Y =0]=0.

In Example 8, the possible values of X+Y are 0, 1, 2, 3, 4, 5, and its p.m.f. is
PIX+Y=1]=1/15,P[X+Y=2]=1/5,

PIX+Y=3]=3/10,P[X + Y =4]=4/15,

P[X +Y =5]=5/30.

bscreie kandom Varwon o

Probability Distribution
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UNIT 8 STANDARD PROBABILITY
DISTRIBUTIONS : PART 1

Structure
8.1 Introduction
Objectives
8.2 The Bemoulli Distribution
8.3 The Binomial Distribution
8.4 The Multinomial Distribution
8.5 The Hypergeometric Distribution
8.6 Summary

‘8.7 Solutions and Answers

8.1 INTRODUCTION

In this unit and the next, we describe some frequently encountered discrete probability
distributions. But what do we mean by a probability distribution? To answer this question
we consider the two different situations below. Each involves repeated trials of a random -
experiment. At the end of these trials we have 1o take an appropriate decision based on the
results of the experiment.

1) Suppose 25 patients of high blood pressure are given a drug and their blood
pressures are measured before and after the administration of the drug. Letuy, . . .,
uys and v’y . . ., u’y5 denote the measurements on the corresponding patients before
and after the drug is administered. Medical experts say that the drug is a success for
the j-th patient if u; > u and a failure if u; < u . Is it possible to decide whether the

drug is effective for paucnts of high blood pressure on the basis of the measurements
on the 25 patients included in the experiment?

2)  Alady claims that she has psychic powers and that she can identify the cards drawn
from a pack of 52 playing cards by any person sitting in another room. The lady is
able to correctly identify 3 of the ten cards drawn with replacement from a well-
shuffled pack of cards. Is her claim of psychic powers justified?

These two real life situations have one thing in'common. Both involve repetitions of a
random experiment a specified number of times. We have 25 repetitions in the first
situation, and 10 in the second. Each trial results either in a "success"” or in a "failure". Thus,
success stands for u > u’; in the first case and, a correct guess by the lady in the second case.

‘The questions we asked in each case can be answered on the basis of the total number X of

successes. This number X is a random variable. In Block 4 you will study the techniques
which would enable you to answer the questions raised in the above illustrations. However,
these techniques require that the probability distribution of the total number of successes

be known.

In order to obtain this knowledge, statisticians make certain assumptions. For example, in
the situations described above, we may assume that

i) the successive trials are independent, i.e. the outcomes of different trials are treated as
independent events, and

ii)  the probability of success at each trial is the same.

These assumptions would enable us to obtain the distribution of the total number of
successes in n trials. We would like to emphasise here that (i) and (ii) are assumptions made
by the statisticians, and there is no reason why the natural phenomena described above
should follow these assumptions.
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Standard Probability

Nevertheless, assumptions of the above type provide us an initial solution to the problems T
Distributions : Part

we face.

The assumptions like those made above and the resulting probability distribution of the total
number of successes are said to constitute a probabilistic or a stochastic model for our
random experiment. We begin with the simplest of such models. Here we would like to
point out that the models we are about to describe have been found useful in a wide variety
of situations and in different disciplines like medicine, agriculture, biology, industrial
engincering, psychiatry etc.

The discrete probability distributions which we shall be discussing in this unit and in Unit 9,
are called standard discrete distributions, because of their wide applicability and simplicity.
In this unit we'li take up the study of the Bernoulli, the binomial, the muliinomial and the
hypergeometric distributions. Make sure that you achieve the following objectives by the
end of this unit.

Objectives
After reading this unit you should be able to:

@ state the assumptions underlying the binomial, multinomial and the hypergeometric

distributions.
@ compute their means and variances,
@ obtain the distribution of the sum of two independent binomial variates,

@ compute probabilities of events associated with these standard probability distributions.

8.2 THE BERNOULLI DISTRIBUTION

We begin with the simplest probability distribution, which is the distribution of ar.v. X
which assumes two values, O and 1. Let

P[IX=0]=1-pand P[X=1]=p,
(D
orP[X=x]=p* (I -p) "*x=0,1,
where p is a number such that 0 < p < 1. What happens when p=0orp=1? Whenp =0,
P[X =0] = 1, i.e. X is degenerate at zero and when p = 1, P[X = 1] = 1 i.e. X is degenerate at
ene. We shall usually ignore these cases.
Notice that the probability distribution of the r.v. X changes with p. Thus, in fact, (1) defines

a family or a class of probability distributions of the same kind. Every member of this family
is uniquely determined by the value of p and to every value of p in the interval [0, 1], there
is & unique probability distribution specified by (). It is for this reason that p is called the
parameter of the distribution of the r.v. X. .

The r.v. X. and its probability dislribution'specified by the p.m.f. (1) are, respectively, called
the Bernoulli variate and the Bernoulli distribution in honour of Jacob Bernoulli
{1654-1705). He made a systematic study of problems connected with,this distribution.

Jacob Bernoulli _(1654—1705)

Can you think of an example of a Bernoulli variate? What about the toss of an unbiased
coin? Here p = 1/2. If, however, the coin is not a balanced one, p can be any value in [0, 1].
In most practical situations we would not know the value of p. Therefore, it is best to study
the properties of the Bernoulli distribution for a general p. In fact, we shall adopt this
approach in the study of all the standard discrete distributions in Units 8 and 9. We shall
study their properties in terms of their general parameter or parameters, without specifying
their numerical values.

If X has the Bernoulli distribution given by (1), then
EX)=0.(1-p+1.p=p
and
Var(X)= 0% (1 -p)+ 12 p-p*
=p(-p). | 7
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Notice that Var (X) < E(X).
Its moment generating function (m.g.f.) is
M,(t, p) =E[e] = (1 - p) + pe',

which is valid for all real t and for 0 2< p < 1. We have deliberately introduced p in the
symbol M, (t, p) for the m.g.f. of X to emphasise its dependence on the parameter p of the

distribution.

The Bernoulli distribution is useful whenever the random experiment has only two possible
outcomes, which may be labelled as success and failure. In the two situations discussed in
the Introduction, we could identify success and failure. But in both these situations we were
interested in a specified number of repetitions of the experiment. In other words, in each
case, we were interested in the distribution of the sum of independent Bemoulli variates
with the same value p of the parameter. We discuss this in the next section.

8.3 THE BINOMIAL DISTRIBUTION

In this section we are going to talk about the distribution of the sum of independent
Bernoulli variables. You wiil see, in Theorem 1, that such a sum has a binomial distribution.
But what is a binomial distribution?

We begin with the following definition.

Definition 1 : We say that a random variable X has a binomial distribution with
parameters (n, p) if its p.m.f. is given by

b(j; n, p) = P[X = j] =[?Jpj(l pThi=0,1,...0, ... (2)
where n is a positive integerand 0 <p < 1.

Why is it called a binomial distribution? It’s because b( j; n, p) is the (j + 1)th term in the
binomial expansion of {p +(1 - p)}n. This observation also leads to the conclusion that
n : n \
, n —j
Zbumm=2bfuhm"%
j=0 j=0
=(l ‘P+P)n= lv

which is as it should be.
We can interpret binomial distribution as the distribution of the total number of successes in
n independent trials, each with the same probability p, of success. With this interpretation

you will see that there are many situations in which this distribution can be applied. We
have given some such situations in the examples a little later. Now, suppose X| X, ..., X,

are independent Bernoulli r.vs. with the same p.m.f,,
' P(X;=01=1-p,P(X;=1]=p,j=1,...,n.

We may identify a success at the j-th trial with the even [X;= 1] and a failure at the j-th trial
with the event [Xj =0]. ThenX =X, +...+ X, is the total number of successes in n trials,

To understand this, let us consider the coin-tossing experiment again. Suppose we toss an
unbiased coin 5 times, i.e. n = 5. Now, thé result of each toss could be either Hor T.
Suppose we call the result H a success. Then H at the jth toss is equivalent to Xj =landT at

the jth toss is equivalent to Xij=0,j=12,...580,iff X=X, + X, +.. X5, and if we get
H in the first, second and the fifth toss and T in the rest, then X takes the value

x=1+1 0+0+1 =3, which is the number of Hs, or successes, in the S tosses.
Now letus obtain P[X =j}=0,1,...,n.

Notice that the sum X, +.. .+ X equals j iff j or the X;’s are equal to 1 and the remaining
(n —)) are all equal to zero. The probability that a specific set of j X; s equal one and the

remaining X; s equal zero is pI(1 - p)" 7). This is so because there is one factor p for each
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X, - i and one factor (1 - p) for each X; which is zero. The j factors p and (n — j) factors Standard Probability
n Distributions : Part I
1) get multiplied because of independence. However; there are j 1 mutually exclusive
ways of choosing the j X; s which equal one, the rest, n - j, of the X;s being equal to zero.

Hence by the finite additivity property (P7 of Sec. 6.2.2),
PX =] =['j‘]pj (I-p"~lj=0.1,...n.

Hence the distribution of the total number of successes under the above conditions is the
binomial distribution.

We have thus proved the following theorem.

“heorem 1: Let Xy, ... X be n independent Bernoulli r.vs. with common p.m.f.

PIX;= 1 =p.PX;=0l=1-p,j=12,...m.

i< 1. Then X = X, + ...+ X has binomial distribution with parameters n and p,
.ted by (2).

<. this interpretation of a binomial distribution, let us look at some situations where this
tivition is useful.

vaumple 11 A machine produces identical units. The proportion of defective units produced
i L. machine is known to be 1/20. We also know that successive units are statistically
indeoendent. Let us obtain the probability that in a sample of 10 units, there are at most 2

Piectives,
i1 X deniotes the number of defectives in a sample of 10 units, then X has binomial
distribution with n = 10 and p = 1/20. Hence, .
P[X<2]=P[X=0]+P[X=1]+P[X =2]
=b(0; 10, 1/20) + b(1; 10, 1/20) +b(2; 10, 1/20)

- [‘()0](1/20)0 (19/20)'° + [‘10](1/20) (19/20°

+ [‘20)(1/20)2 (19/20)8

=0.99.

kxample 2: The probability that a person recovers from a serious disease is 0.40. Let’s find
the probability that at least one of the 8 persons admitted to a hospital will survive.

For this, let us assume that the recovery or otherwise of the B patients is independent of each
other. Thus, we want to know P[X > 1], when X has binomial distribution with n = 8 and
p =0.40. :

Observe that
P[X21]=1-P[X=0j

=1- (31(0.40)0 (0.60)°

=1-0.017
=0.983

Have you understood how we have solved these examples? See if you can solve some on
your own now. o

El) Ten workers use electric power intermittently. Each worker has the same probability
p = 1/5 of requiring a unit of power. If they work independently, find the probability
that six or more workers require electric power simultaneously. If the supply is
adjusted to five power units, this is the probability that the system would be
overloaded.

E2) How many independent trials each with p = 0.01 must be performed to ensure that the .
probability of at least one success is 0.60 or more?, ’ 79
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The calculation of probabilities associated with the binomial distribution is often complex.
We now ask you to prove a result which is quite useful in this connection.

E3) Prove that
a) b(jin,p =bn-jn, I ~p)
(n-jp

b) b(_]+ 1;n, p):a—m—_*p”) b(J, n, p)

We can use this result to calculate b( j; n, p) recursively), starting with b(0; n, p).
Now let us find the mean and variance of the binomial distribution.

Theorem 2: If X has binomial distribution with parameterS n and p, then
E(X) =np, Var(X) = np(1 - p).
Proof: By definition

n
E(X)=, jb(in. p)

j=0
n‘ ﬁ! i i
=) jr=———=pl(1-pi
J_;Jﬂ(nﬂ)!p( p)

where we have omitted the term corresponding to j = 0, since it is zero. Simplifying by using

the relations n! = n{(n - 1)!} and ]l' = we have

i
G-nr

n-—1)!
(J=Dn=1-(j=- D}

n
EX)=np Pl =pp1-G-1)

i=1
n-1

=npz [n: ]Jpr(l —p)“"l",wherer=j~ 1.
r=0

=np(l —p+p)" "~
=np.
Now let’s compute the variance.
You know that
Var (X) = E(X?) - [E(X)1

Since we have already computed E(X), we can find out Var(X) if we are able to calculate
E(X?). The computation of E(X?) is simplified if we Use the fact,

E(X?) = E[X(X - 1)] + E(X).

Now,

n
E[X(X- D=3, j(j-1)b(j; n, p)
j=0

" ! . N
=2iG-Daeia-pr
=2 ‘

since the first two terms corresponding toj=0 andj= 1, vanish.

n o : .
=n(n-1)p? z( (n=2)! }'pj‘Z(l_p)r_l—Z-—(j—Z)
i !

(=2 n-2-(j-2)

$ L
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covhard

=n(n-1) p2 2 Ln ; z)pr ( _p)n—2~r’ where r=j—2. Distributions : Part |
r=0

=n{n— l)p2

iHave you noticed that in this computation we have carried out simplifications which are
similar to the ones used in the compmation of E(X)? Finally

Var (X) = E[X(X - 1)} + EGO - [EX)}’
=n(n - Dp’ + np — (np)’
=np(l -p),
as required.

There is an easy consequence of this theorem, which we would like you to prove now.

©4) If Y = X/n denotes the proportion of successes in n independent Bernoulli trials with
constant probability p of success, then

E(Y) = p, Var(Y) = PLLntEZ.

©5)  Use the results about the mean and variance of the sum of n independent r.vs. in Unit
7 for an alternative derivation of the mean and variance of a binomial r.v.

‘e conclude our discussion of the binomial distribution by obtaining its m.g.f.

Theorem 3: The moment generating function My (t) of the binomial distribution with

parameters n and p is

M, @) =11 +p(e' - D",
Proof: By definition

M, (t) = E[exp(tX)]

=Zej‘['j‘]pj<1—p)"‘j
i=0

=y ('.’j(pe‘)j (1-pn
j=o '

n
=fpet+1-p)
={1+pe -1,
which is the required result. ’
From the m.g.f. also you can see that E(X) = np and Var(X) = np(1 - p). -

We now prove that the sum of two independent binomial variates with common probability
‘p’ of success is again a binomial variate.

Corollary: Let X and Y be independent binomial variates with parameters (n, p) and (m, p),
respectively. Then X+Y has a binomial distribution with parameters (m+n,p).

Proof: Now, X and Y can be regarded as the sum of n and m independent Bernoulli variates,
respectively. Suppose

X=X +X+. . + X and Y=X,,  +Xo, 2%+ Xpom

Then X +Y =X, +Xy+...+ X, nand X;,i=1,2,...,n+mare independent.

Thus, X + Y is a sum of n+m independent Bernoulli variates with probability, p, of success.
Hence, X + Y has binomial distribution with parameters (n +m, p). , 81




Probability on Discrete Sample
Spaces

82

. Sample output to test PDF Combine only

We have mentioned earlier that a binomial distribution is the distribution of the total number
of successes in n trials, each with the same probability of success, where

1) each trial can result in two mutually exclusive outcomes and
2)  successive trials are independent.

Now, there are two ways in which we can generalise the binomial distribution. We can
assume that either

1) each trial can resuit in more than two mutually exclusive outcomes, or
2)  successive trials are not independent.

We shall follow the first appreach in the next section and the second approach in Sec. 8.5

8.4 THE MULTINOMIAL DISTRIBUTION

Sometimes we come across situations where a trial of an experiment may result in more than
two outcomes. Here are some examiples of such situations.

i) A group of 100 persons is classified according to their blood- groups O, A, B and AB.
Letr|, ry, r3 and ry denote the number of persons with the blood groups O, A, B and
AB, respectively. Then |, r,, ry and r, are non-negative integers with
Iy + 1y + 13 + 14 = 100. Here each person can be classified into one and only one of the
k =4 classes. ’

it)  Ina game of bridge, the 52 playing cards are divided amongst k = 4 players such that
each player gets 13 cards.

iii)  The population of a town can be classified into k = 21 different age groups, 0-2,
3-7.8-12,...,98 and above.

iv)  The teachers in a university can be classified into k = 3 categories; lecturer, rgader and
professor.

v)  Ina Lok Sabha constituency, there are 5 candidates. Before the polling date, the voters
can be classified into six classes, five according to their choice of the candidate, the
sixth class being of those who are still undecided.

To deal with such situations, we first need to find the total number of ways in
which n distinct objects can be classified into k different classes so that r; belong to

Class 1,1, belong to Class 2, . . ., and ry to Class k. Of course, it is necessary to have
T+ + ...+ =0

You are already familiar with the case, k = 2.

When k = 2, we can classify, n objects into two classes such that r| belong to Class 1 and
r,=(n~ry) belong to Class 2 in

n n! n!
=)t !y

ways. This is so because we can choose 1| objects out of n objects in

n

r (Vays and every
1

such choice leaves a unique group of n —r; =r, objects which belong to Class 2.

We now generalise this argument in the following theorem.

Theorem 4 : The number of ways of classifying n distinct objects in k classes, such that
r, belong to Class 1, r, belong to Class 2, . . .. r, belong to Class k, subject to'the condition

r|+r2+...+rk=n‘ls

n!
1
el . !
n

r ways out of

Proof : We know that the r; objects belonging to Class 1 can be chosen in

the n objects. Having chosen these r| objects, the r, objects that are to be assigned to Class 2



n-r . Standard Probability
can be selected out of the remaining (n — r|) objects in L |ways. The number of ways of Distributions : Part |
2
. . - . . (p-r—n

selecting ry objects for Class 3 out of the remaining (n—r; — 1) objects is y We
continue this procedure. So, having put objects in Classes 1,2,..., j—1,the T objects in
Class j can be selected out of the balance of n —1y =1, —. ... —Tj_| objects in

- SRR (I

Tj o :
ways. Hence the required number is given by
nw/n—'-rl /n——r,—rz-—‘...—rk_1
\ i) A
o 5 (n—-r1)) >((n—r]—...—rk_l)!
rln-r)! - - r ! 0!

n'!
. 1
rint.n!

The proof is complete.

Now consider n independent trials, each of which results in one of the k possible outcomes.
Suppose the probabilities of these outcomes are py, P, - - - - Py respectively. Then
k

2 pyj=1.Let X;. Xp, .. X, be the respective frequencies of k outcomes. Then . Compare this with the discussion
j=1 just before Theorem 1.
X, X5, ..., X assume non-negative integral values. Now, we wish to find the probability

P[XI =Ty, X2=r2, e Xk=rk]‘.
where {1, -, . ... 5} is a fixed set of non-negative integers adding up to n.
LR Y] k g g g

Consider a specific sequence of outcomes resulting in r; outcomes of the jth type,
j=1,2....,k The probability that r| is the frequency of the first outcome, 15, that of the

r T T
«econd outcome, . . . . Ty, that of the k™ outcome, is pll p22 cen pkk.

n!
LR DL /! ‘ .
the frequency of the first outcome, r, as the frequency of the second outcome, . . ., Ty as that

But, according to Theorem 4, there are such sequences, where we haver, as
of the k™ outcome. Therefore,

n! n.n Tk
P[X,=rl,X2=r2,...,Xk=rk]=——|‘——‘:pl pzp‘(
rl . r2 v Ty :

for all non-negative integral ry, ..., r such thatry +...+r =n.

This leads to the following definition. .

Definition 2: The r.vs. X, . . . X are said to have a multinomial distribution with
parameters (; p;, Pp, - - - » Py)s if their joint p:m.f. is

f(ry,tgee oo TG M P20 YY)
=P[X1=r1,...,Xk=rk]

_ n! p'l p'z p"k
AT L

k K
forr; =0, 1,....nsubjectt02 =n,p;2 O,andz p;=1
i=1 i=1
This distribution is called ‘multinomial’, because the terms of the p.m.f. are the
corresponding terms of the multinomial expansion of (P +---+p)™ 83
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Probability on Discrete Sample We now give twaexamples where the variables have a multinomial distribution. Let us use
Spaces the p.m.f. of a multinomiat disribution to find the probabilities in these examples.

Example3:Ina population, 43% have bloed-group 0, 45% have A, 8% have B and 4%
have blood group AB. Sixteen persons belonging to- this papulation are classified according
to their blood group. Let us find the probability that there wit} be 4 of each type.

Herek =4,p, =0.43, P2=045,p3=0.08,p; =0.04 and n = 16, We want to find
. P[Xl =4, X2=4, X3 =4, X4=4]

16!
= WA (0.43)* (0.45)* (0.08)* (0.04)*

=9x 1075,

days and one will last for more than 261 days.
Let us assume that these selections constitute independent multinomial trials.

Herek=3,n=10, p; =0.40, p, =0.50 and P3 =0.10. We have to find
PIX,=3,X,=6,X,=1] '

' .
= % (0.40)* (0.50)° (0.10)"

= 0.084.

The study of the multinomial distribution is a little more complicated than that of the
binomial distribution since the multinomial distribution specifies the joint distribution of k
r.vs. We give only the means, variances and covariances for the multinomial r.vs. in the
following theorem without proving it. We are sure you will be able to prove it.

Theorem S: Let the joint distribution of X;,.."., X, be a multinomial distribution with
parameters (n; p,, . . . » Py)- Then

E[Xjl = np;, Var (X)) = np; (1-p;) |
Cov (X;, Xj) =—npp;, i#j,
Li=1,.. .k

Here aré a few exercises which you should solve,

E6) .Twélve unbiased dice are rolled. What is the probability that each of the six féces
occurs twice? :

I{int +k =6, n= ]2, pl =p2 =p3= p4 =p5 =p6= 1/6

E7) Anitem is defective with probability p and good with probability q = 1 - p, It may be
inspected with probability p’ and may not be Inspected with probability ¢ = ] = p.
Assume that these probabilities are the same for all the items, which are independent.
Assume further that the decision to inspect or not to inspect an item is made without
the knowledge of its quality. Below we give the k categories and the corresponding
probabilities that an item belongs to them. .

Category Probability

Good item is'inspected qp’
Good item is not inspected | qq’
Defective item is inspected ‘ pp’
Defective item is notinspected pq’

Find the probability that of 10 such items all are defecti've, and are inspected.
84 E8). Show that the marginal distribution of XJ- is binomial with parameters (m, pj);
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Hint : Use the argument preceding Definition 2. Standard Probability
Distributions : Part |
E9) Prove Theorem 5.
(Hint : Note that
i)  Fora fixed i, X; is a binomial r.v. with parameters n and p;
v For a fixed pair (i, j), X; + Xj also is a binomial r.v.

~Now use Theorem 2 and the result about Var(X+Y) from Unit 7.)

In this section we have generalised the binomial distribution by assuming that each trial
results in more than two outcomes. In the next one we shall see what happens if we assume
that successive trials are not independent. This leads us to the hypergeometric distribution.

8.5 THE HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution deals with trials, each of which has exactly two possible
outcomes. But so does the binomial distribution. Then what is the difference between them?
Let us see.

Suppose we have 20 items, of which 4 are defective and the remaining 16 are good items.
Then, if we select an item at random, the probability that it is defective is 4/20 = 1/5, and
that it is good is 16/20 = 4/5. Now, if we replace the selected item after every selection,
these probabilities would remain unchanged at successive selections. We may also assume
that successive selections are independent. Suppose we are interested in the number X of
defective items in 10 such independent selections made with replacement. Then X hasa
binomial distribution withn =10, p = 1/5.

Now, can you find the probability that in 10 such selections, there are 2 defective and 8
good items? It is given by

b(2: 10, 1/5) = [120] (1/5)% (4/5)% = 0.302.

Now suppose we make a slight change in our trials. We, now, select the items without
replacement. What difference does this make? The probability that the first item is defective
continues to'be 1/5. But the probability that the second item is defective, given that the first
itemn was defective, is 3/19, which is different from 1/5. It also implies that the successive
selections are no longer independent.

How do we find the probability that in 10 selections made at random without replacement,
there are 2 defective and 8 good items? Let’s see. Note that the total number of ways of

selecting 10 items out of 20 items is 38 The number of ways of selecting 2 defectives out

of 4 defectives is (gland that of selecting 8 good items out of 16 good items isLls6 Hence,
the total number of ways of selecting 2 defective and 8 good items out of 4 defettive and 16

‘good ones is ;‘) L‘; Further, since all the selection are at random, they are equally likely.

Hence, the required probability is

41(16
2] 8

20
10

=0.418.

In this case, we find that the probability of getting 2 defective and 8 good iteﬁ\s is
@ 0.302, if the trials are independent, and
@ 0.418,if the trials are not independent.

We now generalise the above argument and consider a set of N items of which M are

defective and N — M are good. We select n items without replacement and want to find the

probability that j of them are defective. Observe that when j of n items are defective, the

remaining n — j must be good items. But since there are M defective and N — M good items, §

- wemustalsohave jSM,n—j<N-M
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We can choose n items out of N in (r:j ways. The j defectives can be chosen out of M

defectives in [M] ways and the n - j good items can be chosen out of N — M good ones in

: ( o )ways, Hence, X denotes the number of defective items selected,

R~}

M)(N-M .
I\ n-j

P[X=j]= S
n
'forj=0,l,....n,jSM,n—jSN.—M..

This discussion leads us to the following definition.

Definition 3: A r.v. X has the hypergeometric distribution with parameters (n, N, M) if its
p.m.f.is

M)(N-M
n-j

J
h{j; n, N, M) = N
4

forj=0, I,...,n,jSM,n—-jSN—M.Heren,N,Marepositiveintégers,nSN,MSN.

Now, we give examples of two situations where the variables have. hypergeometric
distribution. '

Example § : A quality control engineer inspects two randomly selected units from a lot of
20 units. If both the units are in working condition, the lot is accepted. Otherwise all the
remaining units are inspected. Let us find the probability that a lot of 20 units containing 8§
defective units is accepted without further inspection.

Here N =20, M = 8, and n = 2. We seek the probability
P[X=0]=h(0; 2,20, 8)

8112
0] 2

20V = 0.347.
2

Example 6 : A lake contains N fish. Suppose we catch 1000 of these fish, mark each of
them with a red spot and release them in the lake. The next day, we make a new catch of
1000 fish and find that 100 of these have red spots. Let us find the probability of this

. occurrence.

The probability that we wish to find is
P[X = 100] = h (100; 1000, N, 1000)

(=

o)

Of course, we cannot numerically evaluate this without a knowledge of N. However, the
above discussion is useful in developing methods for estimation of the sizes of mobile
biological populations. The method described above is called, for obvious reason, the
capture-recapture method.

Let us assume that we know the value of N, say N = 2000. Then

P[X =100]=

You will agree that the exact computation of this probability is very cumbersome.



computation of its probabilities can be quite tedious, especially if N and M are large.

This is one of the main difficulties with the use of the hypergeometric distribution. The

Standard Probabifit)
Distributions : Part I

However, suppose n is small compared to N, (n/N < 0.05, say) then there is not much
difference between sampling with and without replacement. In fact, we can replace
h(j, n, N. M) by the binomial probability b(j; n, p) where p= M/N.

We conclude this section with the evaluation of the mean and variance of the
hypergeometric distribution.
Theorem 6 : If X has the hypergeometric distribution with parameters n, N and M, then

aM(N - M) (N ~ n)
NN - 1)

E(X) = E]%/! and Var (X) =

Proof: We evaluate the mean E(X) directly as follows:
n
EOXy= N jh(jin, N, M)

=0

(5=

N

sow

-M
n-—j
< (=D M=) U

3

j=

|

] £

: - 1! CON-M
§ (J—l)'(M—l—(J—l)} Ln—l—(j—l))

)
L

s Z

Ee e

Now. Expand both sides of
A +x)™* P =(1+x)"- (1 +x)" and
r

mi( n m+n compare the coefficients of x" to get
Z i -] - r ’ this result.

j=0

e ZlZ

/———\r

Using this result we get

| e ) |
) |

_M
N
In order to compute variance, we adopt the method that was used in the evaluation of the
variance of the binomial distribution (see Theorem 2). That is, we use the,relation,

Var (X) = E[X(X ~ D] + EX) - [EQQ}.

Since we already know E(X), the only thing that remains Lo be done is to find E[X(X - 1)].
We are sure you can handle that. So we are leaving it to you as an exercise. ‘

When N and M are large, check that E(X) = np and Var (X)=np (1 -p), which are the
mean and variance of a binomial r.v.

E10) Find Var(X), where X has hypergeometric distribution.

El1) A parcel of 20 books contains 5 books with loose bindings. What is the probability
that a random selection of 10 of the 20 books, drawn without replacement, will
contain the five books with loose binding? LY
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E12) Show that

n-HM™M-)
(J+ DH(N=-M-n+j+1)

h( + 13 n, N, M) = h( j; n, N, M).

(This is a recurrence relation which can be used to compute the hypergeometric
probabilities)

That brings us to the end of this unit. In the next unit we’ll take up the study of some more,
frequently used, discrete probability distributions. But before that, let us briefly recall what
we have studied in this unit.

8.6 SUMMARY

In this unit we have covered the following points.

1) If the r.v. X assumes only two values; 0 and 1, with P[X = Ol=1-pandP[X=1]= ps
0 <p <1, the X has a Bernoulli distribution.

2)  The binomial distribution gives the probability distribution of the total number of
successes in n independent Bernoulli trials with constant chance p of success in each
trial..It can also be regarded as the distribution of the sum of n independent and
identically distributed Bernoulli r.vs.

If X has a binomial distribution with parameters (n, p), then E(X) = np,
Var(X) = np(1 - p).

3)  The natural extension of the binomial distribution is the multinomial distribution
when each trial results in k > 2 disjoint outcomes. The binomial distribution is a
particular case of the multinomial distribution with k = 2. If Xy Xy, .. X are nvs,
with a multinomial distribution with parameters (n; py, py. . . . py), then E(Xj) = np;,
Var.(Xj) =np;( - py. Cov (X,, X)) = -npippi#j i, j=1,2,... k.

4)  We obtain the hypergeometric distribution when we select n objects without
replacement out of N objects, of which M are of type 1 and N — M are of type 2. The
distribution of the number of type 1 objects so selected is the hypergeometric
distribution. if n/N < 0.05, the binomial probabilities b( j; n, M/N) closely
approximate the hypergeometric probabilities h( j; n, N, M).

tM(N-M)(N-n)
NN - 1)
5)  The binomial distribution has the so called reproductive property, viz., if X and Y are

independent binomial variates with parameters (n, p) and (m, p), respectivly, then X +
Y has binomial distribution with parameters (m + n, p).

E(X) =%34~. Var(X) =

8.7 SOLUTIONS AND ANSWERS

El) The number X of workers using electricity simultaneously has binomial distribution
with n=10, p=1/5. We need to find

10
PIX26]= ) b(j;10,1/5)
j=6

= 0.0064 ‘
E2) | The probability of at least one success in n independent Bernoulli trials is
1-b0,n,p)=1-(1-p)"
We have p = 0.01 and we want 1 - (0.99)" > 0.60 or n.> 92,

E3) a) b(j;n,p) =G)pi (1-p)"~]

n n—ily n-(n-j)
=(n_jj(l~p) Hi-a-p)

sad



=b(n —j; n, 1 — p) Stundard Vi ovavsiiy
Distributions : Part1
; . - n j+tl )\ ~j=1
b) b(j+1;n.p) (J.H}p (1-p)

EL_f (’,.D ( __p)n—-j.__L
T itn-! 0+1) 1-p

(n -1 .
s -
_-jp
T(G+na-p
E4) From Unit7 we know that

-b( j: 1. p)-

E(aX + b) = aB(X) + band Var (aX +b) = a2 Var (X)
-. The result follows.

E5) If X is a binomial r.v. with parameters (1, p) then X can be considered as the sum of n
independent Bernoulli r.vs, X, Xq - .. X, with common parameter p.

Therefore

n
E(X)=EX; +Xp+. .. +Xp) = 3 E(X;) = np and
i=1
n
Var (X, + Xy + - +X) = 2, Var (X))
i=1
=np(l -p)

E6) We need to compute

—= 2 (1/6)'2 = 0.0034.

(2‘)
E7) The required probability is

10!

’ ’ r r ’ 0 4
orororor (@ (e Y (e (pa)° = (PP

E8) If we treat classification in Class j as «‘success’’ and classification into any other class
as “*failure”", the probability of success is p; and we have n independent Bemoulli

trials gach with probabmty P ' of success. The result follows.
E9) For fixed j, X- is a binomial r.v. with parameters (n, py)

E[X;] = np;. Var (X)) = npi(1 = Py

Fori#j, Var (X +X) Var(X)+Var(X)+2Cov (X‘,X)

n(p;+p) (1 —p =P = np; (1 - pp) +npj(1 = pp +2Cov X, X
Cov (X, X) =53 [+ p) (1 =Py =P =P (1~ pi —p; (1= p))]

=~ np;p;

=

ElO)EX(X—l):Z - hGn, N, M)

MY(N-M
noo ijln-j
=2iG-D (N]
j=2 n
N-M
n n-— J
=Zo 2)! (M p] (N)
j=1 n

. Sample output to test PDF Combine only



90

Sample output to test PDF Combine only

Probability on Discrete Sample n
Spaces =MM_1 _LML N-M
N) S G-I (n-2-(j-2)
n
n-2
_MM-1) Z(M—ZJ(N—MJ
N r n-2-r
r=0
n
___M(M~1). N-2
N n-2
n
;M(M—l) n(n—-1)
n(N-1)
EI1) We need to compute
15)(35)
Sis
. 5) = )
h(5; 10, 20, 5) 30
50
=0.016.
E12) We have
M N-M
] j*1/in-j-1
h(G+1;n,N, M) = N
n
= M! (N~ M)! SN
g+D!M~-j=1n (n-j—l)!'(N—M—n+j+l)! n
=(M—j} M! (N-M)! n-—j y N
(J+D jM-jy =) (N-M-—n+j (N-M-n+j+1"”

- M-pn-) M N-—M/N
(J+D(N-M-n+j+1) j n—j n

which is the required result.




UNIT9 STANDARD PROBABILITY
DISTRIBUTIONS : PART - II

Structure
‘ 9.1 Introduction
‘ Objectives

9.2 The Geometric Distribution

9.3 The Negative Binomial Distribution
9.4 The Poisson Distribution

9.5 Summary

9.6  Solutions and Answers

9.1 INTRODUCTION

The standard probability distributions that we studied in Unit 8 are all distributions of r.vs.
which assume a finite number of values. However, there are many situations of practical as
well as theoretical interest which require the use of r.vs. whose values can be arranged in an
unending sequence. The simplest such cases are of those r.vs. which assume the values 0, 1,
2,...,i.e., those which are non-negative, integer-valued r.vs.

The usual coin tossing experiment provides an example of this type. Suppose we toss a coin
until a head turns up, and denote by X the number of tosses required for the purpose. Then
X=1,2,...,and, in general, we cannot specify an upper bound k such that P{X <k] = 1.

An obvious extension of the above example is the following. Suppose we decide to toss the
coin until a specified number, r say, of heads turn up. In this situation, the number X of
tosses requiredisr, r+ 1, r+2,... .

Although both these illustrations seem mainly to be of theoretical interest, they are useful in
many statistical and probabilistic problems of an advanced nature. Since they are concemned
with waiting times (number of trials) required for the first or r-th occurrence of-a specific
event, the associated distributions are called waiting time distributions. We shall discuss
two simple waiting time distributions in this unit : the geometric distribution and the
negative binomial distribution.

The situation described below is of a different type. Nevertheless, it also leads to a r.v. with
infinitely many values. '

A radioactive substance emits particles called o- particles. The number of a-particles
emitted during a time interval of one hour, say, can be recorded by an instrument. The
number X of such particles can be 0, 1,2, ... . The r.v. in this follows Poisson distribution.
In this unit we shall also be discussing the properties of the Poisson distribution.

Objectives
After reading this unit you should be able to :

@ define the geometric, negative binomial and Poisson distributions
e @ calculate the mean and variance of these distributions

@ compute probabilities of events associated with these standard distributions.

9.2 THE GEOMETRIC DISTRIBUTION

In this section we’ll discuss the geometric distribution. Let us see first how suh a distribution
arises.
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Let p denote the probability of a success in a Bernoulii trial, 0 < p < 1. Consider independent
repetitions of such a trial. Denote by X, the number of trials required for first success. Then
the r.v. X takes the values 1, 2, 3, . . . and by definition

P[X=1]=p.

In order to obtain P[X = j] for j > 2, observe that the event [X = j} occurs iff, the first j — 1
trials result in a failure and the j-th trial is a success. The probability that we have first (j - 1)

- failure followed by a success is

PX=jl=(1-p)i ™ 'p,

by virtue of independence of the repeated Bernoulli trials. The r.v X here is said to have a
geometric distribution. Here is the formal definition.

Definition 1 : A r.v. X is said to have the geometric distribution with parameter p.O<p«l,
if its p.m.f. is given by

PIX=jl=p(1-p)" Lj=12.... (D

The distribution derives its name from the fact that P[X = j] is the j-th term of the geometric
series :

o0

Y pti-pyi-t

j=1
For p € ]0, 1, the above infinite series is convergent and its sum is

—P L
I=(1-p)

which is what is required.

A slightly different way of arriving at the geometric distribution is to consider a sequence
{Y,, n 2 1} of independent and identically distributed Bernoulli r.vs., such that

PIY,=11=p,P[Y, =0}=1-p
for all n 2 1. Identify Y,, = 1 with success at the n-th Bernoulli trial and Y,, = 0 with failure‘
at the n-th trial. Then the event [X = j] is the same as the event fy,=o,..., Yj _1=0,
Y; = 1], and hence, by virtue of independence of Y, s,
PIX =j) = P[Y, = 0] P[Y,=0]... P[Y;_, = 0] P[Y; = 1]
=(-p)iT'pj=12... |

Now let’s see some examples of this distribution.

Example 1 : The probability is 0.70 that af candidate will pass an examination. Suppose we
want to find the probability that he will pass the examination at the fourth attempt.

Assuming that the successive attempts of the candidate are independent repetitions of a
Bemnoulli trial with p = 0.70, the required probability is

P[X =4]=0.70 (1-0.70)
20,0189,
Actually, the assumptions made in Example 1 are not very realistic. In particular, they imply

that the candidate learns nothing from his first three failures.

Example 2 : Let {Y,,n= 1,2, ...} be a sequence of independent and identically distributed
r.vs. (i.i.d.r.vs.), such that foralln > 1, i

P[Y,=0]=1/4,P[Y =1]=1/4,P[Y,=2] = I/2

So, each Y, can take the values 0, 1, 2. Consider a sequence of observed values of

Y[, Y;,. .. Let X be the number of Y,, s that need to be observed to obtain the first 0 in this
sequence. Let us find the probability that X > 4.

We say that a success occurs at trial number n if Y,, = 0. In view of the identical nature of
the distribution of Y, the probability of a success at any trial is p = 1/4. The r.v. X therefore
has the geometric distribution with p = 1/4. We need to compute



- ' : Stanuard svo e
P[X>4]= z P[X=j] Distributions : Par¢ Ii
1=5 '

- _
=§ = j=1
» 4(3/4)
J=3

1 @34t

T4 (1-3/4)
= (3/4)*
=0.316.

Now here are some simple exercises for you to solve.

E1) Obtain the probability that in independent tosses of a balanced die, we will have to
wait for at least 5 tosses to obtain the first six.

E2) Cards are drawn at random and with replacement from a well- shuffled pack of 52

playing cards. Find the probability that the first ace will appear before the fifth
selection.

We shall now study the properties of the probability distribution of X specified by (1).
The following theorem gives the mean and variance of X.

Theorem 1 : If the r.v. X has geometric distribution with p.m.f. specified by (1), its mean
and variance are

E(X) =~ . Var (X) = (L‘Em
p p

Proof : By definition

E(X)= Y jp(l-p)i~!
j=1

=pY.iq) ", where q=(1 -p).

i=1

To sum the infinite series S = Zj q 3= note that
i=1

(1-q)S;=(1-q) (1 +2q+3q%+...)

=1+q+q2+...
1

l-q
1

B .
Hence. S| = l/p2 and therefore, E(X) = 1/p.
The variance, Var (X), will be obtained by employing the familiar technigue of writing

Var (X) = E[X(X ~ D] + E(X) - (O}
It is, therefore, enough to compute

£

EXX-DI=Y, j(j-pqi~!, q=1-p
j=1

=p 3 j(j-1)qi! 93
j=2
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Sg= D j(y- gt !
j=2

observe that

oz

< .
S, = 2_ r{r 4+ fig', wh

r=|
Hence
(I-q)S,= Z‘ P
=
g
i
= Zq ;,4 Iqr )
= 2¢%
Yy
= L snee
7
£
.29
Therefore, 5, = -3
P’

Thus, finally,

E{X(X— 1)! :p; ’:? L. <

and therefore,

o
Var (X) = 73
P

which completes the proof of the 'i

We now obtain ihe mornent ey
the next section while disous

Theorem 2 : Let X be urv. with
mgfis

Proof : By definition

M, (1) = E[e'X

=2 eUp(l-p) !

i=1

: Z{!]—D)
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~ ) Standard Probability
= pe z {( I —p) e‘}r~ wherer=j-1, Distributions : Part Il
r=0
pe'
Thea-pet

1 -
which is valid only if (1 - pet<lort<In (TTE) This is so, because only when

1<in ‘i 1—1’} the infinite series defining M, (1) is absolutely convergent.

AN

We conclude this section with an interesting property of the geometric distribution.

| et X be a geometric r.v. with parameter p. Then for any positive integer j,

S PX=1]

PIX>j} =
r=j+1
= Y p(i-py~!
r=j+1 ’
=p(i-pi Y (=-pht=r={+D
t=0
=(1-p).
Consider the event [ X > j + Kk}, where k is also a positive integer. Since X > j+ k implies

that X > j,
IX>i+kINX>j1=(X>]+ k].

Let us now evaluate the conditional probability that the waiting time for first success
exceeds j + k, given that it exceeds j; i.e. we wish to evaluate PIX>j+k | X>jl. By
definition,
pIX | x PIX>j+k X>]]
>j+k sil=—"To 7
(X>) j PIX>]]

PIX >j+k] N [X>j)
- PIX > jl
, _PIX>j+k]
= TPIX > ]
(1-p) 7%
(1-p)
=(1-p
=P[X > k]

Thus, we have shown that for all positive integers j. and k
P(X>j+k | X>jl=P[X>k]

i .. the conditionai probability that the waiting time to first success exceeds j + k, given that

it exceeds J, is the same as the probability that it exceeds k. In other words, the fact that we

have waited for at least j trials for the first success does not affect the probability that we

<, will have to wait for a further k trials. This property is therefore called the lack of memory

property of the geometric distribution, or its forgetfulness property. In fact, the geometric

distribution is the only distribution on the set of non-negative integers with the lack of .
memory property. This has important consequences in the study of more complicated

systems of r.vs. called Markov chains. But we cannot go into its details in this course.

In this section we have seen how geometric distribution arises. We have also derived some
properties of this distribution. In particular, we have noted that this is the only distribution
with the forgetfulness property.
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We'll take up the study of the negative binomial distribution in the next section.

o3

THE NEGATIVE BINOMIAL DISTRIBUTION
—— T AL DS —

This section discusses the properties of the so-called negative binomial distribution which is
a generalisation of the geometric distribution. You know that the geometric distribution

The event [X = j] occurs iff there are (r— 1) successes in the first.(j ~ 1) trials and the j-th
trial results in a success. In view of independence of the successive trials,

P[X =j] = P[There are {r— I} successes in the first (i—1) trials and the Jj-th trial results in a
success]

= P[There are (r - 1) successes mn the first (j - 13 trials] x P(The j-th trial results in a
success].

Now, recall the argument which we used to find the probabilities related to the binomial
distribution (Sec. 8.3). By a similar argument we get

PlThere are (r — 1) successes in the first j — 1 trials]

=[J - :,]pr—l (1~ pyi=b=tr-1)
r-—

“‘] - [t .
=(:_ Jpr Y -py Ty
\
Moreover,

P[jth trial results in a successj = p.

Hence,

P[X=j1=(“ ‘)pf“(l ~p)i~p
f"‘l} Ve

=[J’ l)pr(l - i=rr4 l...
r—1|
This leads us to the following definition.

Definition 2 : A r.v. X has negative binomial distribution with parameters (r, p), r a
positive integer and 0 < p< L, if the p.mf. of X is given by

f(i:r,p>=Pfx=ﬂ:(ﬁi}]p%x#p)i‘ij:r,wL @)

Now let us verify that
(== . ‘ oo i _ ] ;\ . .

2 tGinp=Y (;—1 P (1-pi =1

j=r j=r / .
for all positive integral r and 0 < P < 1. We do this in Theorem 3. But before that we need
some preparation. ‘
Recall that the symbol C; stands for the number of wa_ys of choosing Jj objects qut of n
distinct objects. Here n is’a positive integer and 11s a nen-negative integer. We want to
extend the definition of ?J when 1 is replaced by any real number o, $ay, ~ 00 <t < oo,

You know that

i = ; ’ - (5)

(n) {n(n«—l)...(n—j+l)}
3



| You will agree that the right side of (3) makes sense even if n is not a positive integer. We Standard Probability
therefore define Distributions : Part II
= : ... (6),

.
¥, it

— oo < @L< oo, ] being a non-negative integer.

(o~ 1) ... (@=j+ D}

The advantage of this extension is that we can write down the expansion,

(l+t\;°‘:l+(ﬂt+(gjt2+.... (D

which is valid for all real ot and ~1 < t < 1. Formula (7) is known as Newton’s binomial
formula. *

If o is a positive integer n, the right side of (7) consists of (n + 1) terms, since I; is zero for

i > n. In fact, in this case, (7) is the usual binomial expansion of (1 + t)" and is valid for all
real .

If o is not a positive integer, the right side of (7) is an infinite series which is convergent
only for-1 <t< 1.

Now we first note that

! -1 j-1 _fi—=1):2
(r—lj—(j—l—(r—l))_(j—rJJ—r’th"”

In this relation putk = j—r,sothatk =0, 1,2 . ... and we have

)

_(r+k-D(@+k-2). . . (r+k-1-k+1)

k!
_rr+ D). (r+k-1)
B k! . ,
K (=N (=r=1...(-r=k+1)
== k! '

«writing the terms in the numerator in the reverse order.

(=D | T
=(=1) (k] . . (8)

We shall use this result in the proof of the following theorem.

3

Theorem 3 : The sum of the negative binomial probabilities f(j; r, p) is one, i.e.

2 G::]p'(l—mj”ﬂ-

i=r

Proof : Write q = | —p and j —r = k. Then using (8) we get

had _1 L - -]
)y (Jr_ l)p’(l -p) =P Y DK (k_r)qk .
i=r k=0 Blaise Pascal (1623~1662)

-r
=p' Y [k) ¥
k=0

=p (1-g7 using (7)

=1,sincel —q=p.
The above discussion also brings out the fact that the negative binomial probabilities
f(j; r, p), j = are terms of the binomial expansion of p* (1-q)™, which has a negative
cxponent, (-r). It is for this reason that the probability distribution specified by (4) is .
alled the negative binomial distribution. It is also known as the Pascal distribution. ) 97
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In the foll-wing examples you will see some situations where the r.v. has negative binomial
distribution.

Example 3: A proof-reader catches a misprint with probability 0.60. Let us find the
probability that a total of ten misprints have occurred before our proof-reader catches hlS
third misprint. :

If our proof-reader catches a misprint, we’ll term it a success! Here we want to find the
probability that the aird success occurs at the tenth trial, when p = 0.60. Hence with r = 3,
and j = 10, the required probability is

710; 3, 0.60) = (QJ(O 60)° (0.40)7 =0.013.
Exampie 4: The probabilities of having a male or a female child are both 0.50. Can you find
the prabability that a family’s fourth child is their second daughter?
Lctus term the birth of daughter a success.

We have p = 1/2, and we need
f(4;2,0.5) = m(o.sf (0.5

=3

16°
In the following discussion we evaluate the mean and variance of the negative binomial
distribution with parameters (r, p).
Notice that the number X of trials required for the rth success is the sum of r r.vs.,
Y. Y, ... Y, where Y, is the number of trials required for the first success, Y, is the

number of trials required, after the first success, to obtain the second success, and so on. In
general, Y; is the number of trials between the (j — Dth and j-th success. Do you agree that

Y. Yoo, Y, are mdependent r.vs.-and that each has the geometric distribution with the

same parameter p?

It follows from Theorem i, that

1 -
E(Y) = L var (¥ =-=L.
% p-

Hence,

E(X)—E(Y +Y,+. -rY)——,and, . (10)

=

Viir (X) = Var (Y, ... +Y,)

. .

=Y var(v) = 12R) c.1D

j=1

Caution : The above discussion only indicates a method of derivation of E(X) and Var(X),
and is not a formal proof of (10) and (11)

We are sure you will be able to soive the following cxercxses on the basis of our discussion
in this section.

E3) Find the probability that a person tossing an unbiased coin gets fourth head on
seventh toss.

E4) Find the probability that a person rolling:an unbiased die, gets his third six on the
eighth roll. .

E5) A scientist innoculates several mice, one at a time, with a virus which producesa -
disease in them. If each mouse has probabhility 1/4 of developing the disease, find the
expected number of mice required for an experiment in which the scientist stops after
obtaining the second mouse with the disease. < :

Ef) Compute the moment generating function of the negative binomial distribution.



E7) Let X and Y be two independent r.vs. with negative binomial distributions and Standard Probability
parameters (r, p)«and (s, p), respectively. Find the m.g.f. of X +Y. Distributions : Part II

So far, we have seen that the geometric distribution can be applied to situations where we
are interested in the number of trials needed for the first success. On the other hand, the
negative binomial distribution applies to situations in which our interest lies in the number
of trials required for r successes, where 1 is a positive integer. So what happens if we take
r = 1 in the negative binomial distribution? We get the geometric distribution, of course.

In the next section we take up one last discrete probability distribution—the Poisson
distribution. '

9,4 THE POISSON DISTRIBUTION

We describe below three real-life situations from three different areas. The first case is from
meteorology in which we are concerned with the frequency with which rain storms occur.
The second case is related to frequency of wrong telephone connections and the third is .
related to bacterial counts in different areas of dish called the Petri plate which biologists
use. We shall then describe their common features. These can be used to develop a
probability distribution, called the Poisson distribution, in honour of the French
mathematician Simeon D. Poisson (1781-1840) who studied it for the first time.

, Case 1 : The table below is based on the records of 10 rainfall stations over a period of 33
i years. Thus we have records for 10 x 33 = 330 station-years. This table gives the number of Simeon D. Poisson (1781-1840)
rainstorms, i.e. the number of 10 minute periods with more than 1 cm. of rain. ’

Table 1 : Rainstorms

S —
x 0 ! 2 3 4 5 |
¢ Fregquency TL 102 114 74 28 10 2 l

Source : E.L. Grant (1964), Statistical Quality Control.
Here x is the number of rainstorms in a station-year and the corresponding frequency is the
number of station-years with x rainstorms.

Case 2 : Table 2 shows the frequency distribution of telephone connections to a wrong
number. A total of 267 telephones were observed.

Table 2: Connections to wrong numbers
X 0-2 3 4 5 6 7 8 9 10

:
|
Frequency : s |1 14 ” 43 3] 40 35

|

X . ! I 12 13 14 ilS . More than 16 The concept of a station-year is

1

b

{ Frequency 1 20 18 12 7 6 2 similar to that of man-hour. If three
I : men work for 8 hours each, we say

Source: W.Feller (1972), An Introduction to Probability Theory and its Applications, Vol. L. that they have worked for 3x8 =24

: Here x is the number of wrong telephone connections and the frequency gives the number of man-hours.

telephones with x wrong connections. :

) Case 3 : Bacterial colonies develop over the surface of a Petri plate. The plate is divided
into a large number of small squares of equal area and observed under a microscope. The
bacterial colonies are visible as dark spots. The following table gives the observed number
(frequency) of squares with exactly x dark spots.

\ Table 3 : Bacterial Counts

- o X 0 1 2 3 4 S 6 or more
Frequency 5 19 26 26 21 13 8

Source : W. Feller (1972), An Introduction to Probability Theory and its Applications, Voli. 1.

On the face of it, there is very little similarity between these three cases. However, notice

that in each case we have counted the number of times an event has occurred. The event

concerned has many opportunities or trials when it could have occurred but it had a very

small probability of occurrence at given trial. Thus, ' 99
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@ there are many 10 minute periods in a year, buit it is very unlikely that any specific
10-minute interval would have a rainstorm.

@ there are many occasions when any one of the 267 telephones would be used but the
chance of a wrong connection can be expected to be small.

@ a Petri plate has a large number of small squares and it would be rare to find a bacterial
colony in a specified square. )

-«

In other words, we can think of a large number, n, of independent Bernoulli trials with a
small probability p of ‘success’ at each trial. Although n is large and p is small, we can
expect the mean number np of successes to be a finite number. Thus, we are interested in the
probability distribution of the number of successes in a large number n of independent
Bernoulli trials, each with the same small chance p of success such that np remains finite.
We know that the number of successes in n such independent trials follows a binomial
distribution. So, the probability b{r; n, p) of r successes in n independent Bernoulli trials
with constant probability p of success is

N\

nJpr(l PP Tr=0,1,...,n.

b(r; n, p) =[

r
But we want to find what happens when n is large and p is small. That is, we want to find

the limit of b(r; 11, p) as n — oo and p — 0, such that np equals m, say, where m is a positive
number.

We can do this as follows :

We have p = m/n, and

AN

b(r; n, p) = (?jp‘ (-p"r

_nn-1...(n—-r+1)

o (m/n)" (1 -m/n)" "

_10-1/mq —2:!n) (A=E=D/) e et

The factor 1 . (1 ~1/n) ... [l - (r — 1)/n] converges to 1 as n — es. Moreover, the term

- /. n ~—Im
(-mmp-r=d=mm e oom

(1 -m/ny 1
as n — oo, 1 being kept fixed. The conclusion is that

a—m T

b(r; n,p) — £ r'm =p(r, m),say .. (12)

as w— oo, p — 0, such that np =m.

There are two ways of looking at (12).

@ Oneisto treat p(r, m) as an approxiniation to b(r; n, p). In fact, we call p(r, m), the
Poisson approximation to b (r; n, p).

@ Another way is to regard

e—-m T

p(r, m) = r=0,1,2, ... . ...(13)

r

as the p.m.f. of ar.v. It is easy to verify that p(r, m) has all the qualifications to beapm.f.,
since

p(r,m)>0forallr=0,1,2,...

andz p(r,my=¢™ z m/rl=eMe™=1.
r=0 r=0 .

In this case we give the following definition.
Definition 3 : A r.v. X is said to have Poisson distribution with parameter m > 0, if its
p.m.f.is

: —m . r .
p(r,m)=P[X =1] = e—r'ﬂ,r=o, 1,2,... ... (14)



Now let us compare the probabilities obtained by applying the binomial and Poisson
distributions with the help of an example.

Standard Probability
Distributions : Part 11

Example 5 : There are few printing mistakes in the material printed at a good press. In fact,
the probability of a printing mistake is 0.01. Let us find the probability that in a text with
500 words, there are no mistakes.

Assuming that the conditions for binomial distribution hold, the required probability is

b(0; 500, 0.01) = (0.99)°® =-0.0066.

Suppose we use the Poisson approximation for b(0; 5‘00, 0, 0.1). Since n = 500, p=0.01, we
may take m = np = 5. Hence,

p(0. 5) =& = 0.0067.
Notice that the difference is only in the fourth place of decimal.

The following table gives the values of b(r, 500, 0.01) forr =0, 1, 2, 3, 4 and those of the
corresponding Poisson approximations p(r, 5), for the same values of .

Table 4 : Probability of r printing mistakes

] r 0 1 2 3 4
Binomial distribution 0.0066 0.0335 0.0840 0.1408 0.1768
f(r; 500, 0.01)
Poisson approximation 0.0067 0.0335 0.0838 0.1396 0.1735
p(r. 5)

You would notice that the Poisson approximation is quite satisfactory. In fact, it would
improve with larger values of n and smaller values of p. Generally speaking, the Poisson
approximation to the binomial probabilities is satisfactory if n > 20 and p < 0.05.

In calculating the above probabilities we have used the recurrence relation for binomial
probabilities. We have also used the following recurrence relation for the Poisson
probabilities.

We have

which is vahd forallr=0,1,2,...
Let us now obtain the mean and variance of the Poisson distribution.

Theorem 4 : If the r.v. X has Poisson distribution with parameter m, then
E(X) =m, Var(X) = m.

Proof : We have by definition

oo

E(X) =Y, rP[X=r]
r=0

m
_ -m§ LLLR ——
=me o ,wheret=r-1.

t=0

(.
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Y
. m .
Since z ——=¢", it follows that
t!
r=0
E(X)=me™eM=m.
 The first step in the calculation of the variance is to compute

oo

Dt~ ) P[X =1

r=0

1}

E{X(X - 1)j

Y wr-1)PX=r)
r=2

oo

T
Z r(r—1) e“""rl,

[

Ry r.
r-2
2 ~m m
=m-e P
(r=-2)!
r=2

o
u
2 m
=m-e mz — ,whereu=r-2

Now recall that

Var (X) = E(X(X - 1)] + E(X) - {E(0)

2 2

=m +m-m“=m.
Thus, the results of the theorem are established.
So, the mean and variance of the Poisson distribution are always equal.

The next theorem gives us the m.g.f,

Theorem 5 : The moment generating function of the Poisson distribution is
M, (t) = exp{m(e' - 1)}.
valid for all real t.
Proof : We have
M, (1) = E[e™X]

=exp{m(e' - 1)},

as required.

We can use this theorem to prove the additive property of variables with Poisson distribution.

Corollary : If X  and learc independent Poisson r.vs with parameters m; and m,,
respectively, then X, + X, has Poisson distribution with parameter m; + m,,.

Proof : We first determine the probability,



! P[X, + X, =k]. The event X, + X, =k is the union of the mutually exclusive events, Standard Probability
| Xl:().Xzzk.‘XlZ1,X3:k~],...;xx=k,xz=0. . Distributions : Part I1
Theretore,
k

PIX, + X, =kl =Y, P[X;=]j, Xy=k~jl

PIX| =]] P[Xy=k-}]]

I -
™M~ L

—
il
=

e ™ mjI e ™ mlz" -J

jt k=)t

M -

i=0

k
—(mI +mz) . R
:§ k;”ﬁi 2 C]() n}ll mS‘J
. io

—-(m, +m,)
e t 2 k
=TT (m +m,)~.
This shows that the p.m.f. of X, + X, is that of a Poisson r.v. with parameter (m; + m,) and
hence, X + X, has a Poisson distribution with parameter (m; + m;).

We can easily extend this result to more than two variables.

Corollary : If X, X,, ..., X, are independent Poisson variates with parameters

My Ma ., m,, respectively, then the r.v. X + X, +. .. + X has Poisson distribution with
: parameter m; + my+ ...+ m,.
! We have seen that Poisson distribution gives a very good approximation of binomial

distribution. Poisson distribution can also arise in situations which have no direct connection
with the binomial distribution. But we shall not discuss such situations here.

See if you can solve these exercises now.

¥8) Records show that the probability that a train has an accident between two specific
stations is 0.0004. Use the Poisson approximation to the binomial probabilities to
obtain the probability that in its 700 trips during the year, the train would have at most
one accident. ‘

E9) Itis known that the number of imperfections per metre of a certain variety of clothis a
Poisson r.v. with m = 0.12. Find the probability that ten metres of this cloth will have

- a) four imperfections
b) at most three imperfections.

Hint : Use the second corollary to Theorem 5, assuming that imperfections over
non-overlapping portions of the cloth are independent. '

|
| E10) a)  Compute the mean, m, for the frequency distribution given in Table ].

: b) Use this value of m to calculate the Poisson probabilities of 0, 1, . . ., 6 rain-
storms.

| ¢) The product N X p(r, m), where N = 330 is the total number of observations, gives
i the expected frequency based on the assumption that the number of rainstorms
occur according to Poisson distribution, Fill in the blanks in the following

! table :
‘ Table 5 : Number of Rainstorms
‘ x 0 1 2 3 4 5 6
Observed | o 114 74 28 10 2 0
frequency
Expected
frequency 103
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EIl) Fill in the blanks in the following tables on the assumptions tahat the variableg have
Poisson distribution,

a)
Table 6 : Number of wrong connections
o :7M\ A ;)t;ch;Eq uency I E_xp;;t;‘i?rﬁe:]m—
SN o .‘\l it A - Arency
3 5
4 ! H
5 | 14
6 ! 22
7 43
8 31
| 9 f 40
10 i 35
. I /
7
b)

Observed
frequency

Expected
frequency

When you have done El0andE1], you will find that th
€xpected frequencies is quite good in all the three cases.
Comparing the observed angd €Xxpected frequencies in mo
“chi-square tests of goodness of fit”, ‘

Now let ys summarise what we have done in this unit,

9.5 SUMMARY - -
—_—

In this unit.we have covered the following majn points ;

1) The geometric distribution and the negative binomig)

distribution, Moreaver, the negative binomia] distribution can be regarded as the
distribution of the sum of r independent and identically distributed geometric r.vs,
with parameter p. -

2)  The Poisson distributjon js in

3) The negative binomial and the Poisson distribution also possess the so
reproductive property

If X, and X, are independent r.vs having negative binomial distributions

(Poisson distributions) with parameters (r, p) and (3, p) (m 1 and m,), respectively,




then X, + X, also has the negative binomial (Poisson) distribution with parameters
(ry + 19, p) (M +my).
The standard distributions which we described in Units 8 and 9 are not the only discrete

distributions. There are many others with interesting properties which we hope you would
feel inclined to study in the future.

9.6 SOLUTIONS AND ANSWERS

El) We need to obtain P[X > 6] when X has the geometric distribution with p = 1/6. The
required probability is

P(X26]= ), P[X=r1]
r=6

=Y (1/6) (5/6) "
r=6

= (5/6)° = 0.402.
E2) The required probability is
113 + (1/13) (12/13) + (1/13) (12/13)2 + (1/13) (12/13)> -= 0.269.
E3) We need
f (7; 4, 1/2) = 0.1556.

E4) The required probability is
f(8: 3, 1/6) = 0.039.

ES) We need E(X) when X has negative binomial distribution withr =2, p = 1/4. The
answer is E(X) = 8.

E6) If X has the negative binomial distribution with parameters r and p, its m.g.f. is

.
M =3 ¢ (Jr-x)prq‘J |

j=r
=pr en z (—1)'? (—"(r] (qet)k
k=0

_ pe"
{1 - qef’
Where =1 -pand t <In{(l —p)—l}.

E7) Them.g.f of X+ Yis

’

T+ r+s

P expl(r+s)t) /(1 -qe) "
provided t <Inf(l - p)"l }.

E8) We have m = 0.0004 x 700 = 0.28 and we need
p(0, 0.28) + p(1, 0.28) = 0.967.

E9) In view of the corollary, the number X of imperfections in ten metres of the cloth has
Poisson distribution with

m=10x0.12=1.2.

a) p(4,0.12).=0.026

b) p(0,1.2) +p (1, 1.2) + p(2, 1.2) + p(3, 1.2y=0.966.
E10) a) m=12
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frequency

* Expected !
frequency | ] |

Number of wrong connections

X _T‘- Observed frequency Expected frequency
h 0-2 T 1 205
i 3 5 4.76
! 4 1 10.39
5 , 14 18.16
6 J 22 26.45
7 l 43 33.03
8 31 36.01
9 b 40 35.04
10 I 35 30.63
11 20 24.34
12 I 18 17.72
13 5 12 11.92
14 f 7 7.44
15 I 6 4.33
216 2 4.65
o Towl [T 26700

Observea
frequency

Expected
frequency




]

Sample output to test PDF Combine only

NOTES



Sample output to test PDF Combine only

NOTES



(@ | UGMM - 11

Probability and Statistics

%+ /' RAJIARSHI TANDON OPEN UNIVERSIT:
>

W

Block

3

DISTRIBUTION THEORY

UNIT 10

Univariate Distributions ' s
~ UNITI |
; Standard Continuous Distributions 36
; UNIT 12 ‘
Bivariate Distributions ' . 59
 UNIT13
Functions of Random Variables 93
~ UNIT 14

Limit Theorems | ‘. 121

T ine only‘



- T WU = T e ===,
.

Course Design Committee

Prof. S.K. Mitra (Chairman)
Indian Statistical Institute
New Delhi

Prof. A.M. Goon
Presidency College
Calcutta

Prof. J. Medhi
Guwahati

Prof. B.L.S. Prakasa Rao
Indian Statistical Institute
New Delhi

Prof. Aloke Dey
Indian Statistical Institute
New Delhi

Prof. K. Balasubramanian
Indian Statistical Institute
New Delhi

Prof. D.D. Joshi
Ex-Pro-Vice~Chancellor
IGNOU

Dr. V. Madan
School of Sciences
IGNOU

Dr. Poornima Mital
School of Sciences
IGNOU

Dr. Manik Patwardhan

School of Sciences
IGNOU

Dr. Sujatha Varma
School of Sciences
IGNOU

Block Preparation Team

Prof. S.K. Mitra (Editor)
ISI, New Delhj

Prof. Aloke Dey (Co-editor)
ISI, New Delhi

Prof. B.L.S. Prakasa Rao
Indian Statistical Institute
New Delhi

Dr. Manik Patwardhan
School of Sciences
IGNOU

Dr. Sujatha Varma
School of Sciences
IGNOU

Course Coordinator: Prof. R.K. Bose

Production

Mr. Balakrishna Selvaraj
Registrar (PPD)
IGNOU

January, 1994

© Indira Gandhi National Open University, 1994 .

ISBN - 81-7263-532-

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other
memf,hwithout Ppermission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the
University’s office at Maidan Garhi, New Delhi- 110 068.

Reproduced and reprinted with the permission of Indira Gandhi National Open University by
Dr.AK.Singh, Registrar, U.P.R.T.Open University, Allahabad (February, 2013)
Reprinted by : Nitin Printers, 1 Oid Katra, Manmohan Park, Allahabad.

Sample output to test PDF Combine only



BLOCK 3 DISTRIBUTION THEORY

In Block 2, we have discussed how to build probability models and the -
corresponding probability distributions on discrete samplé spaces. In this block, we
extend the concept of probability and probability distributions to sample spaces with
the number of elementary outcomes possibly uncountable.

In Unit 10, we define the notion of a random variable and its distribution function
and study their properties. Some important examples of univariate distributions,
which are commonly used, are discussed in Unit 11. The notion of joint distributions
of a random variable or bivariate distribution is introduced in Unit 12. Related
notions of independence, covariance and correlation are also studied in this unit.
Material discussed in Units 10 to 12 will help you in understanding the basic
concepts involved in studying the relation between different characteristics.

Unit 13 deals with distributions of a function of a random variable. Some important
distributions which are distributions of functions of standard normal random
variables are discussed in this unit. Results obtained in this unit will help you in the
study of statistical methods for data analysis in Block 4. Finally, we discuss the law
of large numbers and the central limit theorem in Unit 14.

In the next block we shall study statistical methods for analysing a data. But we shall
often use what is covered in this block. So, before going to the next block, please
ensure that you have achieved the objectives of the units in this block.
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Notations and Symbols

F

f

o

?
Fx, Y
fx, vy
Fx
fx
fx|y
fyix
Fx|y
Fy|x
Nuo?:

Distribution function

Density function

Standard normal distribution

Standard normal density

Distribution function of the bivariate random vector (X,Y)
Joint probability density function

Marginal distribution of X

Marginal density of X

The conditional density function of X given Y =y
The conditional density function of Y given X = x
The conditional distribution of X given Y=y

The conditional distribution of Y given X = x

The normal distribution with mean p and variance 0.

Also see the lists in Blocks 1 and 2.
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UNIT 10 UNIVARIATE DISTRIBUTIONS

Structure

10.1  Introduction
Objectives
10.2  Distribution Functions
10.3  Density Functions
- 104  Expectation and Variance _
10.5 Moments and Moment Generating Function
10.6  Functions of a Random Variable
10.7 Summary
10.8  Solutions and Answers

10.1 INTRODUCTION

In this unit, we first introduce the concept of a distribution function of a random
variable. Random variables taking values in either a finite set or countably infinite
set have been studied in Unit 6. Our main emphasis here is on random variables
taking values in a set which is possibly uncountable. Most often, we consider
random variables where values fall in an interval, finite or infinite, on the real line. A
special class of distributions, namely, absolutely continuous distribution play a
major role in practical problems. Throughout this unit, this class of distributions is
the base of our study. We will discuss the notions of a function, expectation and the
variance of a random variable in Secs. 10.3-10.5. The concept of moment of a
random variable and a method of obtaining moments using the moment generating
function are given in Sec. 10.6 and Sec. 10.7. Different approaches useful in finding
the probability distribution function of functions of a given random variable are
discussed in Sec. 10.8.

The facts covered in this unit will be used constantly in the rest of the course.
Therefore we suggest that you do all the exercises in the unit as you come to them.
We will use some facts from Blocks 1, 2, 3 and 4 of MTE-01 and Block 1 of
MTE-07. So keep them handy while studying, so that you can refer to them easily.

Further, please do not go to the next unit till you are sure that you have achieved the
following objectives. :

Objectives .

After reading this unit you should be able to :

o define the distribution function for a random variable.and a density function for
“an  absolutely continuous distribution, and establish their interrelations ;

e check whether a given function is a distribution function ; :

o check whether a given function is a density function ;

e compute the distribution fupction and the density function when it exists ;

e compute the moments and moment generating function of a random variable
when they exist ;

o derive the distribution function of a function of a random variable.
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10.2 DISTRIBUTION FUNCTIONS

In Block 2, we have discussed the concept of probability on discrete sample spaces
at length. If you remember, we had started our discussion with the definitions of
random experiments and their sample spaces. We had then remarked that sample
spaces can be classificd as discrete and continuous. Since the treatmient for these two
categories is slightly different, we had then focussed our attention only on the
discrete case. Now we take up the case of general spaces and define probabilities.
Where do we begin ? As before corresponding to a random experiment, we have a
sample space. We call each of its elements (sample points) an outcome or an
elementary event. But what about an event ?

In a discrete sample space S, we say that any subset of S is an event. In other words,
the collection of all subsets of S is precisely the collection of all events. Now, in a
general sample space Q, it is not always possible to consider all subsets of Q as
events. There are some difficulties in doing this which we shall not explain to you as
the technicalities are beyond the level of this course. So we are forced to take a
smaller collection of subsets of the sample space as the collection of all events. But,
at the same time, we would like this collection of events to have certain
“‘reasonable’” properties. For example, we would like

i) Q2 to be an event.

ii) If A is an event, then A° should also be an event.

iii) If Ay, A2, ... are events, then U A; should also be an event.

i=1
We are sure you will have no problem in agreeing to properties (i) and (ii) above.
What about the third one ? If there are only a finite number of events in &, then even
this property seems reasonable. (In fact, you have already come across it in Block 2)
At this stage, we can only say that the third condition is an important axiom, which
is crucial to the development of the probability concept. An important point to note
here is that in (iii) above, we are taking only countably infinite unions and not
uncountably infinite unions.

To take into account the properties (i), (ii) and (iii) above, we define a collection F
of subsets of the sample space Q, which has the following properties :

NRE?T
iAEF =A€7
iii) If each of Ay, Az, .... belong to 7 , then

UAET.

=1

Remark 1 : Note that property (iii) guarantees only that the union of a countable
number of sets belongs to ¥ . It does not say anything about the union of an uncountable
number of sets. The above collection ¥ is called a o - field of events of Q.

We say that A is an event in the sample space QifA € 7 .

Now that we have defined events, let us talk about their probabilities. In the discrete
case we had associated probabilities to each outcome and then added these up to
calculate probabilities of events. But it is not always possible to do this in general
(not necessarily discrete) sample spaces. We can give you a glimpse of the kind of
difficulties that we may encounter.

Let us consider the random experiment of choosing a number x, at random, from the
interval [0, 1]. This means that the probability assigned to each value in [0, 1] should
be the same. But the total probability assigned to [0, 1] is one. This leads us to assign
a probability zero to each individual value in [0, 1]. If the aggregate of the



probability of each individual value x, x € [0, 1} is taken to be the probability of  URivariste Distribution

[0, 1], (if such an aggregation in the sense of summation of individual values is
possible) then we encounter a problem in that although P {[0, 1]} = 1, the individual
terms in the aggregate are all zero. In fact the same difficulty would be faced with a
discrete sample space having countably infinite sample points, for example when
one desires to draw an integer at random with equal probability from the set of all
positive integers. This raises the question : What do we mean by an aggregate of an
uncountable number of values ? Is such an aggregation at all possible ?

We take care of this in the following definition.

Definition 1 : Let P be a real-valued function defined on¥ , the collection of events
on a sample space Q2. Suppose P has the following properties :

) P(Q)=1
ii)0sP(E)s1VEET

iii)P(UAi)= ZP(A)IfAIET forizland AiNAj=¢forimj.
i i=1

Then, P is called a probability function.

The problem that we encountered when we were taking the aggregate of individual
probabilities to obtain the probability of the union is bypassed by the above
definition because we have conveniently disregarded uncountable unions in (iii) of
the above definition. As such, with this definition of probability, it becomes
meaningless to talk about an aggregation of probabilities over an uncountable set.

From Definition 1 we have P(Q2) = 1. Can you deduce the value of P(tﬂ) from this ?
Do you agree that P(¢) = 0 ? Suppose P(¢) =0, then it equals somé positive number,
sayr,in ]0, 1]. )

NowQ=QUand QN ¢ =d.

~. By (iii) in Definition 1,

PQ) = P(Q)+P(¢) = 141> 1.

‘This is a contradiction. Hence P(¢) = 0.

In Unit 5 we had listed some examples of sample spaces which are not discrete. You
might have noticed that in each of these examples, the outcome is expressed in
numerical terms. In most other practical situations as well, we can assign a real
number to each outcome in the continuous sample space. This observation allows us
to consider only those sample spaces which are subsets of R, the set of real numbers.

Now, let us consider a continuous sample space S. We saw that we can associate a
real number to each outcome of S. Does this correspondence have any significance ?
Before answering this question let us go back for a moment to the discrete case.
Recall from Unit 7 (Block 2) that, if the sample space is discrete then we can

associate a number to each outcome, and this association defines a real-valued 16X denotes a random variable
function on the discrete sample space. This function is called a discrete random = taking valuesx1, xa, = thea the
variable probability mass function is

' ' defined by f(x}) = P [X = x}}.

We have also seen in Unit 7 that the importance of a random variable lies in the fact |
that using that we can define another function called probability mass function :

Thus the probability mass function gives the probability of occurrence of the -
elements in the range of X which in turn can be used to compute the probability of
occurrence of any event defined by the observed values of X,

Now can we define a continuous random variable in the same way as in the discrete
case ? From the preceding discussion we know that the definition of a random
variable should conform with the definition of probability mass function. But in the
continuous case, there are some constraint induced on what kind of subsets of Q can
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Distribution Theory be assigned a probability. This imposes certain conditions on the definition of
random variables. More clearly, suppose X is a random variable (r.v.) and we wan!
to evaluate the probability that the random variable X takes values in a set
A CR,ie. P[X € A]. Then we are actually concerned with the set
B = {w: X(w) € A} C Q, and we want to evaluate the probability of this subset of
Now we know that we can obtain the probability if B only if B belongs to the speci

class ¥ of sets we defined earlier. So naturally, we need to modify the definition
of a random variable. We, thus have the following definition of ar.v.

Definition 2 : Let ¢ be an experiment and Q, the sample space associated with it. L
F be the collection of events in Q. A real-valued function X, defined on Q is
called a random variable ( r.v.), if

Xsx]={0€EQ|X(w)sx}EFY X ER.

If we study one such real-valued function defined on Q, we have a univariate
problem under study. If we simultaneously study two such real-valued function on
Q, we have a bivariate problem and so on. Bivariate distributions will be studied in
Unit 12.

Next we shall define another function related to random variables which can be use
to evaluate probabilities of events.

Definition 3 : The distribution function F for a random variable X is a function
defined on the real-line by

F(x) = P[X = x]
where - ®<x <o,
The definition makes sense because if X is a random variable, then [X s x] is an
event in Q. Therefore P{X s x] is well-defined. This function is sometimes called 4
.cumulative univariate distribution function. You know why this is called
univariate, isn’t it ? This is because the corresponding random variable is one

variable. Our discussion from now on deals with random variables and their
distributions. So you won’t have to worry about the nature of the o-field ¥ .

Let us now try to understand the distribution function by looking at some of its
properties.

Properties of a distribution function F(x)
a) 0sF(x)s1 forallx ER.

This property is a consequence of the property (i) of the probablhty function
since every event [X = x] should have a number between Oand1asits
probability.

b) F(x) is a non-decreasing function of x ; that is, if x = y, then F(x) = F(y)
- To obtain this property, we write

[Xsy]=[Xsx]U[x<Xsy]

Since the events [X = x] and [x < X = y] are dlSjOlnt by the property (iii) of the
probability function P, we have :

PXsy]=P[X=sx]+Px<Xsy]

But by the property (ii) of the probability function, the last term, namely,
P[x < X =y] = 0. Hence we get

PX sy]=P[X sx].
That s,
F(y) = F(x).
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Did you notice that the above argument also proves that Usivariate Distributica

Px <X sy]=F(y)-F(x) ifx<y?

Next we shall state two more properties. We h'lVC omitted the verifications of these
properties as they are too technical.

¢)lim F (x)=1and lim F (x)=0

X—> @ X—> = ®

You recall that we have defined limits as x—>% or x——o for a real-valued function “l“" ;“’ “l:"‘: Pmi’"‘l&(c) in
of one variable in the Calculus course, MTE-01, Unit 2, Block 1. ;,(e_,,;'fo.(" )=1um

Now, you note that [w : X{w) < ®] =Qand fw:X(w)<~»]=¢and therefore Plw:
X(w) <] =P(Q)=1and P [w: X(w) < -®]=0.

d) F(x) is right continuous,

Recall from your Calculus course (MTE-01, Unit 3) that F(x) is right continuous -
means that F(x + h) — F(x) as x — 0",

Now, on the basis of these properties can you visualise a distribution function of a
random variable graphically ? ‘

Let us first look at some graphs of distribution functions of discrete raxidom variables. Here
is an example.

Example 1 : Suppose the random variable X takes the values 0 and 1 with
probabilities p and 1 —p, respectively. Then let us obtain the graph of the
distribution function of X.

We first note that F(x) is defined for all real x so we must compute P[X = x] for both
positive and negative real numbers x. Also the smallest value that x can take is 0.
Then for any x <0, the event [X s X] = ¢ for X < 0. That is,

F(x)=P[X=x]=0ifx <0.

Now consider any real number x greater than or equal to 0 and less than 1. Then the
event [X < x] for0 = x < 1 occurs if X = 1. That is

F(x) =P[X sx]=P[X =0]=pifOsx<1.

Likewise, if x is a real number greater than or equal to 1, then the event [X = x]
occurs if X = 0 or 1. Therefore '

F(x) =P[X sx]=P[X=0] +P[X=1]=p+1-p=1ifxz1 Hence the distribution
function F(x) is given by

0 ifx< 0
F(x)={X=<x]={pif0=s x<1.
lifxs 1
[}
Y
1 A ———

Fig. 1
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Now you can casily draw the graph of F(x) as.in Fig. 1 (see Fig. 1). What can you
say about the continuity of this function ? We leave this as an exercise for you to
check (see E1). :

E1) What are the points at which the function F(x) given in Example 1 is continuous ?

E2) Suppose X is a random variable taking the values 1, 2 and 3 with probabilities

%’ -2— and %’ respectively. Obtain the distribution function of X and graph it.

Also discuss the continuity of the distribution function.

WhileA'doing E2 you must have observed the following facts :
i) The graph of F is a step function |

ii) The jump discontinuities of F are at the points at which the random variable has
positive probabilities.

Now let us look at the graphs of distribution functions in the continuous case.

Example 2 : Suppose the distribution function of a continuous random variable is
given by

JO forx <0
F(x)=i{x forOsxs1
ll forx>1

vy

Fig. 2
The graph of F is shown in Fig. 2.

Doyou see any difference in the continuity of the functions graphed in Fig. 1 and
Fig. 2 ? The graph in Fig. 2 is continuous whereas the graph in Fig. 1 is
discontinuous. : ,

Why don’t you try some exercises now ?

E3) Graph the following distribution functions and check whether they are
continuous or not.

(0 > ifx<1.
= 1 1
2) F(x) 1-=> ifxz1
L X
' l "2’(’ 0
b)  Fx)={1"3¢ TV
{0 ’ x<0

In E3 (b) you must have seen that the function is neither a pure step function (as in
Example 1 and E2), nor a purely continuous function (as in Example 2). The
function F has a discontinuity at O with a jump of size 2/3 at the point and it is-
continuous everywhere else. ‘




Now we state the following formulas for computation of probabilities in terms of the . Univariste Distribution -
distribution function F. The proofs of these formulas are beyond the level of this ~
course.

¢)Foranyxandy,
i) P[X =x]=F(x),
ii) P[X < x] = F(x - 0),
iii) P[X =x] = F(x) -F(x -0),
iv) P[x <X s y] = F(y) - F(),
V) P[x s X<y]=F(y-0)-F(x-0),
vi) P[x < X <y]=F(y - 0) - (F(x), and
vii) P[x s X sy]=F(y) -F(x-0).

If the distribution function F is continuous at a point X, then the limits of F at x from
the right and left exist and are both equal to F(x) (see MTE-01, Unit 2). That is,
F(x — 0) = F(x+0) = F(x), where F(x+0) is the right-hand limit of F at x.

Hence in this case P[X =x] = F(x) - F(x -0) = 0.

Thus, if the distribution function F of a random variable X is continuous at a point X,
then

P[X =x]=0.

In particular, if the distribution function F is continuous everywhere, then the
probability for every singleton, {x} is zero. Inspite of this,

P[a<X<b]=F(b)—F(a)=P[a<Xsb]=P[asX<b]-P[asXsb]
forany a,b €.R.

Now, suppose the random variable X is discrete and takes the values Xi with P[X =
xi] = pi for i = 1. Then from Example 1 and E2 you can see that the distribution
function F of X is given by

F(x) =ZP[X =xi]=Zpi , —©<X<®

Xi$X XisX

where the summation extends over all indices i such that x; s x. This distribution

function F is a step function (as in Examples 1 and 2). In such a case, F is called a
discrete distribution and the random variable X is said to be of discrete type.

On the other hand, suppose that F is a distribution function of a random variable X
whose graph is continuous. For example, the distribution functions in Example 2 and
E3 and are continuous. Let us closely look at those graphs. Is there any difference
between the graphs ? You might have noticed that graph in E3 is smooth compared
to that in Example 2. In mathematical language we say that the distribution function
in E3 is not only continuous but it is differentiable. '

Note: Henceforth, in this course we will consider only those distribution
functions which are differentiable and their derivatives are also continuous

(except possibly at discrete set of points, having no effect on any probabilities
computed), ?

That means, there exists a function f defined on the real-line such that
f(x) = F'(x)

for all real x. (We shall ignore the points at which the function is not differentiable.)
Recall from your Calculus course that such a function F(x) is called an antiderivative

11
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of f(x). Then, since F(x) is continuous by the fundamental theorem of calculus (see
Block 3, Unit 1, MTE-01), we have

f et = F(x) - Fa).

Taking limits on both sides as a — -, we get,

F(x) - F(~) = f f(t)dt.

But we have seen that F(-=) = 0. Therefore we have
’ X
F(x) = [ (t)dt. : e

Note that fis non-negative since F is non-decreasing,

Summarising our discussion we can say that if F is a distribution function whose
derivative exists and is continuous (almost everywhere) on the real-line, then there
exists a non-negative function defined on the real line such that

F(x) =fl‘(1)dt.

Such distribution functions are called absolutely continuous distribution functions
or continuous distributions for short. Therefore, the distribution functions which we
shall deal with in this course, are cither discrete or (absolutely) continuous.
Occasionally, we might consider distribution functions which are neither discrete nor
(absolutely) continuous but a mixture of the two as in E7. With some abuse of
terminology, hereafter we shall write continuous distribution for an absolutely
continuous distribution.

You have already studied discrete distribution in Block 2. In the later part of this
block, we shall mainly study continuous distributions. The function f(x) which
appears in (1) is called density function. In the next section we shall discuss density
{unction in detail.

Before we conclude this section here is an important remark :

Remark 3 : There can be two distinct random variables with the same distribution
function. For instance, let us consider the random experiment of tossing an unbiased
coin. Define X = 1 if a “*head”" appears, and X =0 otherwise. Let Y = 1 if a *“tail”’
appears, and Y = 0 otherwise. Obviously, X and Y are distinct random variables.
You can check that both X and Y have the same distribution function.

Now you can check whether you h;’lve followed the ideas discussed in this section by
attempting the following cxcrciscs.ﬂ

-

E4) Given the distribution function

,

0 forx <—1
F(x)=<xz2 for -1sx<1

1 forxz1,

- sketch the graph of F and compute .

(a) P —%<Xs% (b) P[X = 0]

(9 P[X=1] () P[2<X s3]

ES) A random variable X has the distribution function F as shown in the graph
given below., ' '



12
0 1 2 3 X
v Fig. 3
Find .
(a) P[X = 1/2] (b) P[X = 1] (c) P[X <1]

(d) P[X=1] (e) P[X>2] (f) P[1/2<x<5/2]

Next we shall talk about density functions.

10.3 DENSITY FUNCTIONS

In the last section we said that a distribution function F is absolutely continuous if
there is a function f such that

X
F(x)=fi(y)dy
The function f in this expression is called a density function of X. In this section we
shall study this density function in detail. We start with its formal definition.

Definition 3 : A function f defined on thé real-line is ealled a density function of a
random variable X if -

(i) f(x)=0 for all x

b
(i) Pla <X sb] = [E(y)dy, foralla b,E Randash,
a . .

In particular, observe that J-f(y) dy = L

Now, suppose that F is a distribution function such that F’ exists and F' is
continuous. Then we know that

F(x) = [ £(y) dy.

for some non-negative real-valued iunction f. Now let ys verify whether 1 satisfies
(i) and (ii) in Definition 3. (i) is automatically satisfjed. To verify (ii), note that

P[a <X sb] = F(b) - F(a)

b a
= [ f(y)dy - [ f(y)dy
- - 13
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b
= [i(y) dy.

Therefore, f satisfies the conditions (i) and (ii).

Conversely, if f is a density function of a random variable X, then define
X
F(x) = [t(y) dy.

Then, by (i) F(x) = P[X s x]. Therefore, F is a distribution function of the r.v. X.
Also, by using the Fundamental Theorem of Calculus (Theorem 7, Unit 10,
MTE-01), Fis differentiable and 3—:— = f(x). Further

b
Pla <X sb] = [f(y) dy

for any pair of real numbers a and b.

Again, from Unit 15, MTE-01, you know that the integral of a function f between
the limits a and b can be interpreted as the area bounded between the curves y = f(x),
the x-axis and the ordinates y = a and y = b. Hence this area is equal to the
probability that the random variable X takes values between a andb.

Note that the area enclosed between the curve y = f(x) and the line y = 0 is unity,
since it is equal to P[- © < X < »].

Let us now look at some examples of density functions and their corresponding
distribution functions.

Example 3 : Let X be a random variable with density function

1 forOsx=1
0 , otherwise
Then
i X
F(x) = P[X s x] = [ €(y) dy
0 forx=0
ie, : F(x) = Ix forO<x<1
1 - forxz1

You can see the graphs of f and F in Fig. 4

' | )
v} Y
S 1
0 1 X ) 1 X
(@) )

Fig. 4: Graph of (a) density function and (b) correspounding distribution function
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This distribution is caiicd Lt stasuat « siitorii distribution or reciangwnd’ Unlvariate Distri’..
distribution.

Note that, for anyaandbwithOsa<b= 1,
b.
PlasXsb]=[dy=b-a,
a

Hence the probability that a real number is selected from [a, b] under this probability
model is b —a. It is just the length of the interval {a, b].

Let us consider another example.

Example 4 : Let X be a random variable with density function f which is a constant
over an interval [a, B] and equal to zero outside the interval [, f]. In other words

C forasxsp
f(x) =
0 , otherwise,

where C is a constant. From the properties of density function, we get C z 0. Further
the equation

f f(x)dx =1
implies that

g

feax=1.

This relation leadsto C = and we have

——— ifasx=f

1
B-a
f(x)=

0 , otherwise

This is called the uniform density function on the interval [, B]. The
corresponding distribution function is

0 ifx<a
F(x) = %—:_—'% ifasxsp
1 ifx>p

called the uniform distribution on [d, B]. Did you notice that Example 3 is a
particular case of Example 47 We trust you will be able to check the calculation of F
from f very easily.

In the next example we discuss another distribytion which is frequently used as 2
model in describing the life time of a light bulb. .
Example 5 : Suppose X denotes the life time of a bulb and X has density function
" e* ,x=z0
f(x) =

0 ,X<0.

Check that f(x)z 0 and thatff(x) dx = 1. We now claim that the distribution function

-

F corresponding to f is

Itpyt to test PDF Combine only




Distribution Theory 0 forx <0
F(x) =
” 1-¢*  forx=z0.

Do you agree? Check that %ﬁ = f(x), and you will be convinced. This distribution
is known as the standard exponential distribution,
Another distribution which js by far the single most important distribution in

Statistics is the normal distribution. It is sometimes referred to as the Gaussian
distribution. We take this up in our next example.

Example 6 : Suppose X is a random variable with density function
' 2
¢(x)-%e"‘ 2 e <x <o,

It is obvious that f is a non-negativ function. It needs some effort to show that

f(p (x)dx = 1.

We will postpone this proof until Unit 11, The distribution function F corresponding
to this density function is . :

¢ and P are the greek fetters small

. X ’
. 1 2
phi and capital phi. C(x)=f—==e? "2dy, - 0 <x <o,
Vir .
- QO

We have sketched the graphs of ¢ and @ in Fig. 5 below.

Fig. 5: Graph of the (a) deusity function, b) distribution function of a standard normal distribution

We will study this graph in detail in the next unit.

The distribution discussed in the above example is known as the standard normal
distribution,

See if you can solve these exercises now,

E6) Suppose that a random variable X has the density function
f(x)-%e""l,—oo<x<oo
Find the value xq such that F(xp) =..5.

16 E7) A random variable X has the distribution function
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F(x)={x* for0sxsl
1 forx=z1.
Show that X is of continuous type, and determine its density function.

E8) Show that the function
1

T3, T®sX<®
(1 +x%)

f(x) =

is a density function.

E9) Buses arrive at a specified stop at 15-minute intervals starting at 8.00 A.M. That
is, they arrive at 8.00 A.M., 8.15 A.M., 8.30 A.M., and so on. If a passenger
arrives at the stop at a time that is uniformly distributed between 8.00 A.M. and
8.30 A.M., find the probability that she waits less than 5 minutes for a bus.

E10) Consider the function
S
f(x)=C(2x-x"), 0<x<3

= 0 ,  otherwise

Can f be a probability density function? If so, calculate the constant C.

By now you must have become quite familiar with the density and distribution
functions of a random variable. In the next section we take up the study of the
expectation, variance and other related concepts forar.v. N

104 EXPECTATION AND VARIANCE

In Block 1 you have calculated the mean (expected value), variance and othet
moments of a frequency distribution of a quantitative character. In Block 2, again,
vou have studied these very concepts in the context of discrete probability
distributions. If you remember, over there you had replaced relative frequencies by
probabilities. Now we are going to study these concepts again — this time for a
continuous random variable. Since you are already familiar with the interpretations
and interrelationships of these concepts, here we shall go over them quickly. Quite
often we’ll only state the all-too-familiar results and expect you to prove them. Let
us start with the definition. ;

Definition 4 : The expectation of a r.v. X with density function f is defined to be

0

fx f(x) cix.

- 00

provided flxl f(x) dx < co.

We denote the expectation or expected value of X by E(X) whenever it exists.

In general, if g is a function of the r.v. X, we define

Bl (- 800 1) b T
provided flg(x)l f(x) dx < 0.
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If X is a discrete r.v., then
E(X) = Zxp(x),

18

Sample output to test PDF Combine only

With this general definition we’ll be able to write down the expression for the
variance and the moments of ar.v, X.

As you know, from Block 1,
Var(X)=E [(X -~ u)z], where p = E(X).

Therefore, we write

Var (X) = f (x - p)? f(x) dx,

provided the integral on the R.H.S. is finite.
Then using some algebraic properties of expectation we can show that
2
Var(X) = E(X?) - [E(X)]” = E(X?) - u%. We shall discuss this at the end of this

section. Variance is also denoted by o and we are sure you remember that G is
called the standard deviation. Have you noted the similarities and the

_ dissimilarities between these definitions and those given in Blocks 1 and 2? A major

point of dissimilarity is that here we have defined the expected values as integrals,
whereas earlier we had used summations. But hadn’t you expected this ? Since our
random variable now varies continuously, instead of taking only discrete values, it is
quite natural that we use integrals and not summations. Another change is that the
density function f(x) now takes the place of the p.m.f. But these differences apart,
don’t you agree that the basic concept remains the same ?

Before we talk about the algebraic properties of expectation and variance, we givea
few examples. These will familiarise you with the calculations of mean and variance.

Example 7 : Let us calculate the expected value and the variance of X, where X isa
r.v. with uniform distribution on {a, ] described in Example 6.

Now,
1

= , ifasx=sf
f(x) = {P—

0 ,  otherwise
By definition,

E(X) -fx f(x) dx

-~ 0

B
=fx Eﬁ—ia—') dx, since f(x) = 0 outside [c, B]
1 [Ez_'—__az]

Thus, the expected value of X is the mid-point of the interval [a, B].

: 2
Now,  Var(X)=E(X%) - [MJ )

2
B
and E(xz)-afxzﬁfadx |
B-al| 3
Hence, Var(X) = f zﬁ—-a:) e ; By
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Let us consider another example.

Example 8 : Suppose X is a r.v. with exponential distribution. This means that the
density function f of X is given by

Ae™
f(x) =
6 - , x<0,
where A is some positive constant.

Recall that we have seen the case A = 1 in Example 5.

Let’s compute the mean and variance of X.

E(X) =fx Ae ™ dx
0

|

fy e’dy ,ifweputy=Ax.
0

>’

>

-]

Do you agree that f y €”7dy = 1? Note that this follows by the method of integration
: 0

by parts. If X is interpreted as the life-time of an electric bulb (see Example 5), then
the mean or expected life time is 1/A. Now, to calculate Var(X), we begin by

computing E(X?).

E(X?) = Jx2 ne™ dx
0

= %Efyze"' dy, where y = A x.
"0

You may not have come across this integral before. It is the value of the gamma
" function at 3. The gamma function, T, is defined as -

[(a) = fy“' ‘e dy, where a.> 0,
0

Then it is known that

['(n +1) = n !, where n is any non-negative integer. Without going into the how and
why of this, we shall only use this fact to evalygte E(X?).

So, E(X%) = = T(3).
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Thus, Var(X) = E(X3) - [E(X)]

52
In all the examples considered so tar, the random variables turned out to have finite

expectations. But you shouid nole that there are cases of r.v.s. whose expectations
not exist. You can see one such r.v, in the next example,

Example 9: ¢t X be ar.v. with density function,

f(X) = ——-—xr  — @ <X <.

T E8 yon must have proved that the function f above is a density function. This
gistribution is called the (standard) Cauchy distribution.

Let us check whether E(X) exists in (his case.

We have

ﬂ‘{[fﬁ{ rjx-?f dx

141]

= i[ln (1 +x2)];o

and% 1n(1 + x”) — o as X — co, chce,f|x| f(x) dx is not finite. Therefore, E(X)

does not exist.

From the above examples you must have got a pretty good idea of the computations
required to evaluate the expectation and the variance of a r.v. Now we shall list some
of their algebraic propertics. The proofs of these properties depend on some
elementary properties of integrals. We have proved some of them and we are sure
you will be able 1o prove the rest {sce E11).

i} UY =aX +b, where a and b are any two constants, and if X has a finite
expectation then E(Y) exists and
E(Y)=aE{X)+b.

ii) If Xisarv. taking non-negative values with probability one, and if

- E(X) < o, then E(X) 2 0.

i) I Xand Y are r.v.’s with finite expectations and a and b are constants, then
E(@X +bY)=aE(X)+b E(Y) :
We will come back to the proof of this property in Unit 12.
But note that this result can be extended to three or more variables.

iv) Var(X)=0ifand only if Xisa constant with probability onc, i.e. iff P[X = C] =
1 tor some constant C. .

One-way implication in this statement is easly. Then we can consider X as a discrete
r.v. So let’s apply the definition of the expected value of a discrete r.v. to get E(X).

You will sec that we get E(X) = C. Then Var(X) = E[X - CJ =0, since (X - C) = 0
with probability one.

To prove the converse, we need to use Chebyshev’s inequality. So, we postpone the
proof till Unit.14, where we are going to discuss this inequality.,

v} For any two constants a and b,

Var (aX +b) = a* Var (X)



vi) Var (X) = E(X2) ~ 1%, where p = E(X).
We have already mentioned this property eailier.
Now attempt the following excrcises to complete the discussion of algebraic

properties of E(X) and Var (X).

E11) Prove the properties 1), v) and vi) above.

E12) Compute the expectation and variance of a random variable Y whose density
function is

i-y|  for1-fy]<1

0 otherwise

E13) Let X be a random variable with density function

-2-3- ifxz1
f(X)=<x

10 otherwise.
Show that E(X) exists and E(X) = 2 but Var(X) does not exist.

E14) Let X be a random variable such thatE | (X - a)2 exists for all real numbers
a. Show that E [(X - a)T‘ is minimum when a = p = E(X).

So far we have seen how to calculate the expectation and variance of a random
variable as long as they exist. As we have seen, both the expectation and variance
are specified by the values E(X) and E(XZ), the expected values of X raised to the
first and second powers. But these two expected values describe only two particular
aspects : ““the middle value’” and the measure of relative variability about the middle
value of the probability distribution corresponding to the random variable. These
two numbers are not sufficient to describe the distribution completely. To get more
information about the distribution we need to study its moments which are specified

by the values ofE(Xk), k=1,2,3,.... We shall take up this in the next section.

105 MOMENTS AND MOMENT GENERATING
FUNCTION |

In Unit 7, we have discussed moments and m.g.f. of a discrete r.v; X. The discussion

in the case of a continuous probability distribution runs parallel to that in the case of

discrete probability distributions.

If k is any integer greater than or equal to one, and if b is any real number, then if
E[X ‘w]k exists, it is called the KM moment of X about the point b.

kit .+ ontsaboutb =0 given by

we =E(X¥), k=1.2,...
-are called raw moments or simply moments. Now if we take b = u = E(X), then

we=E[(X~-w)¥], k=1,2,... ‘
which are the moments about the mean i, are calicd central moments.
k is called the order of the moment (X - b)k.

Do you agree with the following observations ?
' =p
puy =0
W = & = Var(X)

Ay
It
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In Blocks 1 and 2, we had derived the relations between raw and central moments of
X. The same hold good here. Thus, we have

X

k ~ r k=i !
ukfz(i)(-l)k'ul (1), o’ = 1.

1=0

At the end of the last section we said that we need to study moments to get more
information about the distribution of a r.v. You may think, what additional
information can the moments give ?

To see that let us look at the following expressions.

3 ) 4
< El-w) IzﬁandﬁngI(X“-Ez l_%.
o o o o

Now what is the significance of this? Aren’t the expression for y1 and B familiar ?
Y1 measures the skewness and B, the kurtosis of a density function. (Compare these

with the measures of skewness and kurtosis of a frequency distribution, discussed in
Unit 3.)

Let us see an example. -

Example 11 : Suppose X has uniform distribution on [ . B]. Let us compute the
raw moments for this distribution.

We have,

1
B-a

1 [’xrﬁl]ﬁ-_ﬁnl_aﬂ-l
B-a r+1a r+1)B-a)

: g
‘E(X*) = fx' dx

In particular

pz—az B+a
e T

Why don’t you try some exercises now ?

E15) Suppose X has uniform distribution on [a, B]. Find

E(X")and E [(X - )] forr= 1, where M is the mean of X.
E16) Suppose X has a standard exponential density. Find the coefficient of
skewness, '

E17) IfY = ax+b, show that Y has the sadﬁe coefficients of skewness and kurtosis
as X, whenever they exist.

After doing these exercises you would have realised that calculation of moments of a
random variable is cambersome even whe they exist. Alternatively, we can use the
moment generating function, whenever it exists, to obtain the moments.

Let X be a random variable, such that My (t) = E[e'*] exists for some t = 0, Mx (t) is
called the moment generating function (m.g.f) of the random variable X, whenever
it is well-defined.

Note that Mx (0) = 1 for any random variable X. Let us expand Mx (t) by
Maclaurin’s series expansion (See Unit 6, Block 2 of MTE-01). Then we have

dMx (1) | +eet £ d° .
Mx (t) = Mx (0) +t 4 (=0 nlgp M)+ o (2
t=0 '
On the other hand, suppose the following computation is justified :
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E[e'x]-E[1+tX+*'+ ........ + +oone J
! n!
tz 2 n
-1+tE(X)+5—’E(X)+ ............ +=EX") + ...
........ 3)
Comparing the coefficient of t* for everyn = 1,2, 3..in (2) and (3), we have

the relation

oM () -=E@)n1].

This relation implies that the nth moment about zero of the random variable X can
be obtained by differentiating the m.g.f. Mx (t) of X exactly n times, and then
evaluating the nth derivative at zero. This is why Mx (t) is called a ““moment
generating function”” of X. We can justify the above arguments under some
conditions on the existence of moments of X. But this discussion is beyond the scope
of this course.

We now show you how to calculate the m.g.f. for the uniform, and the exponential
distributions. '

Example 11 : Suppose X has a uniform distribution on [, B]. Let us compute the
m.g.f. of this distribut: .n, :

We have

X
[

dx
-a

B
Mx () = E[e*] - '3

p

®

-L[%J fortmQ
B-aft]

tg ta

er-e v
= ————— fortm(
t(B-a)

and
Mx (0) = 1.
Hence the m.g.f. My (t) exists for all t.

Now, why don’t you check your answers to E15 by calculating the moments from
the m.g.f. obtained in this example ? (see E18). :

Example 12 ; Suppose X has the exponential density,
A x>0
f(x) = :
0 » Xs0

where A ~ U, Let us compute the m.g.f.

Mx (t) = E[e™] = [ 6 e g
0

- -]
-)»fe(“).‘)"dx
0

-}\%f fort<A.

This m.g.f. My (t) does not exist for t = A since in that case, elt-Nx is unbounded
on ]O0,of. 23
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Try to solve these exercises now.

E18) Calculate the first and second moments of the uniform distribution using the
m.g.f. of the distribution.

E19) Let X be a random variable with density function

X if0sxst
f(x)={2x iflsxs2
0 otherwise

Determine the m.g.f. Mx(t) of X whenever it exists.

E20) Suppose X have the density function

xe X ifx>0
f(x) = 0 otherwise

Find its moment generating function whenever it exists.

E21) Let Y =aX +b. Show that
My(t) = e Mx (at).

Here we make an important remark.

Remark 4 : You may have got the wrong impression that if two r.v.s X and Y are
such that all the moments of X are respectively equal to the moments of Y, then X
and Y are equal. This is not so. Infact moments do not even determine a distribution
uniquely. Same is the case in general with m.g.f.s. However the following theorem is
valid. We will not discuss its proof as it is beyond the scope of this course.

Theorem 1 : Suppose X and Y are random variables with m.g.fs Mx(t) and My(t),
respectively. Suppose Mx(t) and My(t) exist in an open interval containing zero and
MX(t) = My(t) in that interval. Then X and Y have the same distribution.

In the next section, we take up one last topic, the distribution of a function of a
random variable. '

10.6 FUNCTIONS OF A RANDOM VARIABLE

In the earlier sections of the units we were concerned with various aspects of the
distribation function of a random variable. In many applications we may have to
consider not only the distribution function of a random variable, but the distribution
function of a function of a random variabje. In this section we first try to understand
what is meant by a function of a random variable and then discuss how to find its
distribution function. ‘

‘Let us first consider this situation :

~ Suppose we want to know the volume V = g nr ‘of a spherical object, say ball

24
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bearing, manufactured by a company. Due to manufacturing defect, the radii of
different spheres may be different. We suppose that the radius of a sphere is a
continuous random variable X having density function f. Then we can consider V as
function of the random variable X, say "

4.3
V= 3 ax
Here we would expect that we can derive the density function of V from the

knowledge of the density function of X. In such situations we are concerned with the



concept of a function of a random variable and its density function. Formally we Univariate Qistribation
define the concept as follows :

Definition 5 : Let X be an r.v. defined on 2 and g : R — R. Then the real valued
function Y defined on 2 by

B Y(w) = g[X(w)]

g is called a function of the random variable X,

For exampie, if X is an r.v. and g(x) = ax + b, then Y = aX + b is a function of the
rv. X.

You have already come across some functions of r.v.s in the earlier sections like Xz,
X3, .... . In this unit we consider only the continuous case. Here we make some
remarks. :

_ Remark 5: a) In general a function of a r.v. need not be-an r.v, B_ut it turns out that
k whenever g has nice properties, some of which are continuity (and) monotonocity,

(hen Y becomes an r.v. 30, i his course, whenever we deal with functions of rv,
we assume {hat g has nice propertics by which Y becomes antv,

b} Another question which comes to our mind is that suppose X is a continuous
(discrete) r.v., is it true that Y is also continuous {discrete) ? In general we cannot
conclude from the definition that Y is of the same type as X, For instance, if g(x) =
¢, a constant, for all x € R, then P[Y =c] = 1 and Y is a degenerate r.v. (Recall the
definition of a degenerate r.v. from Unit 7, Biock 2.) '

Next we shali see how we find the distribution of Y = g(X). Let us first consider a
simple case :

Svppose X is a ceontinuous r.v. and g(x) = ax + b, wherea, bER, a > 0._Thcn
Y =aX + b.

To get the distribution of Y, we consider
P[¥sy] = PlaX +b = ¥y)
-P[Xsa” (y-1)]

Now if Fy and Fx denote the distribution functions of Y, and X respectively, then
we have

Fy(y) = Fx[a™ {y ~b)]

Differentiating both sides with respect to y, we get the density of Y as

fy(y) = fxfa” (y - b)]

In this case we could easily derive the density function because the inverse of g

exists {given by g"x {y) = at (y- 'b)), and the inverse is differentiable. So, in the
i general case we expect that if g has similar properties as in the above case, then we
c¢an find the density function. )

i Now let us start with a real-valued function g definedon R. Let Y = g(X).

Weeall D = [x f(x)=0 ] as the support of .

Let us now suppose that g is a continuous and strictly increasing function on the
support of f. Since g is strictly increasing, there exists a function s, such that
glsy]=y

for all y . s is called the inverse function of g. Since g is continuous, s is alsb
§ 1 continuous.

Further e(x} < y if and only if x = s(y). Hence
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P[Y sy] = Ple(X)sy]
= P[X ss(y)]

Therefore, if Fx and Fy denote the distribution functions of X and Y respectively,
then

Fy(y) = Fx (s(y))
In particular, suppose X has a density function fx and s(y) is differentiable in y. The

Y = g(X) has a density function, fy and

dFyly) _ dFx (s(y)
Ty dy

- fx(s) [ad; [s(y)]]

fy(y)

Now on the other hand if g is continuous and strictly decreasing on the support of f,
then also we can use a similar argument as in the earlier case. To see this, first note
that g has a unique inverse function s(y) which is continuous and strictly decreasing.
Hence g(x) s y if x 2 s(y). Therefore, :

Fy(y) = P[Y <y] = Plg(x) =y]
= P[X zs(y)]
= 1-P[X <s(y)]
If X has a density function {, then Fy is continuous and
Fy(y) =1 - Fx(s(y))
In fact, Y has a density function fy(y) given by
dFy(y) dFx (s(y))
fy) = =37 ===

-~ £ (5()) ady (s(y)]

Thus we have proved the following theorem.

Theorem 2 : Suppose X is a random variable with density function fx. LetY =
g(X), where g is continuous, and either strictly increasing or strictly decreasing
function. Let x = s(y) be the inverse function of g and suppose s is differentiable in

y Then Y has a density function ‘fy(y) and

) = s [ 1|

Let us consider some examples.

~ Example 13 : Suppose X has a density function

3x2 if0<x<1
f(x) = :
0 otherwise.
Then the support of fis ]0, 1]
Suppose Y = X2, Here g(x) = x° in the earlier notation.

Note that g is strictly increasing and continuous on the ]0, 1] and s(y) = yll2 is the
inverse of g on 0, 1{. Then s(y) is differentiable in ]0, 1{ and therefore by Theorem 2,
we have

1221 12, O<y<l
fvly) = G5 g [s) = T 27
y 0 , otherwise



Thus, the density function of Y is Univariate Distribution

3 y1/2
fy(y) = {2 ’
0 ,  otherwise

O<y<1

Example 14 : Suppose X is a random variable with standard uniform density
function, that is

fx(x) = 1, 0<x<1
= 0, otherwise

DefineY = %ln X. The function

g(x) = %ln X

maps the interval ]0, 1] to ]0, oo[. Further g(x) is continuous and strictly decreasing
on the interval 0, 1[. The inverse function s(y) of g is given by

s(y) = e O<y<om

which is differentiable. Therefore by Theorem 2, Y has a density function given by

fr(y) = - £[s(y)] f;[sm]

A fory>0

0 fory < 0.

Sometimes we cannot apply Theorem 2 which we have used in the two examples '
above. The next example gives one such situation. '

Example 15 : Suppose X has the standard normal density function. Let Y = Xz.
Here g(x) = x2. This function is continuaus but strictly increasing on [0, «o[ and
strictly decreasing on ]-co, O[. Further g(x) is not one-to-one, since g(=x) = g(x).
That means g(x) does not have an inverse. Therefore we cannot apply Theorem 2 in this
case. So we try some other method in this case. Since y z 0 for all x, we have

P[Ysy] = P[Xzsy] = Ofory <0 and fory>0,
P[Y sy]=P[X*sy]=P[|X| s Vy]=P[- V¥ s X VY]
vy
ie. Fy(y) = [ f(x) dx,
-y

where f is the standard normal density function. By the symmetry of this density
function, for y > 0 we have :

y ‘v’71 )
Fy(y)-Zf——m e™ 7% dx
0

y
-2 JV% o2 ilzﬁ
‘1 -1/2 _-2/2
= dr -ﬁz € dz
This derivation proves that the random variable Y has a density function fy, where
27
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ty(y)={_1_ -2 ~y2
var” fory > 0.

Recalling that T (%) =Vr , we can write fy(y) in the form,

0
fy(y)={___1 _ u2-1.,y2
21/2T (1/2)
This density function is known as a Chi-square density with 1 degree of freedom.
We will study more about this distribution in Unit 13.

fory=<0
fory > 0.

Now, suppose we want to compute the expectation of Y = g(X) whenever it exists.
We can either use the distribution of X or the distribution of Y. For instance,
suppose X has a density fx and Y has density fy.

Then

E{g(X)] = [g(x) fx(x) dx

-Q0

and

E(Y) = [y fr (y) dy-

-00

It can be shown that E(Y) exists if and only E[g(x)] exists and both these methods of
calculation lead to the same result. We do not give the reasoning here. The choice of
the method depends on the complexity involved in finding the distribution or the
density of Y = g(X).

Let us continue the discussion in Example 15 to illustrate this.

Example 16 In Example 15, you have seen that E(X?) = 1. Let us compute E(Y)
where Y = X? directly using the probability density of Y derived above,

Then

1 1/2)-1 4-y/2
E(Y —_— d
(¥)= fy 2“21‘(1/2)y y

"ol r(1/2 f y y

. [+ ]

1 172 3/2-1 ~u

-2 f2v¥? e du
12 -
27°r(1/2) | .

r(1/z T(3/2).

ButT'(3/2) = %I‘ (%) . Hence E(Y) = 1 as it should be.

Now it’s time to do some exercises.

E22) Find the de’nsiiy function of Y = X when X has a uniform density on [-1, 1].

E23) Suppose a random variable X has the density function
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) Univariate Distribution
2 0<x<2
f(x)=12
0 otherwise.

Let Y = 4 —x°. Find the density function of Y.

We now end this discussion. We hope that by now you would have gained
reasonable knowledge about the various aspects related to the distribution of a
random variable. In the next unit we shall study some standard distributions.

10.7 SUMMARY

“In this unit, we have

1) introduced the concepts of the distribution function of a random variable and
the density function for an (absolutely) continuous distribution;

2) studied properties of a distribution function and a density function;

3) defined the notions of moments of a random variable in general and the
expectation (mean) and the variance in particular ; _

4) introduced the concept of a moment generating function for a random variable; and

5) given methods for finding the distribution function or the density function of a
function of a random variable,

You may now like to go back to Sec. 10.1 and go through the list of unit objectives
to see if you have achieved them. If you want to see what our solutions to the
exercises in the unit are, we have given them in the following section.

10.8 SOLUTIONS AND ANSWERS

£1) a) 0 and 1 are the points at which the function is discontinuous.
b) AtO, the function has a jump discontinuity of size p and at 1, the function
has a jump discontinuity of size 1— p. :
( 0 ifx<l1

, /6 iflsx<2
E 2) The distribution function F(x) = ‘

3/6  if2sx<3

1 ifx=3
The graph of F is as in Fig. 6

i
v}

14 —

.5"' rr—
~161 . e——e :

ol 1 2 3 X

Fig. 6,

The function has discontinuity atx = 1,atx = 2 and at x = 3.

[
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Distribution Theory E3) a) Fig. 7 shows the graph of F(x).

—

0 1 X

Fig.7
The graph shows that F(x) is continuous for all x.

b) Fig. 8 shows the graph of F(x).

f
o
1
w3l
) 1 X

Fig.8
The graph shows that the funcnon is dnscontmuous atx =0 and is continuous
everywhere else.
Eq)
4
Y
3/4 1 /
T Y -
-1 © 1 X
Fig.9

3
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a) By property (), we have Univariate Distribution

[ 1 1
—<X <= —
et
_i_i 1
8 8 4
b) 0
1
c) 3
d) 0.
5) From the figure we get that

a) F(x-0)=0, ifx<0

2

=x?, if0sx<1

-i—, iflsx<2

=X, if2sx<3
=1, ifxz3.
Then by Property (e) we have
1 1 1
-2yl
- F(—l-) - F(—;—), since the function is continuous at x =

1
2 2

b)P [X=1]=F1)=F1-0)
3_1.1
4 2 4
Similarly we get
1
c) P[X <1] =5
d) P[Xsl]=§-
4
1
€) P[X>2]=Z
1 51 3
1] P[2<X<2]=4
E6) The density function of X is
f(x)=%e"*"|,—oo<x<+oo

Then the distribution function of F (x) is given by

X
F(x) = f%e""ldx
1.9 p
-—Z—[Ie"dx+{e"‘dx]
-0

-3+ )

=—;—[1+e'x—1]

31
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)

-~

=.5e7
Then e poi At xg samfymg F(xo) =.5isx0=0.

BTy The graph of F(x) is shown in Fig. 10.

v - Fig.10
"The graph shows that the function F(x) is continuous for all .

-----

(e duosity function {(x) is given by

f(x)ég-g—iﬁ-:k , if0<x< 1
=v0 ' s thefWiSé
83 The given function is f(x) = ~+1—;, ~00 < X < 0,
(1 +x°)

Then f(x) satisties the following conditions.
) (x) 2 0 for all x. |
+ o

ot ®

. 1 1
i) : =2 —3- dx
’ _{ w1+ { 1+ %)

R

=-—x-—--1

2

9 Suppoce X denotes the number of minutes past 8 that the passenger arrives at
the bus stop. Since Xis umformly dxstnbuted the dens:ty function of X is given
by L
: lag l_st_szO
fx) =37 .
- o, -'othervs)isé |
- fsee Example 4)
. “Wow the passenger will have to wait less than 5 minutes if and only if he or she
arrives between 8,10 A M. and 8.15 AM. or between 8.25 A.M. and 8.30 A M.
| oo the probability that the passenger waits less than S minutesis
PIIU < X 5 15] + P[25 <X 530]

-4
Fherod

32
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Asbriis. .
But P[10 <X = 15] = ff(x)dx af-—dx -

6
10 107
30 1'
and P[25 <X =30] f——dx .
1
Therefore the required probability = 3

E10) fcannotbea densxty functlon since f(x) < 0 for \/— <X < 2’

E11) i) Property (i) : Let f(x) denotes the density function of X.
From Definition 4, we have

+®

E(Y)=E(aX +b) = f (ax +b) f(x)dx

-

- afx f(x)dx + bff(x)dx

-0 -0
=aE(X)+b,
+00
since ff(x)dx =1

Property V : Let E(x) = u. Then E(aX + b) =dp + b by pmperiy. {i). Thwerefore
Var(aX +b) = E[aX +b - ap + bjz
= E[(2X - an)’]
E [a2 (X - u)z]

= &E[(x - p)’]

=a? Var(X).

Piroperty VI ;
Var(X) = E [(X - w)’]
=E [XZ 2uX + W ]
-E (X)) +E[(-2mx)] +Ep*
= E(X?) - 20 E(X) + u

= E(X?) - 2 + p?
~EXY) - 2,

£12) Expectatidn is zero and variance is 1/6.

£13) E(X)= fx—dx=f 2dx=[;-—] =2

E(X%) = fx —=f dx=2[lnx]

and In X — %« as x — «, Hence E(X” ) is not ﬁmtc and mcrexom the variancs.
does not exist.

33
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Distribution Theory E14) Let g@) = E [(X - a)z]
=E[(X-p+pn- a)2] , Where u = E(X)

= E[(X - )]+ (b - ) E[(X - W] + (u - )’
= E[(X - W] + (u - a)’, since E{(X - w)] = 0.
This shows that g(a) will be minimum when a = p = E(X).

B
E15) E(x") = f x B—_l-&-dx

1 [xr+1]ﬁ ﬁr+1_at+l

. . : “B-a r+1u'(r+1)((3—a)
In particular :
[SZ—OLZ +a
HeEX 260 2
Further
EX-pf =E| = (') i -y
j=o\
-3 (') (- - E(x)
j=oV _ _
_é f(_u)r-j (E!+1_aj+l)
j-O-’ ' r+1)(B-o)

where p= 9_;_@_ ]

E16) By definition, the skewness is given by
E[(X - )’
[ = _[03_:01
Then show that E(X) = 1, E(X?) = 2 and E(X?) = 6.
Hence o =1 and p = 1.
Hence we have
vi=E[(X - 1)’]
-E[x3 - 3% 43X - 1]
=2, :

E17) Let E(X) =ux, Var(X) =0%. Denote the coefficients of skewness and kurtosis of
X by'y'lx and y’zx respectively. Then wy = E(Y) =a pyx +band o@ - azog(.
Further o

' 3
¥ ELOY - 0Y)’] E[(@X +b) - (aux +b)]
: o Aok
sEX -uxP] _E[(X-ux)’] _ x
= Q 30% - 3 - Yl
a ox -
Similarly we can show that yzY = yzY. Hence the result

E18) The first moment mj = E(X) - % Mx(t)lt_ o

tﬁ_éd
Here Mx()) = LB-a)
d éﬁ_&a
E(X):a(t(ﬁ_a) |‘_0
1 [t(pe'? - ae'P)- (e'P - ')
“B-a £ |
34 t=0
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0
But when we subsulute L= ¢, ihe expression the R.H.S. is of the form. Therefore,

by applying, L’ hopntal srule for = form (see MTE-07, Block 1, Unit 2), we get

tg ta 2.t8 2 ta B «
E(X)-ﬁia[@ —ae ~ +B% -2:“ )= (Be'P - ae'?)

t=0
EZtB ae
-[ 2(B-a) ]t-o
ﬁz_az' B+a

T2AB-a)” 2
Similar argument shows that

2
Var(X) = ﬁL;ZE)_.

E19) Mx(1) = E(e'X) = [e'* f(x)dx

-00

1 2 '
-fe“‘xdx +fe”‘(2-x)dx
0 0
2

t
_[e-l] , t»0
t 0

and Mx(0) =1.

) 1
£20) Mx(t) = T t<1
E21) My(t) = E[e““" * "’]
- E[ etaX e‘ b]
- e( b E[ etaX]
= ¢'® Mx(at)

E22) LetY = g(X) = X2 and fy denote the density function on Then
fr(y) = fx(s(y)) —s(y)

where fx denotes the density functxon of X and s(y) denotes the inverse
function of g(x).

12 4 /12 ‘
fx(y) = fx(y )dy(y ).,0<y<1
-lx—y
-E‘/—y—-:,0<y<1
f()----L ifo<y<1
=0 , otherwise

1 X
E23 f = .
) Y(Y) 6(4 _y)1/3
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UNIT 11 STANDARD CONTINUOUS
DISTRIBUTIONS |

Structure

11.1 Introduction
Objectives

- 11.2  Normal Distribution

36
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11.3 Exponential and Gamma Distributions
11.4 Beta Distribution
11.5  Summary
11.6 Solutions and Answers
Appendix : Tables of the Norma! Distribution

11.1 INTRODUCTION

In the previous unit, we have introduced the notions of distribution function, density |
function, expectation, variance and moments for a univariate continuous random
variable. You have seen several examples dealing with these concepts. In this unit,
we study the properties of some standard (absolutely) continuous distributions.
These distributions are widely used in statistical inference as you will see in Block 4.
Our main emphasis here is on normal, exponential, gamma and beta distribution. We
have chosen these distributions because of their wide spread épplicability. You have
already met some of these in Unit 10. Here we shall take them one by one and
discuss them in detail.

Objectives .
*  After reading this unit, you should be able to :

* compute the mean and variance of the normal, exponential, gamma and beta
distributions ; '

* investigate properties of other distributions which you come across.

Let us'start with the normal distribution.

112 NORMAL DISTRIBUTION

Normal distribution, also called Gaussion distribution, is the most important
probability distribution. It was found that the normal distribution is a good fit for a
large class of data sets found in practice. For instance, normal distribution is a good
approximation to the distribution of heights of people in a particular region or to the
distribution of marks obtained by students from a university in a particular
examination or to the distribution of diameters of bolts produced in a certain tactory.
It has been emphatically observed that normal distribution is also a good fit for the
distribution of measurement and was derived by Gauss under certain assumptions as
the probability law governing such errors.

Another reason for the importance of normal distribution in Statistics is the central
limit theorem. We will discuss more about this theorem in Unit 14. What it
essentially implies is that, even though the original set of observations might not be



Standacrd Continuous

from a normal distribuuon, tie averages ot these observations will be distributed
~ Distributions

approximately normal as long as the number of observations is large. You will
rcalise the significance of this statement a little later.

Let us first look at the definition of normal distribution. In Example 9 of Unit 10 we

had considered the speclal

A random variable X is said to have normal distribution if it has a probability case when p=Oando=1.

density function (p.d.f.) f of the form

1 l(x-u)

RrrAE

wicre -0 < < and 0 < g < o are certain fixed quantities referred to as
population parameters. Let us now check whether the function f is in fact a density

function. Recall that a function f is a density function if and only if f (x, [ ?)z0
for all x and

——— KX WD

f(x,u,o

ff (x; p, O°)dx = 1.

Non-negativity of f is obvious from its definition. Let us check the second condition :

:L.("_'_Eﬁ

ff(x;u,oz)dx=f\/2;7—ez ) dx

1
=) T2
“=V2re¥ 2 dy

Now, to evaluate this integral, we start by writing .

, (by the transformation y = x_;g._)

@

1
- [

- 0o

c::"'z/2 dy.

Then

- e

_w\/_e—x/Z
1 @ 1 '2 )
Hf fexp{-.i[yz+z]}dy,dz.

Apply the transformation y = r cos 6 and z = r sin6. Then, from the change of
variable formula for double integrals (see Unit 11, Block 4, MTE -07), if follows that

1 2n »
=2—-ffexp{ }rdrde
51—— k)4 frexp{ -;—rz}dr=li

Hencel=1

This proves that f f(x; b, %) dx = 1.

- 00

You know that if p = 0 and o = 1, then the distribution is called standard normal
distribution. We usually denote the standard normal distribution by ® (x) and the
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Distribution Theory standard normal density by ¢ (x). In Fig. 1 you can see graphs of the p.d.f. of the
standard normal distribution and that of an arbitrary normal distribution. '

YAP

(V] o X
(@)
Y
(o] ~‘ X
(b)

Fig. 1 : The graph of the p.d.f. of a (8) normal distribution (b) standard normal distribution.

From Fig. 1(a) you can see that the density function f (x; p, o’ is symmetric about
u. Further p is the median as well as the mode of the distribution. The graph of fis
bell shaped. The shaded area in Fig. 1(b) gives the standard normal distribution

function. Now let us calculate the expectation, variance and moments for a normal
distribution.

Example 1 : Let us calculate the expected value and the variance of the r.v. X,
whose density function, f, is given by

2
1 -l (x-p) .
€2 2 ,-0<x<®,

f(x)=

2no

where -~ @ < < and 0 < o < o,

Haven’t'you seen a similar density function before? In Unit 10, Example 9 you have
seen a particular case of this with u = 0 and 0 = 1.

Now,
© -2
1 ifx‘E) dx
E(X) =
( )_{x o ez 2
P 1 _n . X—-U
-f(oyﬂ,t) € dy, if we put -y
n o

o @ _2 ) ao‘l —2
B AR b i

0

2 ' - 2
- [e-y/z] +p.,sincef 1 e¥2dymi

Van V2n

-u.
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- p 2 1 .yz/g . X-u
0.2:[)' \/—-Tne dy, by putting y pn

Solve this integral by usihg the method of integration by parts, and check that

-]

21 —y2~/2d -1
_{ym" y=1

Using this we get
Var (X) = o2
Next we shall find the moments.
Example 2 : Suppose X is a random variable with density funétion

1 1wt
€ , =0 <X <,
Vo % S

f(x)=
Then

M= E[ (x - u)¥] )

s 2 2 dx
2no° o

: fl - oy o e

=o"fy"\/—r;-e"’/2dy;

17k is an odd integer, then the integrand is an odd function and hence

s 2
[y ev 2ay-0

-

This implies that

Uk =0, if k is odd.

Now suppose k is even. Let k = 2m where m is a positive integer.
Then .

Recall that we have seen

; the gamma function
. r(a)- z"'le"dz.
20° m o~z (5,\-1/2dz ingzal 0
= Von 6f (22)" €7 (22) » by putting z = 2 In Unit 10.
1 om+! c,2m >

==Y ~172 -z
B - z" e dx

o 1
m k3 .
2 = I'[m+ 2]. 39

o
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Now we make use of some more properties of the gamma function.
=1
[ (1/2) = Vx,
I'{o+ 1} = (a) for any a > 0,

Fk+1)=k!,ifkis a non-negative integer,

and

ML J’ m- 1 u)“‘ldu.

Tim+n)
Using these properties you can check that

rlmﬂ i [1(,1 {§+(m-g)] [;]wf‘

_@m-1)@m-3)...1

= Vi.
Hence,
Bam =[(2m ~ 1) 2m = 3) oo 1] 6 M 1,
In particular, we get M2 = & and p4 = 3a*, and hence,

e = 3 pt,

For the normal density function, we also have
3 4
y, =E x;“) -0 and ﬁz-ﬂ%ﬁuﬂ
C

Y1 = U implies that the normal density is symmetric. And Bz = 3 implies that it is
meso- kurtic (see Unit 3, Block 1),

An in the previous unit you must have reatized that the calculation of moments js

somewhat tedious process. Can you guess what an easier way is? Thls is what we
shall do now., :

Example 3 ; Suppose X has the normal density function with mean & and variance

-o%. Then

x (1) = E (%)
, _},(x—gf _
fe[x\[—oz 02 &

- o

@ ' 12 .
= fotloy+u) -71_..3'.“5’ d by the transformation >—£
SO E=er ey ey o

o -1 2oy
- e“‘f‘/-l—~,e'iy dy

l2 02
7%




The inlegia, -« wace the integrand cas o Standard Cont:
2 considered as the dcnsny lunction ot a normal distribution with mean (a and Distributions
2 variance 1.

Hence,

12
Mx()=e**7' % —octcon,

Thus in the case of normal distribution, the m.g.f. exists for all real t.

i We now state and prove an important theorem. You will realise the usefulness of
| this theorem {rom the examples that follow.

Theorem 1: If a random varjable x has normal distribution with mean p and
! varisuce o , then the random variable Y = aX + b has normal distribution with mean

au + b and variance 2% o,
Proof: Let us compute the m.g.f. or Y. Then

t}-E[e‘v]
=-E [et [ax-l-h}]
- ethE[e!aX]

| = ¢' " Mx (at)

i
- | =e'®, gl +;162|

2
| =c(ap+b)+%nzczl'

for - <t < 2,

! Let Z be a random variable with normal distribution having mean a p + b and
variance %az .

12 22
Then ' Mgz (1) = gltr+Ditegatae T®<t <,

since My (1) = Mz (1) for all t, and in particular in a neighbourhood of zero, it
! “llows from Theorem 1 in Unit 10, that the distribution of Y and Z are the same.

! lence the distribution of Y is normal with mean ap + b and variance 2% &2

For simplicity, we denote the normal distribution with mean w and variance 0 by
N (n, 0@ If follows, from Theorem 1 that if Y is N (4, o ), then X = Xﬁﬁ is
N (0, 1). |

We now give an example to show how Theorem 1 can be used to flnd the
probabilities relating to an r.v. w:th normal distribution.

Example 4 : Suppose Y is N(l, 4). Let us compute P[3 <Y < 5).

Here u =1 and g = 2. We apply the tr:_insform’ation X= }72_—1

Then we obtain that X is N(0, 1) and

3-1
2

P[3<Y<S]-P[ ¢X<S£1]-P[1<X<2]._

Now

e"‘z’/2 dx

2
P[1<X<2]-¢>(2)-¢(1)-f v
.1

4]
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where © denotes the standard normal distribution function.

Thus, we have found the required probability relating to the variable Y in terms of
the probabilities relating to X, which has a standard normal distribution. So, if we
know the probabilities relating to a standard normal distribution, we will be able to
calculate those for any normal distribution. But in general, the exact evaluation of ®
(x) is not possible since there is no explicit formula for computing definite integral.

2.
e* 72 dx

O () - f5=

on thé desk calculator.

However, extensive tables giving probabilities calculated from the standard normal
distribution are available (see Table 1 in Appendix). We can use these tables for
computing probabilities connected with a general normal distribution. You may find
the computation easy if you not that

P(-x)=1-O(xX) ¥V x.

This is because by the symmetry of the standard normal density function about zero,
the area to the left of x must be equal to (1 - area of the right of x).

Let us now see how we use Table 1 in the Appendix. From Table 1, check that
D (3.00) = 0.9987, and
P (2.00) = 09773
Hence, P[-3<X <3]=® (3) - P(-3)
=®(3)-[1-2(3)]
=2d(3)-1
=0.9974
Simiiarly,
P[-2 <X <2] =0.95546.

Now, how do we interpret this? We can say that more than 99% of the total
probability is carried by the interval [ - 3, 3] and about 95% of the total probability
is supported by the interval [ -2, 2 | for a standard normal distribution.

In general, if Y is N (i, 02) , then usiné the transformation X = Y—;—&, we get
Pln-30<Y <p+30)=P[-3<X<3]=09974

and  Plu-20<Y <p+20]=.9546.

Now if you go back to Example 1, then using Table 1 we get
P1<X<2]=®(2)- D (1) =0.9772 - 0.8413 = 0.1359.

Then P[3<Y <5]=P[1<X <2]=0.1359.

Now, we’ll show how the normal distribution ‘is used in some practical situations.

Example 5 : It has been observed that the marks obtained by the students in an
examination generally follows a normal distribution. In other words the -
approximating curve of the histogram obtained from the data should be bell-shaped
(see Fig. 2).



{

This method 18 relciitg o as givuiug v LIE CUrve’,

™

 J

1 ‘K b

a—1/2 a4 172 x—1”2 x+12 b - 172 b+ 1/2

Fig. 2 : The histogram is approximated by a normal curve.

The teacher uses the percentage marks to estimate the mean L and the variance .
Suppose the letter grade A is assigned to a student if the percentage of marks is
greater than W + o, B to those whose percentage is between p and p + g, Cto those
between u — o and p, D to those between p — 20 and w - o and E to those getting a
percentage below p — 20, Suppose we want to calculate the percentage of students
having grades A, B, C, D and E.

Let X denote the r.v. corresponding to the data and p and o denote the mean and
standard deviation respectively. Then the percentages of students having grades A,
B,C,DandEare givenby P [x>p+ 0], P[p<X<u+0oL,P[p-o<X<p)
Plu~20<X <p-0] and P [X < p - 20] respectively. Applying the

iransformation Y = -)-{*;—E, we find that Y has normal distribution, N(0, 1). Then

P[X>u+0] -P[X—-C';En
=P[¥>1] )
=1-P[Ys1]
=1-®(1)
=0.1587

Ppu<X<p+o]=P[0<Y<1]

- (1) - (0)
=0.3413.

Similarly we get
Plu-o<X<pu]=0(0)-P(-1)=0.3413,
Pn~20<X<p-0]=0(-2)-P(-1)=0.1359.
and

PX<p~20]=d(-2)=0.0228,

In other words, approximately 16% will receive grade A, 34% grade B, 34% grade
C, 14% grade D and 2% will fail, since they get grade E.
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Now, try to solve these excreises.

El) 1IfXisN (0, 1), find
a) P[0sX = 0.87]
b) P[-2.64 <X 50]
¢) P[-213sXs- 0.56]
d) P[[X]>1.39].

E2) fthe mgf. of X is Mx (t) = expt (- 6t + 320%), find P [-4 < X < 16 ]
E3) Show that if X has a normal distribution with zero mean, so does ~X,

Ed) The height of female students at IGNOU follows approximately a normal
distribution, with mean 60 inches and standard deviation 2. Find the
probability that a female student selected atrandom has height
a) less than 58 inches
b) between 58 inches and 62 inches, -

S ey : , Lo (X = )2
ES) IfXis N (1 o), determine the density function of Y = f\fl)
_ o
E6) A random variable X is said to have log-normal distribution it In X has

normal distribution. Suppose In X is N (g, ).
Find the density of X,

Show that
2

E(X) = exp[y + %], and

Var (X) = fexp (o) - 1} fexp(2p+ LTZ}}

We now consider two more distributions which are found quite useful in
applications. You have already met one of these before in Unit 10 (sec Example 8).

11.3 EXPONENTIAL AND GAMMA DISTRIBUTIONS

Let us quickly recall the facts you have already studied in Unit 10 about the
exponential distribution.

11.3.1" Exponential Distribution

From Unit 10 you know that a random variable X is said to be exponentially
distributed if it has a density function of the form

AThx iftx=0
[(x)= .
0 ifx <0.
where A > 0. You know that the distribution function F, corresponding to the density
fis
1—ehx ifx=0
F(x)= ' '
0, ifx<o0.
Further, E(X) = 1/A and Var(X) = 1/)2 (See Example 8 of Unit 10).

The exponential distribution serves as a good model whenever there is a waiting
time involved for a specific event to oceur. For example the moment of waiting time



{54y, Slaluiig ... . . ., - = actldent to oceur, or for a teicpaone Standard Continuous
call to be received, follows an exponential distribution under reasonable conditions. Distributions

An important property of an exponential distribution is its memoryless property. In
otier words,

PX>s+t|X>t]=P[X>s] 1)
forall's, t = 0. This follows from the following ob i P (A | B) denotes the
tor all s, . g observation conditional probability of an

" event A given the event B,
P[X > s+t|X>t]-P[X>S+‘1 1-P[X=ss+1]

PIX>t] -~ 1-P[X=(]

1-(1-¢+9x)
- 1-(1-¢'%)
1:. e—(s-l-l)x

e—tx

- 5X
=P[X>s]
+ «+w we shall illustrate why this property is called “Forgetfulness”.

.t e interpret X as the life time of a component (say a light bulb) in hours, the

Recall that we have noted in
-bove equation, (1) states that the probability that the.bulb lasts for at least s + t Unit 9 that a discrete rv.

~wurs given that it has worked for at least t hours is the same as the probability that jt With geometric _distribution
. PR . . T also has &  similar

tasis for s hours. That is, if the bulb is working after t hours, then the distribution of forgetfulness property.

the remaining time that it works is the same as the original distribution. In other

vords, the bulb does not remember that it has already been in use for t hours.

V¢ can show that the exponential distribution is the one and only one continuous
-istribution which has the forgetfulness property.

- s means that the only continuous r.v. X assuming non-negative values for which

viX>s+t]x>s ] =P[X>t], foralls,t20, isan exponentially distributed r.v.
tteve is how we go about it.

~ +pose X is a non-negative random variable such that

P[X>s+t|X>t]-P[x>s],i.e.gp[&;§T+]tl-P[X>S]

.t F(x)=P [X > x]. Then the above equation reduces to
F(s+t)=F(s) F (1)

- all's, t 2 0. Now you can check that the only right continuous solution of this
siuation is

oraquivalently,
F(s)=1-¢e?s20.
(see E7).

Lt us consider an example.

Example 6 : Suppose that accidents occur in a large industrial plant at a rate of

o= % per day. Suppose we begin observing the occurrence of these accidents at the

starting of work on Monday. Let X be the number of days until the first accident
oceurs. Then the distribution of X is

1
F(x)=1-e"10%x20
=0,x<0.
45
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Distribution Theory The probability that the lirst week is accident free is

P lx > 5] =e -5/10 - e—l/z
= 0.6065

[This value is obtained by using a scientific calculator.]

The probability that ti:¢ first accident occurs on wednesday of the second week is

P{7<Xs8]=[1-¢¥19)-[1-¢719
=0.047. :

(Here also we have used a scientific calculator to compute the values.)

You can now try these exercises.

E7) Let F be the distribution function of a non-negative random variable X. Show
that the only solution of the functional equation

.I?(s+t)=F(s)I_?(t),tzO,520
is
F(s)=1-e5s>0
=0 ,ss0
for some A > 0.
E8) Calls arrive at a switchboard following an exponential distribution with

parameter A = 5 per hour. If we are at the switchboard, what is the probability
that the waiting time for a call is {

i) atleast 15 minutes,
ii) not more than 10 minutes,
iii) exactly 5 minutes.

We have seen in Unit 8 that the Poisson distribution can be chosen as a model for the
distribution of the number of occurrences of an event during a fixed time interval.
Let us denote by N(t) the number of occurrences of the event (such as a telephone
call, or an accident etc.) in the interval [0, t] and assume that, for t > 0, N(t) has
Poisson distribution with mean A t, where A > 0. A denotes the average rate of
occurrence in unit interval. Assume that N(0) = 0.

Let us denote by X the waiting time involved before the first occurrence. It is clear
that ;

P[X > t] = P[N (t) =0]
=e ™ fort>0.
Therefore,
P[Xst]=1-¢7ift>0
=0,ift<0.

Thus X has an exponential distribution. These relations show the link between the
exponential and the Poisson distributions. So you know that the exponential
distribution describes the probability distribution of the waiting time for the first
occurrence. Now, suppose we are interested in the waiting time for r occurrences.
Let us denote by Y the waiting time that elapses before r occurrences of the event.

46
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Distributions
P[Y>t]=P[N(t)<r]

r-1

Te -Mt A’ t
j=0 3!
or cquivalently the distribution function of Y is given by
Fy()=P[Yst]=1- )Ze")“%—:z,t>0
j=0 !
Ohviously Fy (t) = 0 fort < 0.

We can now obtain the density function of Y by differentiating Fy (t) with respect to
t. You should check that
r
Ty
(r-1)!
fy (1) = :

0 , t=s0.

In the above discussion, r is an integer greater than or equal to 1. Note that ifr = 1,
this density function reduces to the exponential density studied earlier.

The density function given above is a special case of the gamma density function
which we shall discuss in the next section.

11.3.2 Gamma Distribution

In the last unit and in sub-sec. 11.2.1 of this unit, you were introduced to a new
function known as the ‘gamma function’. Before defining the gamma distribution,
let us first recall the definition of the gamma function.

For any positive number o, the gamma function, denoted by I' () is defined by

@«

F(a)-fx“‘le"‘dx

(The integral on the right hand side exists for any a > 0.) You have to already come
across some properties of the gamma function in Sec. 11.2 and used these properties
for evaluating certain integrals.

Now with the help of the gamma function we shall define a gamma distribution.

Let X be a random variable with density function,
A% a-1 - » X> 0 )
f(x)=4T (o)
0 , Xx=0

LY

where a >0 and A > 0 and I' is the gamma function. Then X is said to have gamma
distribution with parameters o and A. ‘

Check that f(x) satisfies the properties of a density function. Fig. 3(a) and (b) show
graphs of some typical gamma density functions.

47
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Fig. 3 : Graphs of Gamma Density Functions for dlﬂ‘ei‘ent values of (8) a (b)-A.

Let us compute the m.g.f. of the gamma density function now. By definition,

C(.
a-1 ~Ax
(e X e™dx

Mx(t) = E[¢ ]-f o

o«

f xa1 gt 4y

I‘(Ot)0

The last integral is finite if and only if a >0 and A -t > 0. Thxs can be proved by
using some properties of I'. But for the time being you will have to take our word for
it. Hence the m.g.f. Mx(t) exists if and only if t <A a > 0. Then, for t < A,

@ a-1
A y e
Mx(t) = r i af [x - :] aop
A a-1 ey
- d
(A - 0°T(a) 3 f ey
)\a
T (-
Check that
B A ea)h - i)
=aM(h-p=t
and
, .
M0 ’;’It’z‘(‘) = a(or1)A® (A2
In particular
’ dMx(t) a A a
E(x) dt l - 0 .- xa.'_l A.
and
2y o(a+DA*  a(a+l)
EX) == A2



Hence Standard Continuous
Distributions
Var(X) = E(X?) - [E(X)]?

a
_.)‘2

The gamma distribution is a good model for waiting times. It has also been used as a
moud.l for the distribution of incomes as the parameters ot and A provide a flexibility

in fitting the model to the data, The following exercises will lead to a better
understanding of this distribution.

E9)  Let X be a gamma random variable with parameters a and A, Compute E(X™)
forallm =1 directly, and hence derive E(X) and Var(X).

E12) Suppose Xisa gamma random variable with E(X) =2 and Var(X) = 7. Find o
and A. :

El1l) Suppose X is N(0, 1). Show that Y = X2 has gamma distribution with a=1/2
and A =1/2.

In the next section we shall take up one last distribution the beta distribution.

11.4 BETA DISTRIBUTION

o
-
3
5
:
:

While studying Statistics and man
across some particular functions q
functions. These functions are call
special function so far — the g
distribution is defined with th
another special function, the
define the beta distribution.

y other sciences, scientists found that they came
uite often. They have identified a few such

ed special functions, You have already seen one
amma function. You have also seen how the gamma

€ help of this function. Now we are going to introduce
beta function, B. Then, with the help of B we shall

TR R e e

Ifa>0,B>0,then

1

B(a, B) =fx“‘1 (1=x)P1 dx
0

15 called the beta function,

The beta function is related to the gamm

B(a, §) - LOLE)

T'(otB) for all a>0,8>0.

a function in the following manner,

: \
Let’s prove this. :

From the definition of the gamma function, we get

T(o)T(B) =1 [x*!e™ dx Sy v dy
o 0

® w

= f f xo1yBlgtaey) gy dy
00

Now to evaluate the integral we apply the transformation

You will find discussion of

Jacobians and double integrals
U x___fy and v = x+y. in Blocks 3 and 4 of MTE~07.

Then what are x and yintermsofuandv ?

X=uvandys=(1-u)
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Note that as x and y take
values in [G, o}, u varies
over [10, 1} and v vares
over [0, «]

50

and the Jacobian of the transformation is

x ax
ax, _ou av
d(u,v) |dy dy
du  o9v
\
=|_v 1-u =v(l-u) +uv=v,

Hence, from the change of variable formula for double integrals, it follows that

] =

C{a)T'(B) = f f u® T (f—u)f v eV gydy
0 G

-f ot “’dvfu“‘l(l u)?! du
0
H

= [(u+p) fu““l (1-u)P! du.
0

= I(a+p) B(ay, B).
This proves the required relation.

Now, we say that ar.v. X has beta distribution with parameters a and B, if X has
the density function f, given by

{1

——1 x*1 (1=x)*! |, 0<x<1
f(x) B(a, B)

0 . , otherwise

where a >0, 8 > 0.

An alternative representation for a beta density function with parameters a and B is

T(a+p)
a-1 -1, O<x< 1
(x) = r ()T (B) x> (1-x)
0 , otherwise
Let us now compute the moments of a random variable X with the beta distribution
having parameters o and B. For any integer k = 1.

1
E[X"] = [x* {(x) dx
0

1
JL@B) ek ot g
T 1(B) bfx X (1-x)P T dx

1
o L(B)  rokvadt g _ 4B
I(0) 1(B) f T AT dx

I'(a+ ’
——ﬁ—r(é s Blka, )
['(a+p) I(k+a) CB)
F(a) rP) Ck+a+P)
a(a+)...(a+k-1)
(a+B) (a+B+1)... (a+5+k—1)

In particular by choosing k = 1 and k = 2, we have .




v a(o+1 Standard Continuous
E(X) = a+p and E(X?%) = m Distributions
Therefore,
Var(X) = E(X?) - (B(x))2 - — 2B
k . (a+B) (a+B+1)

Remark1:If o =1and B

= 1, then the beta distribution reduces to the uniform
distribution on [0, 1].

In Fig. 4 you can see some typical graphs of beta density function.

3.0 ]
o =4 =4 ;:?
B=7 B=4
2.0}
1
| 1.0 1
|
1
:
; ¥ T LR ¥ T r—t
; o 05 10 x

Fig. 4 : Graphs of B(q, f) for different values of a and f§.
Now here are some exercises on the beta distribution.

E12) Evaluate the following numbers using the gamma function
. " 11 oo o (S 7
(l) B(IO, 7) (ll) B (2 ’ 2) (m) B (2 ’ '2)

E13) If X is a beta random variable with the parameters a and B,

show that 1-X is a
beta random variable with the parameters f§ and a.

E14) Determine the constant c such that the function
f(x) = cx® (1x)%0<x<1
= 0, otherwise
is a density function.

- This brings us.to the end of this unit. Let us now summarise its main points.

11.5° SUMMARY

In this unit, we have derived the properties of the following distributions with
emphasis on calculation of their distribution functions, density functions, their
means, variances and moment generating functions :
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Distribution Theory 1) Normal distribution :

2
) 1 1 (x41)
f(x; u, 0%) = \,—_727:-0‘ €72 2

E(X) = u, Var(X) = o*.

,— P <X <®

If X is N(u, o), then Y = X;“ is N0, 1)

2) Exponential distribution :

[)\c'h , xz0

tx) = 0 , x<0

1

E(X) =

1
Var(X) = F

This distribution is the only distribution with the forgetfulness property.

3) Gamma distribution :

hﬂ .
L L, x>0
f(x)alu(a) xule X ;
l 0 , X=s0

o . o
E(X) = N » Var(X) = 22

The exponential and gamma distributions are also called waiting time distribution
4) Beta distribution: ’
1 x“_l(l—x)ﬂ_l’ O<x<l:

{(x) = {B(a, B)
0 otherwise

% Var(X) = — Mol
E(X) - a+P Var(X) = (a+B)(a+p+1)

11.6 SOLUTIONS AND ANSWERS

El) i) From the Table given in the Appendix, we have
P[0<X s0.87] =F (0.87) - F(0)
. =0.8078 - 0.5000
=0.3078
ii) P[-2.64 = X = 0] = F(0) - F(=2.64)
= 0.4959
iii) 0.2711
iv) P[| X |>1.39] = 1-P[| X | .1.39]
=1-P[-1:39 =X 51.39)
= 0.1646.
E2) From the m.g.f. of X, we get that X is a normal random variable with mean
—6and o =8 i.e. N(-6, 04). .
To calculate the probability P[-4 s X s 16], we apply the transformation
Y- X+6

52 8
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ThenP[—4sX<16]===P—%;;(E'SX<16+6
5 = P[.25 s X < 2.75]
: = 0.3983

E3) Them.gf of X is

T TR TR TR ST e s

Mx(t) = Oxt5 00 _ PP
Let Y =-X, since E(X
Then the m.g.f. of Y is
| , My(t) = 01+ 5%
| el 972

= Mx(t)

-~ by Theorem 1 in
are the same. Hence — X js N (0, &?).

E4) Let Y-@

for-w<t<w,

P[X < 58] = P[¥< 58;6"]
=P[Y <-1]
= O(-1)
=0.1587
P58 <X <62]=P[-1<X <1]
= (1) - B(-1)
= 0.6826.
ES) Suppose X is N (1, &). Let

. 2
z=X0;“Thenzz=Y=%

Then, fory > 0 P[Ysy)= P[22 sy]
=P[-Vy s Z <]

I S

vy i )
_ -u 2 :
v —2('!‘\/-—$c- du.
g

Hence

Ry =2=e2 Ly

1
. 5 Yy

T I

\/2';; y ’ Y
E6) Y =InXisnormal and X =e". Hence
: E(X) = E(eY)
‘ and
E(X?) = E(e?Y)

122
Since Y is N(u, o), E[e'Y] = ght+ 7
Therefore
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Di- tribution Thenrs E(X)=E[e¥]=¢**7°
and
E(X?) = E[e*Y] = 3%# + 202,
Hence
2

2 +202 +!-02
Var(X) = e** —le¥*2 )

2 2
=i‘62pt+20 __e2u+o

ruso? [ o2
- e H+a [eo - 1]_
E7) We prove a general result here. The only right continuous solution of the

functional equation

g(s+t) = g(s)g(), s> 0,t> 0
which is not identically zero for x > 0, is

g(s) =5, a>0.
This can be seen in the following way
Since g(s+t) = g(s) g(1), it follows that

(3= oft3)- ()]

and, in general, by repeated application, we have

2B

But
A 1 ?
g(l) = g (;l" + .. +—] - [g (H)]
Therefore
l = 1/n

g (n) (g1}
and

g {%) = [,

By the right continuity of g(x), it follows that
gx) = [g(1)]~.

for —w<x<w.
. 1 12
Note that g(1) = |g 5 =0.1Ifg(1)=0, then g(x) = O forall x > 0

contradicting the fact that g(x) = O for x > 0. Hence g(1) > 0 and g(x) =
e x>0 where A = - log g(1). .
Since a distribution function F(x) is right continuous, it follows that
F(x)=e™* x>0
or equivalently ’
» F(x)=1-¢e™* x>0.

E8) The distribution is
FX)=1-¢7%,x20

=0, x<0.




The probabilities are
i) P[X z15]=0.2865
ii) P[X <10]=0.6565

iii) p[x=51=o.
E9) E(X™)= f X r)(‘a) x&1 =™ dx
a+m-1 -)\x
F(a) f X dx

- )‘af Q4m-1 X g

AR F(m+a) T(m+a)
I‘(a) pm+a )\m I'(a)
In particular

E(X) = ga+1g ar‘ga}

AL (o) M"(a)
and
E(X) = §a+2) (a+12)1"(a+1)
AT (o ) AT (o)
(a+1)a I‘(a) a+a
A2 (a) A2
Therefore
Var(X) = £42 a) o
A\
a a 2 4
E10) Here X =2 and X = 7. Hence A = 7 anda= 7
El11) Fory>0, P[X*sy]=P[-Vy sX=Vy]
vy L 2
= — e ¥/2du.
2 5[ NoT €

Hence the density function of Y is

Rely) =2 f—e’y” ; y%y>0

=0, y =0.

This can be written in the form

172

1
B
fY(Y) = I‘(l"‘) y(l/2)—l c y/2’ y> 0

and
fy(y)=OforysO

since I'(1/2) = V1. This shows that the density function of Y is gamma
density witha = 1/2and A= 1/2.

Standard Continuous
Distributions



161
Siviribution Theory EIZ) a) B(IU, 7) - %56'_ =125 x 0-5’
1 (1)
== 2
11 (2) 2 1
b —r—|= =[]=| =
) B(z 2) r) r( ) g
5 7 45n
) B(z’ 2) = 3840
E13) Let Y =1-X. Then P[Ysy]=P[X=2 1-y]
A Hence
Fy(y) = 1 - Fx(1-Y)
and
fy(y) = fx(1-y).

Therefore

fy(y) = B—(&l’—ﬁ-)-(l—y)“'l ylo<y<1

=0, otherwise.
which is the beta density with the parameters § and ..

E14) Here oo =4and B = 7. Further
C= 1 T(4+7) ray 1o -840
B@4,7) T(4r(7) T@)r() 36! )
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Appendix
Table 1. Values of the Standard Normal Distribution Function
2
&(z) =fz \/Z;K"-“ ndu = P(Zs<z)
-X
z 0 1 2 3 4 5 6 7 8 9
-3.0 0.0013 0.0010 0.0007 0.0005 0.0003  0.0002 0.0002 0.0001 0.0001 0.0000
-2.9 0.0019 0.0018 -0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
28 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 00021  0.0021 00020 0.0019
2.7 0.0035 00034 00033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0026 0.0026
-2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
-2.5 0.0062 0.0060 0.0059 00057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0084
24 0.0082 0.0080 0.0078 0.007§ 0.0073 * 0.0071 0.0069 0.0068 0.0066 0.0064
-2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.2 0.0139 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0119
-2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
-20 0.0228 0.0222 0.0217 0.0212 00207 00202 00197 0.0192 0.0188 0.0183
-1.9 0.0287 0.0281 0.0274 00268 0.0262  0.0256 0.0250 0.0244 0.0238 0.0233
-1.8 0.0359 0.0352 0.0344 00336 0.0329 0.0322 0.0314 0.0307 0.0300 0.0294
-1.7 0.0446 0.0436 0.0426 0.0418 0.0409 0.0401 0.0392 0.0384 00375 0.0367
-1.6 0.0548 0.0537 0.0526 0.05 16 0.0505 0.0495 0.0085 0.0475  0.0465 0.0455
-1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0570 0.0559
-1.4 0.0808 ‘ 0.0793  0.0778 0.0764 0.0749 0.0735. 0.0722 0.0708 0.0694 0.0681
-13 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
-1.2 0.1151 01131 6.i112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003  0.0985
-1.1 0.1357 01335 0.314 0.1292 0.1271  0.1251 O.lZéO 0.1210 0.1190 0.1170
-1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446  0.1423 0.1401  0.1379
-0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.01711 0.1685 0.1660 0.1635 0.1611
-0.8 02119 02909 02061 0.2033 0.2266 0.1977 0.19&9 0.1922  0.1894 0.1857
-0.7 02420 0.2389 02358 0.2327 0.2297  0.2005 0.2236 02206 02177 02148
-0.6 0.2743  0.2709 02676 02643 02611 02578 02546 02514 02483 0.2451
-0.5 0.3085 03050 03015 02981 0.2946 02912 02877 0.2843  0.2810 0.2276
-0.4 03446 03409 03372 03336 03300 03264 03228 03192 03156 03121
-0.3 03281 03783 03745 03707 03669 03632 03594 03557 0.3520 0.3483
-0.2 0.4207 0.4168 0.4129 04090 04052 04013 03974 03936 0.3897 0.3859
-0.1 04602 04562 04522 0.4483  0.4443 * 0.4404 0.4364 04325 0.4286 0.4247
-0.0 0.5000 0.4960 0.4920 04880 04840 04801 0476 I 0.4721 0.4681 0.4641
* B.W. Lindgren, Statistical Theory. The Macmillan Company, 1960, (Contd.)
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Distribution Theory
Table 1. (Contd,)
$(z) = fz 1 a du = P(Zsz)
J V2=x
-x
z 0 1 2 3 4 5 6 7 8 9
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 05199 05239 05279 05319 05359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 05636 " 0.5675 05714 057 :
0.2 05793 05832 05871 055910 0.5948 0.5987 0.6026 0.6064 0.6103 0.614} ’
03 06179 06217 0.6255 06293 0.6331 0.6368 0.6406 0.6443 0.6480 0.65.7 |
0.4 0.6554 0.6551 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.68/9 :
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.722'4
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422  0.7454 0.7486 0.7517 5 .‘J-tvl !
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734  0.7764 0.7794 0.7823 0.785%
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 08133
0.9 0.8159 0.8186 O.'8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.83by
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0859y vz}
1.1 08643 0.8665 0.8686 08708 0.8729 0.8749 0.8770 0.8790 08810 08830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 09049 0.9066 0.9082 0.9099 09115 09131 09147 0.9>162 09177
14 0.9192 0.9207 09222 09236 09251 09265 09278 0.9292 09306 09319
1.5 09332 09345 09357 09370 0.9382 0.9394 0.9406 0.9418 0.9430 0.9441
1.6 0.9452 09463 09474 09484 0.9495 0.9505 09515 09525 0.9535 0.9545
1.7 0.9554 09564 09573 09582 0.9591 09599 0.9608 0.9616 0.9625 09633
1.8 0.9641 0.9648 09656 009664 09671 09678 0.9686 0.9693 0.9700 0.9706 .
1.9 09713 09719 09726 0.9732 6.9738 0.9744 0.9750 0.9756 09762 0.9767
20 09772 09778 0.9783 0.9788 09793 09798 0.9803 09808 09812 09317
2.1 0.9821 O.?826 0.9830  0.9834 6.9838 09842 0.9846 0.9850 0.9854 09857
2.2 09861 0.9864 0.9868 0.9871 6.9874 09878 0.9881 0.9984 09887 0.9890
2.3 0.9893 0.9896 0.9898 0.990] 6.9904 0.9906 0.9909 09911 09913 0.9916
2.4 09918 ‘0.9920 0.9922 09925 09927 09929 0.993] 0.9932 0.9934 0.9936
2.5 0.9938 09940 09941 09943 09945 0.9946 0.9948 09949 09951 0.9952
2.6 0.9953 0.9955 09956 0.9956 6.9959 0.9960 0.9961 0.996‘2 09963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 6.9970 0.9971 09972 09973 0.9974
2.8 09974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 09979 0.9980 0.9981
29 0.9871 09982 0.9982 0.9983 0.9984 0.9984 09985 0.9985 0.9986 0.9986
3.0 09987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.0000
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UNIT 12 BIVARIATE DISTRIBUTIONS

Structure

12.1 Introduction
Objectives
12.2 The Density Function of a Bivariate Distribution
12.3  Conditional Distributions
12.4 Independence
12.5 Expectations and Moments of Functions of a Random Véctor
12.6 Correlation and Regression
12.7 Summary
12.8 Solutions and Answers

12.1 INTRODUCTION

In the Units 10 and 11, we have discussed some univariate continuous distributions.
These are examples of probability distributions of one-dimensional random variables.
There are situations 'when it is important to study more than one characteristic at the
same time. For instance, in medical studies, the health of a patient might depend on
the nutrition intake, the cholesterol level etc. In meterological data, the amount of
rainfall in a period might depend on temperature, atmospheric pressure etc. In
marketing a common product, the sales might depend on the price of the product,
competition from similar products, purchasing power of people to which the product
is directed etc. In other words, simultaneous study of characteristics is needed at
times instead of their study individually to observe the interrelations between
different characteristics. We restrict to the case of two characteristics in this unit.

In Section 12.2, we introduce the notion of bivariate distribution and present some
examples. The concept of marginal distributions for individual components is
discussed in this section. Conditional distributions of one variable given the other,
plays a major role in the study of bivariate distributions. These distributions describe
the probabilistic behaviour of one variable when the other variable is fixed. If there is
no change in the probabilistic behaviour of one given the other, then the components
are said to be independent. Sections 12.3 and 12.4 contain discussion on conditional
distributions and independence. There are many concepts associated with bivariate
random variables which give information about the relationship between them or
about the location, symmetry of the joint density function. Some of the more
important of these concepts are expectation, moment, covariance, correlation and
regression. In Sections 12.5 and 12.6 we introduce you to these concepts.

Objectives
After reading this unit, you should be able to :

» compute marginal and conditional distributions given a bivariate distribution;

» compute expectation of a function of a random vector, moments, moment
generating functions, covariance correlation coefficient and regression of one
component given the other.

12.2 THE DENSITY FUNCTION OF A BIVARIATE
" DISTRIBUTION

Let us start with the following situation :

Suppose we want information about the life time of a machine in a factory. Suppose a
machine in a factory has just two components. Let X and Y denote the life times of




'; o ‘ o o

Distribution Theory

Recall that you have seen

simultaneous limits lim  £(x, y)
X=—>a
y—bt

of a function of two variables
in Unit 4 of MTE-07.

6)
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these components. Let us further assume that the machine works provided both the
components function properly. In other words the life time of the machine (say) Z
depends on the life times of the components X and Y. Here the knowledge of the
probability distributions of X and Y separately is not enough to get information on Z.
It needs to be known whether the performance of the first component affects the
performance of the second component and vice versa, that is, the probability -
distribution of Z depends jointly on the distribution of X and Y.

There are other situations where joint behaviour of two or more components affects -
the performance or behaviour of the whole system. For instance, in medical studies,
say, of persons suffering from heart diseases, factors like blood pressure, cholesterol
etc. play important role in the status of their health. Here also the components
individually will not give a true picture.

In all the above situations, you must have noted that there are several instances where
one needs to study the interrelation between random variables. This leads us to the
notion of multivariate distributions. For simplicity, we consider the case of bivariate
continuous distributions in detail. Recali that you have studied some bivariate
distributions in the discrete case in Unit 7, Block 2.

Now we shall define a bivariate random variable and its distribution function.

Definition : Suppose X and Y are two continuous r.v.’s defined on a sample space Q.
Then the function (X, Y) defined on Q by

(X, Y) (0) = (X(w), Y(w))

is called the random vector or a bivariate random variable.

The joint probability distribution of this r.v., denoted by Fx, v is defined as
Fx, v(x,y) =P[X sX, Y=yl

Note that [X = x, Y = y] stands for the event [X < x] N [Y s y]. _

Now we shall define the density function of a joint distribution. From the univariate
case you recall that a distribution function is said to be absolutely continuous if there
exists a non-negative real-valued function f such that :

F(x) = f t(x)dx

and the function f is called the density function of F. In the same way a joint
distribution is said to be absolutely continuous if there exists a non-negative function
fx, v(x, y) such that '

. X y
Fx v,y = [txv(n,v)dudv, -w<xy<e,

The function fx, v(x, y) is called the joint probability density function or joint
density in short of (X, Y). i '

Let us first take a look at some elementary properties of the joint distribution

1) va Y(-Oo’ —Oo) = lim FX. Y(X,.y) =0
X=>~x ,
y—u—w

ii) Fx, y(, ®} =lim Fx, y(x, y)=1
X = o
y—~®




o
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Now let us denote by Fx(x) and Fy(y) the distribution functions of X and Y
respectively. Is there any relationship between Fx, Fy and Fx_ vy ? Let’s see.

From the definition of Fx(x)
Fx(x) = P[X sx]

=P[X =X, Y <]
=lim P[Xsx, Y sy]=lim Fx y(x, y).
y--m y-—ow

The last statement is intuitively clear as the set [X'=x,Y s y] tends to the set
[XsX,Y <»]asy — o Howevera rigorous argument can be given by using the
result, if Ay — A, then P(A,) — P(A)as n — o. We will not go into the discussion
here. Let us denote the limit of Fx,v(x,y) as y — = by Fx y(x, ), Hence

Fx(x) = Fx, y(x, ®).
Similarly
Fy(y) = Fx, (0, y).

The distribution functions Fx(x) and Fy(y) are called the marginal distribution of X

- and Y respectively.

Then with the help of the marginal distribution we can casily compute the probability
that X is greater than x and Y is greater than y. From elementary theorems of
probability (see Unit 5), it follows that

P[X>x,Y>y]=1-P[[X>'x,Y>y]C]
=1 -P[[X >x° U [Y> y]C]
=1-P[[X=sx] U [Ysy]]
=1-[P[Xsx] + P[Ysy]-P[sz,Ysy]]
= 1 - Fx(x) - Fy(y) + Fx v(x, y).
Here we have used the fact
(ANB) = ACUBC
for any two sets A and B and the results
P(A) = 1-P(a), ‘
P(AUB)=P(A)+P(B)-P(A N B),

from the elementary theorem of probability in Unit 5. You should check that, for any
ap <azand by < by, '

P[a1<Xsag,b_1<Ysb2]

= Fx, ¥(az, b) - Fx, v(a1, b) - Fx, v(az, b1) + Fx, v(ay, by).

Let us now suppose that (X, Y) is a bivarjate random vector with density function
fx. v(x, y). From the properties of joint distrjbution function, we have

i) fx, v(x,y) = 0, -0 <X,y <@,

ii) f f fx, v(x, y) dx dy = l,land

-00 —00

i) P[X 5%, Y 53] = P((X, Y) € (- o, x] x (< , vl
= Fx v(x, y)

Xy
=f f fx, v(u, v)du dv.

-0 —C0

Bivariate Distrib



Nistribution Theory

62

Sample output to test PDF Combine only

In fact it can be shown that Property (iii) holds not only for sets of the form [a, b] x
[¢, d] but for more general sets. We have the result, for any set C in R?, the two
dimensional plane,

PIX, Y)EC)=[ [ fx v(u,v)duav » (1)
(b, V)EC
(The set C is not as general as we have stated. Some technical restrictions have to be

made.)

Now recall that in the univariate case we have shown that if F(x) and f(x) are the
distribution function and density function of a r.v. X, then

:_x F(x) = f(x)

(see Sec 10.3 of Unit 10).
You may ask here, what is the analogue of this in the bivariate case ? In the bivariate
case we have the following resuit.

Suppose that (X, Y) is a bivariate random vector with density function fx, v(x, y) and
the distribution function Fx, v(X, ¥). Then Fx, v(x, y) has second order partial
derivatives with respect to x and y for almost all (x, y) in the plane and
8* Fx, v(x, )
ax ay
This result follows from the properties of double integrals.

= fx, v(X, ¥).

Next we shall discuss how we can derive the density functions of Xand Y
individually from the joint density function fx, v. For that let us consider the marginal
distributions of X and Y. Let fx and fydenote the density functions of X and Y
respectively. Then we have

& Fx(x) = tx(x) R @)
for almost all x,

d .

x Fy(y) = fy(y) | wl(3)

for almost all y.
Also we have

Fx(x) = Fx, v(X, +°)

X o

;ff;fx, v(u, v)du dv

-0 00"

e )

‘ -f f fx, y(u, v)dv|du

-0 oo

- f £(u)du

o

fx(ﬁ) =f tx v(u, v)dv.

-00

where

Then from (2) we have

o«

fx(x) = f fX. v(x,y)dy -® <X <® R 4

-0



Similarly Bivariate Distributions
o

fv(y) = [ fx v(x, y)dx, -wo<y<e )

-0

This shows that if (X, Y) has a joint density function f, v(X, y), then X has a
probability density function given by (4) and Y has probability density function given
by (5). The functions fx(x) and fy(y) are called the marginal densities of X and Y
respectively.

Let's see some examples now.

Example 1 : Suppose (X, Y) has joint density function

2e %%y 0<x,y<om
f s = ’ ’
) { 0 elsewhere

Let us compute the marginal density fx(x) and compute P[X <y]

By the discussion we have earlier,

w

fx(x) =f f(x, y)dy

-0

0
! =2 [-;— e ]
0
=e ¥ forx >0
and fx(x)=0 forxsO

Now let us compute P[X < y]. For that we first describe the event [X <y]in the
plane. Let C = [X < y]. Note that we can write C as [0 <X <y, 0<Y<o]. Then by

(1)
P[X <y] =ff fx. v(u, v)du dv
C ,

y 00
= J [ tx v(x, y)dx dy
00
© [y
=f f 2e™ eV dxldy
1o

tﬁg O, 8 ©

2% [—e"‘]Z dy

2e7 [1 - e‘y]z dy

(]
o4 8 ©

[\

o
S
~<
|

[« : 8
N
<.bl
W
-
[N
\<
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Example 2 : Sunpose (X, Y) has the uniform density over the unit circle of radius r
with center at (0, 0). In other words, (X, Y) has the joint density function .

f(x,y)=C ifOsxzdo—yzsr2
=0 . otherwise.

where Cis a constant. Let us compute the marginal densities fx(x) and fy(y).

o w

Since f is the joint density function we have f(x, y)dx d - 1. This implies that
J Y y y P

C [ dxdy=-1
D

where D = {(x, y):x%+ Vs rz}

Now, what is this double integral represent 2 From your knowledge of double
integrals (see MTE-07, Block 4) you know that this double integral represents the
surface area of D. That means the double integral represents the area of a circle of
radius r with center (0, 0) which is nr?. Hence

Let us now compute the marginal density of X. Here

fx(x) = [ f(x, y)dy

1
(ol =
—
&

2 2 9
x,y):x'+y"sr'}
+Vl‘2--)(2
1

2

r
-Vt - x©

2 /75 2.2
== Vr-x* for0sx*sr
e

a

and
fx(x)=0 - otherwise.

Similarly you can get that
fy(y)==l2 Vit - y? forOsy*<sp
ar

=0 ', otherwise.

In the next example we introduce you to an important bivariate distribution known as
bivariate normal distribution.

Example 3 : A random vector (X, Y) is said to follow a bivariate normal distribution
if it has the joint density given by '

‘ 1 .
—— 29
f(x, y) 2y P 7 exp( 2), ® <X,y <,

where oy and oy assume values in the interval 10, [, p assumes values in the interval
]-1, 1], and | - -
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7
Let us find the marginal densitics of X and Y.v

By definition the marginal density of X is

fx(x) = [(x, y) dy

-0

© 1 q
=f2f[(7x0y A /1 _ pZ CXP( - 2)

where q is as in (6). We first rewrite the expression (6) in the following form

2

1 POy (x - px)?

= — — — \'
T [y {MY+ The MH ’

2
Ox

Then we get

1 (x - ux)
fx(x 1/_“ ¢ 2 2
X\ 27{(7)(0)/ 1_p2 Oy
o [ 2
x | ex + B X - d
__£ p{z(ﬁ(] e [y ™ (X - x) y
1 1 (x—ux)2
=T7T—=c¢ 7 2
V2noy Ox
- 2
) 1 1 pa.
-y
*J Voo oo eXp - =5 |y = Ju, + X - d
__{;\/m P 22 (L= ) [}' {Hy . Hx)” y

. . . . . ‘. .
Fie integrand in the integral on the right side can be seen to he normal density
{function with mean

Fola
Hy + *lﬂ (X - 1)
R

and variance 0'} (1 -p% for any fixed x. Hence it infegrates to unity and therefore

2]
| ey
tx(x) = m(‘[ € 2 Ox J

<L Ui

Thus the marginal density of X is normal with mean tx and variance o3 . Similarly

ou can show that the marginal density of Y is normal with mean uy and variance o% .
y g Y Uy y
We leave it as an exercise for you (see E6). ‘

Why don’t you try some exercises now,

E1) 1In a statistical survey, it was found that if X denotes the daily number.of hours a
child watches television and Y denotes the number of hours he or she'spends on
the studies, then (X, Y) has the joint density function

(X, y) =xy e ®+Y) itx>0,y>0
=0 otherwise.

What is the probability that a child chosen at random spends at least twice as
much time watching television as he or she does on studies ?
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=

E2) Consider an electronic system with two components. Suppose the system is
such that one component is on the reserve and it is activated only when the
other component fails. Let X and Y denote the life times of these components.
Suppose the system fails if and anly if both the components fail. (X, Y) has the
joint density function :

f(x,y) =2 e My ey z0,y=0
={ otherwise.
What is the probability that the system will last for more than 500 hours ?

E3) Find the joint density function of (X, Y) when its joint distribution [unction is

given by .
FoyX,Y) = (1-e™) (1-¢™) ifx>0,y>0
=0 otherwise.
E4) Suppose (X, Y) has the joint density function
S RARE AT ) yz0
f(x’ Y) =
0 otherwise.

Determine the marginal densities fx(x) and fy(y) of X and Y respectively.

ES5) Compute the marginal density of Y, for the bivariate normal distribution.

So far in this section we have discussed the distribution functions and joint density
functions of bivariate random variables. These functions allow us to obtain answers "
to probabilistic questions pertaining to the random variables. In the next section we
shall discuss another distribution tunction related to a random vector.

12.3 CONDITIONAL DISTRIBUTIONS

Let (X, Y) be a bivariate random vector. There are situations when we would like to
know whether a change in the value of Y has influence on X. In other words, for
instance, if Y increases, does X also increase or if Y increases, does X decrease etc. ?

For example, suppose X denoles the height of a person and Y his or her weight. A
natural question is to examine the relation between the height and the weight. In such
cases, it is important to know the behaviour of X for a given value of Y and vice
versa. In order to study problems of this nature we introduce the concept of
conditional distributions. Before that let us recall the definition of the conditional
probability in the case of bivariate discrete random variables'from Unit 7.

The conditional probability of the event [Y = y] given the event [X = x] is defined as -
. N

= 4 = = P = X’ =~
PIY =y | X =x] P[X = x] : weeee(7)
provided P[X =x]=0.

Can we directly use this definition for continuous random variables ? Obviously we
can’t, because you know that in this case P[X = x] = 0 for any x. Now, suppose we
rewrite (7) in the following way : "

fx, v(x, y)

P[Y =y|X =x]= o u— (8)

where fx, y(x, y) denotes the joint probability mass function and fx(x) denotes the
marginal probability mass function of X [see Unit 7, Block 2). If we replace

. v(x.y) and £(x) in (7) by the joint density function of the random vector (X, Y) and
the marginal density function of X respectively in the continuous case, then we

can define the conditional probability analogous to (8). '
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We make the folldwing definition :

Definition : Let (X, Y) be a bivariate random vector with density‘ tunction fx_ v(x, y).

for any y such that fy(y) > 0.

Similarly the conditional density function of Y given X = x is defined as

fx. v(x, y)
fyix (v x) = ‘rﬁx)y s m@<y<o
for any x such that fx(x) > 0.

We would like to remind you again that the functions fxjv(xly) and fyix(ylx) are
well-defined whenever fy(y) > 0 and fx(x) > 0 respectively even though P[X =x]and
P[Y =y} is zero for all x and .

Next we shall see whether the conditional densities of X givenY =yandof Y given
X = x are genuine probability density functions i.e. to check whether they satisfy the
conditions

) fxy(xly) = 0, frix(ylx) = 0.

0

ii) ffx|y(x|y)dx=land ffy;x(ylx)dy=1.

-0

For instance, let us check conditions (i),(ii) for x| Y(x[y). From the definition of
fxiv(x]y) we get that fxv(xly) is non-negative for all x. Also

P ‘ . v(x,
I &) v(xly)dx = f Lfi((’;\)” dx

1 o
=W :{; fx. v(x, y) dx

=1

fy(y)

_ Ix(y)
Yy
for any y such that fy(y)> 0.

Similarly you can show that fy|x(y | x) =0 and

oo

St ix(y [x)dy = 1

for every x with fx(x) > 0.

Now that we have defined the conditional density functions, we can easily define the
conditional distribution functions as follows :

The conditional distribution function of X given Y = y is defined by

X
Fxiy (x| y) = ftxv (u]y) au, -®<x<oo

- 0o

" Bivariate Distributio
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!EZ ~

and the conditional distribution function of Y given X = x is defined by

y .
Fyix(y | %) = ffylx (v|x) dv, —oosyse

-
Let us consider some examples now.
Example 4 : Suppuse the random vector (X,Y) has the joint density function

2 if0<x<y<l
fx, v (x, y)'{o otherwise ’

Let us now compute the marginal densities and conditional densities. Then determine

the probability that P [0 <X < % Y= %]

The marginal density of X is

&

fx(x) = [ fx, v(x,y) dy

- 0

1
=f2dy =2(1-x) if0<x<1
X
and
' tx(x) =0 otherwise.
Similarly,
fr(y) = [ fx.y (x, y) dx
y
=f2ax =2y forO<y<1
0
and
fy(y)=0 otherwise.
The conditional density of X given Y =y is
fx. v(x,
fxyy (x] y)= L!(_Y) :
fy(y)
2
= it0<x <
2y y
=0 otherwise
whenever 0 <y < 1.
Similarly the conditional density of Y given X=xis
¢
iy (y | x) = L)
tx(x)
S il x<y<1
“21-x) hx=y=
=0 otherwise

whenever O<x < 1.

1 3] .
Let us now compute P [O <X< 3 Y = Z] using the marginal densities. By definition

B,

YR
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P[O<X<5|Y.—.Z} =Offx|y(x[y=z)dx

2 _4
2x3/47 3
2

4

Note thatfory = 3/4, fx |y (x| y) = Theretore

1/
1 3 2
P[O<X<2|Y=4 =0 3d)(=3.

However

©

P[0 <X < 1/2] = [fx (x) dx

172
= [2(1-x) dx = 3/4.
0

L 2%

Hence the conditional probability that X lies between 0 and 1/2given Y =3/4 jg
different from the unconditional probability that X lies between 0 and 1/2.

Example 5 : Suppose the random vector (X, Y) follows bivariate normal
distribution. Let us obtain the conditional distribution of X given Y =y and that of Y
given X = x.

By definition the conditional density of Y given X=x is

fy x(y | x) —fo(x)

1
"V 03 (1 —»pz)

1 Ty (X =~ px) :
| X eXp (‘z“m [y - {P«y + p—(L(——:;!‘l—H ) (9)

You might have noticed that this function also looks like a normal density function.
Infact it is just the normal density function with mean

Hy + (%(:ﬁ (x ~ px)
and variance
a (1~ p?).
In other words, the conditiolnal density of Y given X = x'is nqrmavl with mean
& Hy + %iy- (X - ux) and variance of, (1-p?). Similarly the conditional-density of X

given Y = y is normal with mean py + g—’i (y - uy) and variance o (1- pg).
' y

To get more practise why don’t you do some exercises.

R o
E6) Suppose that the joint density function of (X,Y)is
C(x+y2) , for0<x,y<1
f(x,y) =
0 otherwise

b

Find the conditional probability density function of X givenY=yforO<y<1.
Then compute P (X < % Y= %)

0
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E7) Suppese that the joint density function of (X,Y) is
f(x,y) =2 &Y ,0<x<y

=0 otherwise.
Compute P[Y<1}{X < Tjand P[Y <1 |X = 1].

E8) Suppose that the conditional density function of Y given x = x and the marginal
density function of X are given by '

. 2y +4x
[y 1x) = 2Lt ax 0 1
fyx(y | x) 17 4x ,0<x,y<
=0 otherwise
and
fx(x) = 1» +24X ,0<x<1
=0 otherwise

respectively. Determine the marginal density function of Y.

E9) Let X denote the percentage of marks obtained by a student in Mathematics in
Class XII final examination and Y denotes the marks obtained in English.
Suppose that (X,Y) has the joint deasity tunction

(2 -
t'(x,y)=,£§(2x+3)’) ito<x,ys1

, 0 otherwise

What percentage of students obtain more than 80% in Mathematics ? If a
student has obtained 30% in English, what is the probability that he gets more
than 80% in Mathematics ? If a student has obtained 30% in Mathematics, what
is the probability that he gets mare than 80% in English ?

In the next section we shall define “*Independence™ of two continuous random
variables by analogy with the disercte case (see Unit 7, Block 2). '

12.4 INDEPENDENCE

Suppose (X,Y) is a bivariate random vector with the joint density function fx, y (X, y)
and the marginal densities {x(x) and ty (y). Let us denote the conditional densities of
Xgiven Y =y by fx |y (x| y) and of Y given X = x by fy|x (v | x) as before.

Let us now suppose that tx |y (x | y) does not depend on y. Then

tx (x) =ffx. Y(x,y) dy

-

=]~° fx. v(x, y)

fv(y) dy , fory with fy{y)> 0
fr(y) .

=f fx 1y (x [y) fy (y) dy
= x v(x | y) [fv(y)dy = fxv(x | y)

since fx | y(x | y) is independent of y. Hence

fx.vy (x,y)*

by (y) for y with fy (y) >0 .(10)

tx(x) = tx |y (x| y) =



In other words, the marginal density of X and the conditional density of X given Y=y Bivariate Distributions
are the same for every y with fy(y) > 0. In particular, it follows that the conditional
distribution of X given Y =y does not depend on y since

FXIY(XIY)=ffx|Y(u|y)du

X
=ffx(u) du = FX{x)

These observations in fact tell us that the probabilistic behaviour of X does not
depend on the value of Y that is observed.

Let us again look at Equation (10). This equation can also be written in the form
fx, v(x, y) = fx(x) fx(y), - o<K,y<®

which is symmetric in X and Y. Such pairs of random variables are called
independent random variables. More precisely we have the following definition.

Definition : Suppose (X,Y) is a bivariate random vector with the joint density
function Fx, v (x, y) and the marginal densities fx (x) and ty (y) respectively. The
random variables X and Y are said to be independent if

fx,v (x,y) = fx (x) fy (y), ~® <X, y<® {11)

Let us now consider two independent random variables X, Y. Let us denote by

Fx, v (x, y), Fx (x) and Fy (y) the joint distribution of (X, Y), the marginal
distribution of X and the marginal distribution of Y respectively. From the definition
of Fx. v (x, y) and fx v (X, y), you note that

Xy

Fx, v (x,y) =f f fx v (u, v) du dv
S

—f ffx(u)fy(v)dudv

X

[ tx () du ffY(v) dv

FX(X)FY(Y),—“’<X,Y<°°-
Hence, if X and Y are independent random variables, then
. Fx, v(x, y) = Fx(x) Fx(y), -0 <X,y <o, .(12)

In other words,

P[X=sx,Ysy]=P[X=sx]P[Ysy]

for all x and y. This relation shows that the events [X s x] and [Y sy] are mdependent
events (Recall the definition of independence of events from Unit 5 Block 2) for all x
and y if X and Y are independent. In fact the converse is also true. That means if the
events [X = x] and [Y = y] are independent for all x and y, then X and Y are
independent provided Fx, v is absolutely continuous. Why don’t you check this for
yourselves ? (see E10).

The above discussion indicates that the definition of independent random variables is
consistent with the definition of independent events. In fact there may be some
advantage in defining the independence of r.v.’s X and Y using the independence of
events [X = x] and [Y = y] for every pair (x,y). This definition is more general and
does not require the existence of the joint density function.

7
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Nistribution Theory Let us now look at the independence of certain random vectors we have already come
across. For example, consider those in Example 4 and E3. Are they independent ?
You can easily see that the random variables in Example 4 are not independent
whereas the random variables in E3 are independent.

Let us consider another example.

Example 6 : Suppose (X, Y) is a bivariate random vector with density function

fxy (6 y)=Se T2 ) —o<x,y <
Let us check whether X and Y are independent.

We first calculate the marginal density function fx (x) and fy (y). We have

fx (x) Jt\\fx y) dy

-

- Jf‘zl* :” {—f':)dy

”
- ) -y
- x/f )/2dy
V2n \/—n
1 2,
=—==c¢ ¥ ,— 0 <X <®
Via
since
o<}
1 _vn
*7.:‘wy/dy‘l

being the integral of standard normal density tunction. Similarly, we have

fy<y>—f—*e"”2” —wey<m

Hence

fx. v (x,¥) = fx (x) fy (y), -~ ®<X,y<®
which proves that X and Y are independent random variables.
Here is another example. | ‘ ;
Example 7 : Suppose (X,Y) is a bivariate random vector with joint density function

Cfxy(6Y)=8xy, Os<x<y<l

=0 otherwise

Let us check whether X and Y are indepen.dent.

Then
1
fx(x)=f 8xy dy forO0<x<1

' | 5

=4x(1—x2‘) forO<x<1

1

X

=0 otherwise
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Similarly

y
fy(y)=f8xydx forO<y<1
0
27y
=8y{§-—} for0<y<1
2
0
=4y3 forO<y<1
=0 otherwise.

Obviously

fx, v (x, y) = fx (x) fy (y)
is not satisfied for all x,y. Hence X and Y are not independent random variables.
This example indicates that random variables X and Y are dependent even though the
joint density function fx, y (x, y) is the product of a function of x and a function of y.
You should note that the set [(x, ¥): 0 <x <y < 1] where the joint density is positive
is not a product set, that is a set of the form Al x Az where Ay is a set defined by x
alone and A; is a set defined by Y alone. You can lry some exercises now.

E10) Prove that if the events [X= x] and [Y = y] are independent for all x and y, then
X and Y are independent. :

E11) Suppose (X, Y) is a random vector with the joint density function
f(x,y) =12xy(1-y) 0O<x,y<1
‘ =0 ’ elsewhere
Show that X and Y are independent random variabes,
- E12) Suppose (X,Y) has the joint density function
f(x,y) =4x(1-y) O<x,y<l
=0 " elsewhere -
Determine P[0 <X <1/3,0 <Y < 1/3]
E13) Suppose the joint density of (X,Y) is given by
f(x,y) =xe ®+¥) x>0,y>0
=0 > otherwise'
Are X and Y independent ?

Here we shall make a remark.

Remark : If X and Y are independent random variables, then it can be shown that
g(X) and h(Y) are independent random variables where g(X) and h(Y) are any
functions of the random variables X, Y respectively. We omit the proof. There are
technical restrictions on g and h but these conditions are generally satisfied by the
function which we come across in this course. We will not discuss its proof as it is
beyond the scope of this course. If you are interested you can find the proof in the
reference books. ’ ' .

The exercises in this section and in the earlier sections would have given you enough
practice to compute the density functions and distribution functions of bivariate
random variables. Next we shall discuss some measures of central tendancy of the
probability distribution function of bivariate random vectors.

12.5 EXPECTATIONS AND MOMENTS OF
FUNCTIONS OF A RANDOM VECTOR

Let us consider a bivariate random vector (X,Y) with density function fx, y (x, y).
How do we define the expectation of a bivariate random vector ? Do you think that it

Bivariate Distribution:



Listributi 2 Theory is E(XY) or is it E(X + Y) ? This lcads us to define the expectation of any function
g(X, Y)of X and Y. In this unit g(X, Y) means only simple functions like
X + Y, XY, |X - Y| etc. In the next unit we shall talk about the tunctions g(X, Y) of a
bivariate random vector in detail.
We shall begin with the definition of the expectation of a function ofar.v.
Definition : Let g(X,Y) be a function of bivariate random vector with joint density
function fx, vy (X, y). Then

7]

EfgX V)]=] fe(xy)ixy(x y)dxdy

whenever
E (12X V) =f [ ey lxyxy)dcdy
1s finite.

Now let us calculate the expectation of g(X,Y) = X+Y where X and Y are two
random variables such that E(X) and E(Y) are finite.

Suppose g (X,Y) = X+Y and E(X), E(Y) are finite. Then

E(X+Y)=f f(x+y)fx.Y(X,Y)dXdy

- - 0

=f x| ffx_\'(x, dx dx+fy ftx v (x,y) dx d)

-0

- [ xtx(x) dx + [y f(¥) dy

- - oL

= E(X) + E(Y).

All the above calculations can be justified under the assumption that E(X) and E(Y)
are finite. Hence we have the following important property of expectations.

Theorem 1: If X and Y are random variables such that E (X) and E(Y) are finite,
then E(X+Y) is finite and '

E(X+Y) = E(X) + E(Y).

This property can be extended to any.finite number of random varmhle
X1, X2, eenee X,, by using mathematical induction.

Let us now suppose that
gX,Y)=(X-a) (Y =b)
where a and b are some constants. Suppose t‘hat E (| g(X, Y)|) is finite. Then-
Efg (X, V)] = E [(X - a)' (Y - )]

is called the product moment of (X, Y) about (a, b) of order (r, s). Let us choose
Y a=ux =E(X)andb = py = E(Y) and 1, s to be integers greater than or equal to zero.
If r = 2 and s = 0, then the corresponding moment is Var (X). If r = O-and s = 2, then
the corresponding moment is Var (Y).

If r=1ands=1then

E[g(X, Y)] =E [{(X - ux) (Y.~ uy)]
74
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is called the covariance of X and Y and it is denoted by Cov (X, Y). You recall that | .- Bivariate Distributions
you are already familiar with the covariance of two discrete random variables from
Unit 7 Block 2. There we have shown that

Cov(X, Y) = E(XY) - E(X)E(Y).

Does this expression hold for continuous case also ? ? Why don’t you check it for
yourself in the following exercise.

E14) Show that Cov(X,Y) = E(XY) - E(X)E(Y)

If you have done E15, you must also have noticed that the covariance between X and
Y is the same as the covariance between Y and X. In other words covariance is
symmetric in X and Y. It is sometimes convenient to observe that Cov (X,X) = Var
(X). In general the covariance between X and Y is a measure of the relationship
between them. If X tends to be large when Y is large and tends to be small when Y is
small, then the covariance is positive. On the other hand if large values of X
correspond to small values of Y or small values of X correspond to large values of Y,
then the covariance is negative. '

Let us see some examples now.
Example 8 : Suppose (X,Y) has the joint probablhty density function

- [8xy if0<x<y<l1
fx. Y (X’ Y) =
0 otherwise

with E(X) = — E(Y) == Let us compute the covariance of X and Y.

By definition »
Cov(X, Y) = E(XY) - E(X)E(Y)
1y
E(XY) = [ [ xy 8xy dx dy
00
1 y
-fSyszxzd_x]dy
1
6
e
f 3
i‘_.
"9
Hence o
Cov(X,Y)=E(XY)-E(X)E(Y)
4.8 4
"9 1575

Here we ask you a question : What happens to the covariance of X and Y when X and
Y are independent ? You can find an answer to this question in the following theorem.

Theorem 2 : If X and Y are independent random variables with E(X) and E(Y)
finite, then E(XY) exists and

x E(XY) = E(X) E(Y) ~(13)

Proof : Suppose X and Y are independent random variables with the density
functions fx (x) and fy (y) respectively. From the definition of independence, it

follows that the joint density of (X, Y) is given by
fx, ¥ (x, ¥) = fx (x) fy (y).
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Suppose that  E(X) and E(Y) exist. Then

E(XY) = f f xy £ (x, y) dxy dy
=ffw xy fx (x) fy(y) dx dy
- f X fx(x) fm Yty () dy | dx.
=E(Y)fxt'x(x)dx .
=E(Y)-};(X).

From the theorem we get that if X and Y are independent with finite expectation, then
Cov(X, Y) = E(XY) - E(X) E(Y) = 0

An immediate consequence of the multiplication law for expectation is the following

result concerning the variance of sum of two independent random variables.

Theorem 3 : If X and Y are independent random variables with finite variances, ‘
then Var(X+Y)=VarX + Var Y

Proof: Let E(X) = ux and E(Y) = uy. Then
E(X+Y)=ux+uy '

kand Var (X+Y)=E[(X+Y~—(u)'<+uy))2]

=Ekx-um+<Y—ugz]
~E[X- ux]z +E[Y- uy]z +2E[(X - ux) (Y - wy)]
= Var (X) + Var (Y)+2Cov (X, Y).

Since the random variablies X and Y are independent, it follows that Cov X,Y)=0
and hence

Var (X +Y) = Var (X) + Var (Y).

From the proof given above, you must have noticed that the above result concerning
the variance of sum of two random variables is true if Cov X,Y)=0.

Let us consider another example.
Example 9 : Suppose (X,Y) has joint density function

1. if-y<x<y, O<y<1
X v (x,y) {0 otherwise,

Let us first compute the marginal densities fx (x) and fy (y) respectively and the
covariance of X and Y. )

We have

fy () = ftx v (x, y) dx

Y
=fdx
iy
=2y for0<y<1
=0 elsewhere
e ]



and

o

fx (%) = [ fx. v (x,y) dy

-0

Then

That is,

1+x
fx (x)=11-x
o

It is clear that

fx, v (X, y) = fx (x) fy(

if-1<x<0

f-1<x<0

if0<x<1

otherwise.

f-1<x<0
if0<x<1
otherwise.

y)-

Hence X and Y are not independent. Let us compute Cov (X,Y). It is easy to check

that
E(X)=0and E(Y)=2/3
and
[y
E(XY)-f fx dx|dy
0 |-y
1 1Y
x2
o -y
Y
=fy[2 B z}dy
0
s =O.
Hence

Cov (X, Y) =0.

Remark : This example shows that Cov (X,Y) = 0 does not imply that X and Y are

independent,

See if you can solve these exercises.

E15) Suppose the random vector (X,Y) has the joint density function given by

. 1 xiy?si
I n )
f(x,y) = »
0, otherwise

Then find

i)  the marginal density functions of X and Y
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Distribution Theory ii)  the covariance of X and Y
i) E(XY).
E16) Show that

Cov (aX +b,cY +d)y=ac Cov (X, Y)
for any constants a,b,c,d.

Next we shall define moment generating tunctions for a bivariate random vector.

Suppose (X,Y) has a bivariate density function fx, vy (x, y).

As in the univariate case the moment generating function of (X,Y) is defined as

o 0

M, v) (t1, t2) =E [e“ X+t Y] - f fe" X*UY £y v (x,y) dx dy ..(14)

-0 —

whenever the integral exists. Here t; and t; are real numbers. Let us write
M(t1, t2) for Mx, v (t1, t2) for simplicity. You can check that

M(0,0) =1,
M(t1, 0) = E [e” X] = Mx (t1), and
M@0, t2) =E [e'2 Y] = My (12).

In other words, the moment generating tunctions of the marginal distributions of X
and Y can be recovered from the moment generating function of the joint distribution
of (X,Y).

Now let us see how to generate the moments of a bivariate (X,Y) from its moment
generating function. For that we assume that we can differentiate the expression

e ** Y rtimes with respect to t, and s times with respect tot; wherer z0 and s 2 0.
‘Then from (14) we have

3" T IM(ty,t2)

X"y e f(x,y)dx d
P ff y* (x,y)dx dy

-0

Let us see some particular.cases of this expression. Forr = 1,s = 0, t; = 0 = t2, we

have
M (11,12) |, P
aurrad K Lo =f ] { xfx, Y(x,y)dx dy = E(X) = px
Similarly we have
oM (1.t2) ‘.o cor
o |ioo” -/ - fy tx. Yixy)dx dy = E(y) = py

Whenr=2,s=0,t; =0 =tz, we have

0°M(tg,12 .
—afli =0 filicyoyhie dy - EGKD)

- -0 -0

andwhenr=0,s=2,t) =0 = ts, we have

*M(ty, ) |, -
n—a(t—lzl)_ ‘1 o f f)’ fx(xy)dx dy = E(Y?)
2

-0 - 0
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We also have Bivariate Distribut
2 ao (=]
IM(t1, 1) |, g

’ ‘ Ay At z.; -0 ‘f f Xyfx,y(x,y) dx dy = E(XY).

- - @

Now, do you agree with me when | say that

L t sM(ll,tz)

=0,
at} atp°

t2 =0 - E(xr ys)?

=t closely look at the particular cases, then you won’t have much problem to

R

- this fact.
> +bove discussion it follows that the moments E(X" Y®) if it exists, can be
% trom M(ty,t2) by differentiating the same partially with respect to t; and t,
- %+ Jnumber of times. You know that this is the reason why M(ty,t2) is called
i R . ov%wme . generating function,
¢+ if.porlant special case is the case of the moment generating function when X and
P b Tidependent random variables. Let us ook at this problem.
: .
: »+ X.ad Y are independent random variables with the density tunctions fx (x)
“respectively. Then the joint density function of (X, Y )is fx(x) fy(y) and
M(t1,t2) = E [enx +y J
<[ [ e i)y (y) e dy
= f e * fx(x) dx f e fy(y) dy
= E[e""] E[e'”]
= Mx (1) My (t).
i “sider an example now.
Exa.ple .0 Suppose (x, y ) has the joint density function
: fx,y)=e¢™, 0 <x <y <a
: =0 otherwise.
Let us compute M (1, t2)
: M(tx,t2)=f f e"TTRY £ (x, y) dx dy
=f f ¥ty e Ydy | dx
- X
=1 [ ey gy lonx g
0 X
|  [e--n)y x
;v, =6f T—t;)— € forty <1

v

=—1~1—b—f e~ @-n-wx gy forty <1
“0

19
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- Distribution Theory’ - 1
' (1-t-t)(1-1)

fort; < 1and t + tz < 1. In particular

M(O,tz)=————l———-’ t2<1

(1-uf
is the m.g.f. of X,

In this section we have discussed many concepts for a bivariate random vector. We
have talked about expectation, variance, covariance, moments and moment
generating functions. Among these concepts, you have seen that covariance enables
us to measure the strength of association between two random variables. However
covariance is not a good measure of the relationship as it depends on the units of
measurements for X and Y. In the next section we shall discuss two more concepts
which measures the relationship between the random variables.

12.6 CORRELATION AND REGRESSION

In Unit 4, we have already introduced the concept of correlation coefficient between
two variables X and Y. You may recall that the correlation coefficient between X and
Y is defined as

Cov (X, Y)
Px, ¥~ V{Var (X) Var (Y)}

where in the denominator , the +ve square root is taken. The same definition holds
good in the case of bivariate continuous random vectors (X, Y) as well.

You have already seen in Unit 4 that if p, , is the correlation coefticient between X
and Y then - 1= py y= 1. We can give a direct proot of this result.

Before we start proving that we shall introduce you to an important inequality known
as Cauchy-Schwartz Inequality. This inequality is a useful tool in probability theory
in various contexts.

Suppose (W, Z) is a bivariate random vector and let us consider the function
g (W,Z) = (W - kz)’ |
where k is a real number. From the general properties of expectation. We have
0<E[(W-kZ)]
= E[W? -2kWZ + K*Z*
=E|W? ]:_ 2KE (WZ) + K’E (Z°).

The last expression is a quadratic function in k. Since this quadratic function is
non-negative for all real k, the discriminant of the quadratic function has to be
negative. Therefore

4[E(WZ) T ~4E (WHE(Z% =0
or equivalently
[E(WZ) } s E(W)E (Z%) (15

This inequality is known as Cauchy-Schwartz inequality. If equality occurs in the
above inequality, then it follows that the discriminant is zero and hence the quadratlc
equation

K’E(Z*) - 2KE(WZ)+E (W?) =0
has equal roots. In other words, there exists a value kg such that

k3 E (Z%) - 2koE (WZ) + E (W?) =0

80
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that is
E [(W - koZ)* | = 0.
Utilizing the Cauchy-Schwartz inequality, we can prove the following theorem.

Theorem 2: Let ( X, Y ) be a bivariate random vector with E (X) = Ux,
E(Y) = pv, Var (X) = 0:2(, Var(Y) = o% and Cov (X,Y) = ox. v. Then | pX'Y| s 1.
Proof : Choose

WaX-uxandZ =Y - py

in the earlier discussion. Then, we have pg( ys1. ..(16)

Next we shall prove another theorem.

Theorem 3 : Suppose that p2 =1.Then Y is a linear function of X.
Prool’: Let us consider relation (16).

As we have seen in the earlier discussion the equality occurs in the relation (16) iff
there exists some value ko,(ko = 0) such that

P[X—ux=ko(Y—w)]=1

thatis Y = i(% [y — ux + X ] with probability one. In other words Y is a linear
function of X or equivalently X and Y are linearly related with probability 1.

Does the converse of this theorem hold ? That is, if X and Y are two random
variables such that Y is a linear function of X, then is it true that 92 =17

Yaui can find an answer to this question in the following theorem.

Theorem 4 : Suppose that X and Y are two random variables for which Y = a X + b
where a and b are constants. Then p2 =1.Infactifa> 0, thenp = + landif
a<0,p= -1,

Why don’t you fry to prove this theorem by yourselves ? (see E17).

Now let us consider the bivariate random vector discussed in Example 8. What is p
for that random vector ? p, = 0, since we have shown that cov (X,Y)=0.Such
random variables X and Y are said to be uncorrelated. More precisely, two random

variables X and Y ure said to be uncorrelated if the correlation coefficient between
X and Y is zero. ;

We have proved in the last section that if X and Y are independent random variables
with finite variance, then they are uncorrelated since cov(X, Y) = 0 and hence

Py, y = 0. However as mentioned in the remark below Example 7, it is not true that if
the random variables are uncorrelated, then they are independent.

Before we go any further, it is time to do some exercises now.

E17) Prove Theorem 4. [Hint : E(Y) = aE (X) + b and V (V)= a° V‘(X‘).

Compute E (X Y ) and then pi vl.

E18) Suppose that (X, Y ) is a bivariate random vector with the joint density function

o [Bxy, if0<x<y<1
fx, v (x.y) 0 , otherwise

Compute the correlation coefficient.

E19) Suppose U is a random variable uniformly distributed over [ 0, 2% |. Define X =
cos Uand Y = sin U. Show that X and Y are uncorrelated.

Bivariate Distributi
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E20) If X has standard normal distribution and Y =a +bX + CXZ,
b = 0, or ¢ = 0, then show that '
—=b
Py = Vitsad

If you have done these exercises, you would have got a fairly good grasp ofa
correlation coefficient. Next we shall talk about concept of Regression which gives
the relationship between the variable .

In Unit 4, we have already introduced the concept of regression curve. Recall that
locus of the conditional expectation of Y given X = X is called the regression of Y on
X. Similarly, you may recall from Unit 4 that locus of the conditional expectation of
X given Y =y is the regression of X on Y. More specifically, suppose (X,Y)isa
bivariate random vector with joint density function fx, y (X, y). The conditional
density of X given Y =y is defined by

D e

for all y such that fy (y) > 0. Similarly the conditional density of Y given X =X is
defined by

fxjy (x|y)=

fx. v (x,¥)
fx (x)

The conditional expectation of g (Y) given X = x is denoted by E{g(Y) | X = x] and
it is equal to

fx |y (y|x)=

’ _oo<y<oo

o«

[ ey tvix(y]x)dy.

- oc

In other words, it is just the expectation of g (Y) with respect to the conditional
density of Y given X = x. Similarly we define

E[h(X)|Y=y}

=-f h(x) fx |y (x | y) dx.

- o0

Of gourse, all these expectations make sense only when the corresponding integrals
are finite. If we choose g (y) =y and h (x) = x, then we have

E|YIX=x|=[yfvix(y[x)dy
and

E|{X|Y=y =fxfx|y(x|y)dx. ,

L p -0

Let us consider the conditional expectation of Y given X = X.

Note that E(Y | X = x) depends on the value x for X. Hence it is a function depending
on X = x. Denote this function by Q(x). The function Q(x) = E (Y | X = x ) is called
regression or regression function of Y on X. If Q is linear function ( say ) a + bx for
some constants a and b , then Y is said to have linear regression on X.

Similarly if E (X | Y = y) is a linear function of y, then X is said to have linear
regression ony and Q(y) =E [X | Y = Y] is called the regression of X on Y. For
simplicity , we will denote E (Y | X) for Q(x) and E (X | Y) for Q (y).

Let us consider an example .




Example 11 : Suppose ( X, Y ) nas e Joint density function

2 if0<x<y<l
(x,v) =
£y {O elsewhere

Let us compute the regression of Y on X and that of X on Y and show that both arc

linear.
1
fx(x)=f2dy=2(1-x) for0<x <1
X
={) otherwise
and
y
fy(y)=f2dx-2yfor0<y<l
0
=0 otherwise
Hepce
i fx.vy(x,y) 1
IXIv(xivy=—"—""2a = forO< X < , O<yx«l
Y1 Y) fy(x) y y y
=0 elsewhere
and

. fx,v)(x,y) __1
fy . XX Y) forx<y<1,0<x<1
X (yixt) by 1-% y

=0 elsewhere

Therefore, the regression of Y on X,

+ 0

E(Y|X=x)=f yfyix(y|x)dy forO<x<1
_1l+x
S 2

and the regression of X on Y is

for0<x<1

E(XlY=y)=f xfxjy (x]y)dx

-0

x —dx for0<y<l

i
OH%

<

% forO<y<1

Hence the regression of Y on X is linear as well as'the regression of X on Y is linear.

Now, if the regression of Y on X is linear, say E(x1Y ) =ax +b, then we can
express the coefficients a and b in terms of certain parameters of the joint distributicn
of (X, Y). The same is true for E( X | Y ) also. The following theorem illustratcs this
point.

Theorem 5 : Let (X, Y) be a random vector and suppose that E(X)= py, E(Y)=py),
V(X) = o%(and V(Y)= af Let p be the correlation coefficient between X and Y. If the
regression of Y on X is linear , we have

Oy
(Y |X)=py+p—Xx-uy.
X
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Similarly if the regression of X on Y is linear , we have

EX1Y) = px + pgl (v - ny).

You can try to prove this theorem by yourself ( see E24 ).
We shall now make some remarks on Theorem 1.

Remark : 1) If the regression of X on Y is linear and if p = 0, then relation (16)
shows that E ( X ] Y) does not depend on y. Similarly if the regression of Y on X is
linear and if p = 0, then E (Y | X) does not depend on x.

2) Relation (16) also shows that if the regression of Y on X is linear , then E (Y | X)

represents a straight line whose slope is p oo Therefore the sign of p determines the
Y
slope of the regression line.

Now, here are some exercises which you should try to solve.

E21) Consider the joint probability density function

1 if-y<x<y,0<y<1
tx,y) = {O elsewhere

of a bivariate random vector (X, Y). Are both the regressions linear ?

E22) Prove that
E(E(Y[|X))=E(Y)
whenever the expectations exist.
E23) Suppose ( X, Y ) has the joint probability density function
f(x,y)=y e Y**D %20, y20
=0 otherwise
Find E (Y | X).

E24) If (X, Y) is a bivariate random vector such that E (Y | X =x) is a linear
function of x, then show that

E(Y|X=X)=hy+px,y g& (x - x)
where ux = E(X), uy = E(Y), ok = Var (X}, 0% = Var(Y) and Pyy

is the correlation coefficient between X and Y.

E25) Show thatif X and Y are indeper{dent, then
E(X|Y=y)=E(X)
“forallyand E(Y|X=x)=E(Y)
for all x.

Now we bring this unit to a close. But before that let’s recall the important concepts
that we studied in it. :

12.7 SUMMARY

In this unit we have covered the following points :

1) We have introduced you to the notion of a bivariate distribution and the '
associated concepts of joint density function.

2)  We have acquainted you with the concepts of conditional distribution :
The conditional density function of X given Y =y is

e



g
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Ix, vy (X,y)

B(xdy) ==y @<k <

for any y such that fy (¥}>0
Similarly the conditional density function of Y given X = x is defined as
fx.v (x,y)
£ - XYY
Yix(y[x) f(x) "~ O <Y<®
for any x such that fx (x) > 0.

3)  We have defined and discussed the consequence of independence of two events.

4)  We have generalized the notions of expectation, moments and moment
generating function for a bivariate distribution.

If g (X, Y) is a function of the random vector (X, Y), then

4+ ® 400

E[g(X,Y)]=f [ gxy)txy(xy) dxdy

-0 -
where fx, v (x, y) is the joint density function.

The product moment =E[ (x-a ) (y-b)’]
Var (X)=E[ (x-a)]

Var (Y)=E[ (y-b )]

Cov (X,Y)=E[(x~-a)(y-b)].
The moment generating function of (X,Y)is
+ % 4

Mx,Y(tl,tz)=E[e"””2x2] =f f RN £y (x, y) dx dy

-00 —

5) We have investigated the concepts of Correlation coefficient and Regression
between the variables.
Cov (X.Y)
ar ar

Correlation coefficient Px y=

Regression of Y on X = E[Y | X].
Regression of X on Y =E[ X[ Y .

Bivariate Distributio

12.8 SOLUTIONS AND ANSWERS

. ® x/2 :
E1) The required probability is P[X = 2Y] = J [xye ®+Vayax
0 0

x/2

=f xe X fye“ydy dx
0 0
=7/27.

E2) P[X+Y>500]=1-P[X + Ys500]
500 -x

==1-f f)»ze'““")dydx
0 0

=1-{1-¢70*_ 500} ¢ =50}
=¢ 0% 500 ), ¢~ 502
=e %M (1 4 500).

85



Distribution Theory 2
E3) By definition, fx, v (X, y) = Q__Ifx_\f_(ﬁﬂ/_)
ox dy
2 a1 e M
(=" (1" T) ] ey 0,y 0

ox- dy
=, otherwise.
fx, v (x,y) = A2 e &V ifx > 0,y>0

=0 otherwise

2
E4) f - 0
) X(x) .(X+1)3 X>

=0 chcrwise, and
fy=ye ¥, y>0
=0, ysO.
ES) The expression (q) in (6) can be rewritten as

2
ol o
oi(l - p?) -

q:

Then we get

+

fy (y) -f fx. v (x,y) dx

-0

2
ol (YWY
V2roy ay

Therefore the marginal density of Y is normal with mean py and variance o@
E6) By definition

' fi v (,
fx|y (x|y) = —W
From the property

® @ : 11
ff t’x.Y(x,y)dxdyaffc(x.+y2_)dxdy-_1.

- ® 00

We getthatc= 1.

fx v (x, y)=(x +y2), if0<x,y<l1
=0 otherwise
Also we hqvé

fy (y) -f fx, v (x, y) dx

1 ,
-f. (x + y*) dx
0

2 1
X2
= 2+y X]O

‘=—;-+y2), O<x<1

2.
fx|v(x|y)--’;i%- O<x<l1:

2
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Now,
172

P[X<%]Y %] ffxly 1/2(xly==1/2)dx

o

“1_'
3
E7) Herefx (x)=2e7%*, x>0
=0, x=<0
and A
frix (y[x)=¢*"Y,y>x
=0 otherwise
- Hence
=P|X<1,Y<l|.
CP[Y<1]X<1] PX<1]
Now,
. PX<1,Y<1]=P[X<Y,Y<1]
=1-2e 14+e"2
and
P(X<1]=1-¢?
Hence
-1 -2
PY<1|X<1]=l22 *¢
1-e7
Further
1
PIY<1]X=1]=ffy|x-1(y|x=1)dy=
0
Hence

The joint density function is fx, vy (x, y) = _Z,;L“X’ 0<x,y<1
=0, otherwise,
ES) fy(y)-z%z- if0<y<1

=0 otherwise.
E9) Here '

2 3
fx(x)=5(2x+2)‘ ,0<x <1

=0 - , otherwise
and
2
fy (y) = 5 (1 +3y), 0<y<1
=0 . otherwise

Hence, forO<y<1,

x|y (x|y)= ZI_X%X if0<x<1

=0, otherwise

and, forO<x <1,

fy(x (y |x) = Zx_T/% if0<y<1

=0 otherwise

Bivariate Distibauon.
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1

P[X>§}=f fx (x) dx,

4/5

1
P(X>% ! Y=i —f fxjy (x |y =3/10) dx,

4/5
and

(Y>—|X_—~) ffyl)\ (y]x =3/10 )dy.

4/8
These probabilities can be computed using the tunctions given above.
E10) Suppose that the events are independent. Then we have
‘ Fx. v (%, y) =Fx (x) Fy (y), - @ <x,y <

Therefore
PRy (x,y) &
ax dy " ox )y[ Fx () Fy ( Y)]
d
" [F(X) (X)} [FY (y)J
= tx (x) fy (y)
E11l) Here ;
' fx (x) = 2x if0<x<1
=0 otherwise
and

fy(y)=6y(1-y) ifO<y«<l
=0 otherwise
Further more

f(x,y) =Ix (x) fy (y)

for all x and y. Hence x and y are independent random variables.

E12) Here
fx (x) = 2x if0<x<1
=0 otherwise
and :
ty (y)=2(1-y) . itl<y<1
=0 =g ' otherwise

Since f (x, y) = fx (x) fy (y) for ali‘ xandy, X and Y are independent. Therefore

’ 1 1 1 1
P O<X<3,0<Y<3]-P[O<X<§J P[O<Y<§]
13 i

=f2xdxf 2(1 ~-y) dy

l 10 5
18 81
E13) Xand Y are independent.
E14) Cov (x,Y) =E[ (X - ux) (Y - uy) ]
[xy - uxy - MyX + Uxpy]

=E [XY] - uxE (Y) - uyE(X) + ux py
=E(XY) - pux py.

=E (XY)-E (X) E (Y).
88 |
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E15)i) tx ()= fx v (x,y)dy
V1-x?
1

=26f ndy

=%V1~x2;0_<x<l.

Bivariate Distributions

Similarly
fy(y)=;2t-vl—y2,0<y<1

if)  Cov(XY) =E(XY)-E (X)E(Y)
'Now,

E(X) =f x fx (x) dx

=0
and

+ 0 4w

E(XY)= [ [ xytx.y(x,y)dxdy

-0 -

This integral can be easily evaluated using polar coordinates. Recall that you
have studied evaluation of double integrals using polar coordinates in MTE-07,
Block 4. Then we have )

1 2n

E(XY)=%ff  sin 6 cos 6 0
0 0

1 : cos2 6 &
o
=0.
Cov (XY) =0.
E16) Observe that E(aX +b) = aE (X) +band E(cY +d) = cE(Y) +d
Hence Cov (aX +b,cX +d) =E [ { (aX +b) - E(aX +b) } '
‘ (Y +d~E(cY +d) }]
, =E[a{X -E(X)|c[Y-E(V)]]}
> =ac Cov (X, Y).
E17) Since Y = aX + b, we have E(Y) = aE(X) + b and
Var (Y) = a® Var (X) . Also
E(XY):E[X(aX+b)]
=E@aX? + b)
=aE(X?) +b
Therefore

2 [E(XY) - E(X) E(Y)?
Var(X)var(Y)

K _ [RE(X?) + bE(X) - E(X) (aE(X) + b))
- a* Var (X) Var (X)
_ [EE(X®) + PE(X) - aE(X)* - bE(X) |
anar(X)2

p
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Distribution Theory = 2*Var(X)?

_ a® Var (X) -1
2% Var (X)? o
E18) From Example 8, we know that E (X) = -§-, E(Y)= 4 and cov (XY) = 4_32
15 s 9 75
Now to calculate Var ( X ) and Var (Y)
Var (X) = E(X%) - [E(X)
1y
EX)=f [ x8xydxdy /
00
1 y
=f 8y dy f x3dx.
0 0
i
=2 f y5 dy
0
1
°3
1 64 11
Var(X)=§—2—2§=%~
Similarly we get that Var (Y) = 7—25- .
cov(X,Y)
P00 War () Var (¥)
L _40=32/T5
Voxao
225 75
4
by
E19) The density function fy of U is
fulu)=c,ifuE€(0,2n) \
=0, otherwise

where c is a constant.

Then we get
E(X) =f cos u fy (u) du = 0,
E(Y)=0

and

- . 2n
' E(XY) = E[sin u cos u] =f sinucosufy(u)du=0
0

cov(X,Y)= 0

and hence

Pxy=0
E20) Note that E(X) = 0 and Var (X) =1

Now

E(Y) =E[a + bXe+ cX?

. "Sample output to test PDF Combine only
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Var (Y) = E[Y?] - (E[Y])?
‘ =E[a® + b2X2 + #X+ 2abX+ 2abeX? + 2acX?] - (a + c)?

=b%+2c2
and
Cov (X,Y) = E(XY)=b

b
PX, ¥ = Vb2 4+ 26
E21) From the calculation made in Example 9 , we have
-1
E(XIY-y)zf xde forO<y<1.

-y
=0 forO<y<1.

-

On the other hand

1
E[YIX-xjsf y.Ti—xdyif—1<x<0
-x

1
1 cors
==f y-mdylf1<x<0
X

Hence
1 ;x if-1<x<0
E(Y[X=x)= :
X if0<x<1
2
Therefore X has linear regression on Y but Y does not have linear regression
on X.

E(Y[X)=f yfyix(y|x)dy

EXEEY[X)]=f | [ ytvix (v]x)dy| fx (x) dx
"f fnyIX(ylx)fx(x)dydx
=f [ ytxy(xy)dydx

-0 =

=E(Y).
3
E2)E(Y|X)= 1 |
E24) We discuss the case when (X, Y) has a joint probability density function. We
leave it to you to check the result when (X,Y) has a bivariate discrete

distribution.
Now suppose (X,Y) is a continuous distribution. From E22 it follows that

E[E(Y|X)] =E(Y) = py
But, by hypothesis, E(Y | X) is a linear function of X i.e. we can write
E(Y|X)=2a+bX.
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where a,b are real numbers such thatb = 0

Hence
uy=E[E(Y|X)]=E(a+bX)=a+bpux
Therefore
a=py-bux
and

E(Y|{X)=pny —~bux +bX
ie.

E (Y |X)~-uy =b (X - ux).
Multiplying both sides by (X - ux) and taking expectation on both sides, we get
that

E[[E(Y|X)-uy] [X - px] ] =bE [X - ux]?
E [E (Y| X)] - uy } E [(X - ux)] = bE [X - px]
[E [Y] - uv} E [(X - px)] = bE [X - px]?

E[Y - py]E[X - ux] =bE [x - uxP.
Verify that the relation leads to

E[ (Y - iy) (X - px)] = bE[X -ux]".

In other words

Cov (X,Y) = b ax?
or '

b Cov (X,Y) px yoy

ax ax

Hence
E(Y|X)=~a+bX

=uy—bux+bX

_ PX.YOY
=ux + o (X - 1ux).

E25) Suppose X and Y arc indcpendent with density tum tions fx (x) and fy (y)
respectively. Then

-4

EX|Y=y)= [ xfxjv(x]y)dx

= E(X).

Verily the result for discrete distributions

92
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UNIT 13 FUNCTIONS OF RANDOM
VARIABLES

Structure
13.1 Introduction
Objectives

13.2  Functions of Two Random Variables
Direct Approach '
‘Transformation Approach

13.3  Functions of more than two Random Variables
13.4  Chi-square Distribution
13.5 t-Distribution
13.6 F-Distribution
13.7 Summary
13.8 Solutions and Answers
Appendix : Tables of Chi-square, t, F-distributions

13.1 INTRODUCTION

In the last unit, we have introduced bivariate distributions and multivariate
distributions. Most of the times we would like to know the probabilistic behaviour of
a function g(X,Y) of the random vector (X,Y). The function g could be either the
sum X+Y or the max (X,Y) or some other function depending on the phenomenon
under study. In Section 13.2, we give two approaches for obtaining the distribution
function of a function of two random variables. Important distributions such as
Chi-square distribution, t-distribution and F-distribution are studied in sections 12.3
to 12.5. These distributions can be considered as distributions of functions of
independent standard normal random variables. Properties of these distributions are
investigated in detail.

Objectives
After reading this unit, you should be able to :

*  derive distribution functions of functions of two or more random Vvariables ;
*  derive properties of the Chi-square, t and F = distributions;
*  explain the connection between Chi-square, t and F and the normal distributions.

13.2  FUNCTION OF TWO RANDOM VARIABLES

In this section we shall talk about functions of two random variables and discuss
methods for obtaining their distribution functions. Some of the important functions

which we shall consider are X+Y, XY, %’ max (X,Y), |X-Y].

Let us start with a random vector (X,Y). By definition X and Y are random variables
defined on the sample space S of some experiment and each of which assigns a real
number to every s € S. Let g(x,y) be a real-valued function defined on R x R. Then
the composite function Z = g(X,Y) defined by

Z(s) =g [X (s), Y(s) LsES
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assignes to every outcome s € S a real number. Z is called a function of the random -
vector (X,Y). )

For example, if g(x,y) = x + y, then we get Z = X + Y and if g(k,y) =Xy, then we get
Z = XY and so on.

Now let us see how do we find the distribution function of Z. As in the univariate
case, we shall restrict ourselves to the continuous case. Here we shall discuss two
methods for obtaining distribution functions — Direct Method and Transformation
Method. We shall first discuss Direct Method.

13.2.1 Direct Method

Let (X,Y) be a random vector with the joint density function fx, y (x,y). Let g(x,y) be
a real-valued function defined on R x R. For z € Z, define

D, = {(x,y): g(x,y) s 2}
Then the distribution function of Z is defined as
P[Z=s2z] =f ffx,y (x,y) dx dy : -~ w(1)
D;

Theoretically it is not difficult to write down the distribution function using (1). But
in actual practise it is sometimes difficult to evaluate the double integral.

We shall now illustrate the computation of distribution functions in the following
examples. ‘ )

Example 1: Suppose (X,Y) has the uniform distribution on [0,1] x [0,1] the unit
square. Then the joint density of (X,Y)is

1 if0<x,y<1
fy (xy) = {0 otherwise

Let us find the distribution function of Z = g(X,Y) = XY.
From the definition of a distribution function of Z, we have
Fz(z) = P [XY s 2]

= [txy(xy)dxdy if0<z<1
Dy

Fig. 1



where Dz = {(x,; ;. ., ooy

- dxdy if0<z<1.
J faxay
1

z

where D§='{(x,y):xysz,0<x<1,0<y<l}

In order to evaluate the last integral, let us look at the set of all points (x,y) such that
Xy<zwhen0<x<1landO<y<1 ( See Fig. 1).

If 0 < x < 2, then for any 0 <y < 1, the product xy s zand if x > Z, then xy < z only
when 0 < y < z/x. This is the region shaded in Fig. 1. Hence for 0 <z < 1

Fz(z)=P[Z=2)
z/x

z 1 1
=f fdydx+f fdydx
0 0 z

z 1 ’
=fdx+f£dx
0 zx

=z+z[lnx)!=z-zInz

Therefore ‘
0 ifz=0
Fz(z)=4{z-zInz if0<z<1
1 ifzz1

is the distribution function of Z. The density function fz (z) of Z is obtained by
differentiating Fz (z) with respect to z. Then you can check that

fz(z)=0 ifzsOorz=1
=-Inz if0<z<1

Example 2: Suppose X and Y are independent exponential random variables with
the density function

f(x)=Ae ™ x>0 and f(y)=re Y y>0
=0 , Xs0. =0,y sO
Define Z = X + Y and let us find the distribution function of Z.

From the definition of Z,

Fz(2)=P[Zs2]=0 ifz<0

and, forz >0

4

Y
X+y=1z

0 z X
Fig. 2

Functions v: .

Variables
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rp\2)="v|Lsz]
=[x x (xy) dx dy
{xy):x+ysz}

“where fx, v (x, y) is the joint density of (X,Y). Since X and Y are independent

random variables, the joint density of (X,Y) is given by
fx, Y (x, y) = fx (x) fy (y)
where fx (x)and fy (y) are the marginal density functions
i.e. fx, v (x,y) = Ae™™ x Ae™™ ,X>0,y>0
=0 , otherwise

Now for z> O,theset{(x,y): X +y =z,x >0,y > 0} is the region shaded in Fig. 2.
Hence, forz > 0,

Fz(z)=f[ f )\e')‘ydyl)\.e”"‘dx
o[ 0

[ —e""‘]z-x AeMdx
0

e—k(z-x)])\c-hxdx

i
e " n o v oSy
>’ bt
o

-AX Y e-—hx] dx
- [_ e—kx]z — Zhe M
0

=1-e¢ M _pze 2
Now we leave it to you to check that the density function of Z is
t7 (z) =M ze ™2 forz>0
=0  otherwise

In this density function familiar to you? Recall that this function is the gamma
density function you have studied in Unit 11. Hence Example 2 says that the sum of
two independent exponential random variables has gamma distribution.

Let us consider another example.

Example 3 : Suppose X and Y are indépendent random varibles with the same
density function f (x) and the distribution function F(x). Define Z = max(X,Y). Let
us determine the distribution function of Z.

By definition, the distribution function Fz is given by
Fz(z)=P[Z sz]
= P[inax (X? Y) =<z}
=P[X=s2z Y=z
=P[Xsz}]P[Y sz]=[F(2)]
by the independence of X and Y and the fact that
P[Xsz]=P[Ys z]= F (2).

Since F is differentiable almost everywhere and the density corresponding toFisfit
follows that Z has a probability density function fz and

fz (z) = 2F (z) f(z), ~0 <z <.

. To get more practise why don’t you try some exercises now..

by
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Ei) Suppose X and Y are independent random variables, each having uniform ~Verisbles

distribution on (0, 1). Determine the density function of Z = X + Y.

E2)  Suppose (X,Y) has the joint probability density function
f(xy)=x+y,if0<x,y<1
=0, otherwise
Find the density function of Z = XY.

E3) Suppose X and Y are independent r. vs with density function f(x) and
distribution function F(x). Find the density function of Z = min (X,Y).

The cxamples and exercises discussed above deal with the method of
obtaining the distribution function of Z = g(X,Y) directly. This method is
applicable even when (X,Y) does not have a density function.

Next we shall discuss another method for obtaining the distribution and
density functions.

13.2.2 Transformation Approach

Suppose (X; , X3) is a bivariate random vector with the density function

x,, x, (x1, x2) and we would like to determine the distribution function of the density
function of Z; = g; (X1, X3). To determine this, let us suppose that we can find
another function Z, = g2 (X1, X3) such that the transformation from X1, X2) to

(Z1 , Zy) is one-to-one. In other words to every point (xy, x2) in R?, there
corresponds a point (23, zp) in R? given by the above transformation and conversely
to every point (z1, ) there corresponds a unique point (xy, x) such that

21 = g1 (X1, X2)
Z2 = g7 (X1, X2)

For example suppose that Z; = X1 + Xz. Then we can choose Z; = X1 -X3. You can

casily see that the transformation (x1, X2) = (21, 22) from R% to R? 1s one-one and in
:his case we have

Z1-7; Z1+2Z;

Xi=

and X3 =

So, in general, one can assume that we can express (X1, X2) in terms of (Z;, Zy)
uniquely. : '

That means that there is exist real valued functions hjand h2 such tha;t

. X1 =h1(Zy,2)
X2 =h2(Z1,2Z)

Let us further assume that hy and hz have continuous partial derivatives with respect
to Zy, Z;. Consider the Jacobian of the tranformation (Z, Z;) — (X;, X3) -

dz; dzp dhy dh; dhy ahy
_aﬁ Qﬁ 021022 0z 621»
| 3z 9z
Recall that you have seen‘Jacobians’ in Unit 9, Block 3 of MTE - 07 we denote this
d (x1, ' . .
Jacobian by J = a—(é%—%) Assume that J is not zero for all (21, z2). Then, it can be
15 22

shown, by using the change of variable formula for double integrals [see MTE-07,
Unit 11, Block 4] we can show that the random vector (Z;, Z,) has a density and the
density function ¢ (z;, z3) of (Z1,25) is
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it to test PDF Combine only

N T T I T Sry L



Distribution Theory o (z1,22) = [ hy (z1, Z2), b2 (21, 22) ] |5 if (z1,22) € B (2
=0 " otherwise _
where B = {(z1,22) 21 = g1 (X1, X2 ), 22 = 8 (x1, X2 ) for some ( X1, X2) }

From the joint density of (Zi, Z,) obtained above, the marginal density of Zy can be
derived and it is given by

2 (z1) = [ ¢ (z1,22) d22

-0

Let us now compute the density function of Z; = X1 + Xz where Xj and X3 are
independent and identically distributed standard normal variables. We have seen
that in this casé Z2 = X; + X2 and we can write -

Z1+Z Z1-Z
1+ 2 and Xy = 1-42

_Let us now calculate the Jacobian of the

1=

transformation. It is given by

QB
tad
—

-

Q Q»
X< N
QW
ey

9 Xy
Jd7Z1
Q_x;
dz

N D=

1
2

QO
N
[®)

Now since Xj and X; are independent, we have

12 1 lz'
fy . xo (X1, X2y = —==€" 2" e 7TX —0 <X, X2 <X,
X1 Xz( 1, X2) \/7—; m : s 1, A2

-

Hence by (1) the joint probability density function of (Z1, Z2) is

2 72

2 2
——l—e _1_ 21+22 l 21-72
“an P T2 2 2l " 2

RO IR ESUt | RO
AP T e | L2

Then the marginal density of Z; is given by

g+ -2
tb(Zx,Zz)-f[-————'——} [J], -2 <2z),22<®

2
Zy

; 1 4
¢'z',1 (z1) =f¢ (z1,22) 022 —\/Z——;e4, -0 <Zj <®

Note that we can calculate the marginal density of Z; also. It is given by

S+ 2
4]

' 1.z
4)212 (7‘2) =f¢ (ZI) ZZ) azl-m‘e 4 7-m<22<w'

In other words Z1 has N(0, 2) and Z has N(0, 2) as their distribution functions. In
fact Z, and Z, are independent random variables since '

o (z1, 22) = 9z, (21) 9z, (z2)
for all z; and z.

We shall illustrate this method with one more example.
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Example 4 : Suppose X; and X; are independent random variables with common
density function

—

f(x)==e™? for0<x<m

(8]

= 0 otherwise.

Let us find the distribution function of Z; = %(Xl - X2).

* Here it is convenient to choose Z; = X3. Note that the transformation

(X1, X2) = (Z1, Z3) gives a one-to-one mapping from the set A =
[ (x1,%2) 1 0 <x; <0,0<xp < %} onto the set
B = { (z1,22): 22> 0, —0 < x3 < @ and Z > — 221}. The inverse transformation is

X1=2Z;+7;
and

Xy =27,
Since x3 > 0, it follows that 221 + 23 > 0, that is, z; > -2z;.
Since xz > 0, it follows that z; > 0. Obviously, - < z; < o,
Further more you can check that the Jacobian of the transformation is equal to 2.
Now the joint density function is

] —x+y)
fx,, x, (x1, x2) = 7° 2
Therefore from (2) the joint density fupction of (Z1,Zy) is
¢ [zl, zz] = fx,, X, [221 +22,23] | T proQided (z1,22) €EB

=0 , otherwise.
Therefore
o [a,22] - Sen if (21,22) € B
=0 otherwise -

and the marginal density of Z; is
1 _ .
bz, (z1) = fzb =22 (7, ltf°°<21§0

—211
)

= f%e‘z‘"zzdzz if0sz, <,
: .

This shows that
bz @) =21t oy

The distribution with the density function given by % is known as double exponential
distribution,

An important application of the transformation approach is to determine distribution
of the sum of two independent random variables not necessarily identically
distributed. Let us now look at this problem. , !

Suppose X; and X; are independent random variables with the density functions

f1 (x1) and £, (x2) respectively and we want to determine the distribution function of
Xi+Xa. LetZy = X; + X3. We apply transformation method here. Set Z; = X3. Then
the transformation (X;, X2) = (Z1, Zy) is invertible and ‘

Xi=Z1-7;
X2 =7,

- Functions of i .
Variables
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The Jacobian of the transformation is equal to unity. Since the joint density of

(X1,X2) is fi(x1) f2 (x2), it follows from (2) that the joint density of (Z;, Z;) is given
by '

¢ (21, 22) = f1 (21 - 22) 2 (22), — <2, 22 < o,
Hence the density of Z; is given by

¢z, (1) =f¢ (21, 22) dz,

-]

f fi(z1 - 22) fa(z2) dzy , w0 <2y, 25, < «(3)

This formula giving the density function of Z, is known as the convolution formula.

This is called the convolution formula because the density function is the

convolution product of the density functions of X; and Xa.
The convolution product of two

rcal'Vﬂ"uvd func;ions dfx a"ddff‘- Let us now calculate the distribution function of Z1. We denote the distribution
denoted by i ) . i
denoted by fi v By is defined by function of Z; by ¢z,. Then we have

w

' z
ive 0= fH (-0 6 @) dt
- 0z, (@)= [z, (z1) dzs
-
z -]
Siace fy and £3 are continuos, = f ffl (Zl -0)f (Zz) dzy| dzy

wecan mterchange the order of
intzgration (see MTE-07,
Block 4 Unit 11) > :

' = f 1 fﬁ (z1 - 22) dz1] f; (z2) dz;

- 00 - 00

@ -2

=f (ft‘l (u) duf f2 (z2) dz,

(by the transformation u =z, - 7,)

@

= f F1(z - 22) £ (z2) dzp

-0

where F is the distribution function of Xl.

Therefore the distribution function of Zi is the convolution product of the
distribution function of X; and the density function of Xj.

The above relation gives an explicit formula for the distribution function of Z.
Let us see an example.

Example 5 : Suppose X; and X; are independent random variables with the gamma
distributions having parameters (ay, A) and (a2, M) respectively. Let us find the
density function of the sum Z = X; + X» using the convolution formula,

The density of X; is

Xi>0

= 0 otherwise
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fori=1,2. We use Formula (3) to compute the density function of 2. Forz > 0, we Functions of Random

Variables
have .
9z (2) = f£x, (z - u) fx, (u) du
=ft‘x, (z - u) fx, (u) du
0
z
}\ule—k(z-u) w1 ;\aze-ku |
L= o ————1{Z-u L -*—'uuz_ du.
J T e
)\'u,+uze—kz z -1 -1
=————-—r(al)r(a2).6r{(z_u)al u®2 du}
’ 1
=i_(_z;%e-)\zzal+uz—l f(l _v)al-lvaz-ldv
AL 2 '

0

. u
(by the transformation v = =)
z

, e Mg (g, q)
[(ar) Moo o
. ;\'al-@az, Az o) +ar-1
_Amte, 2 0,<z<o,
oz (z) T(y+tag) . *° o
o , z<0.

The last equality follows from the properties of beta function and gamma function.

This example shows that the convolution of gamma distributions with parameters
(a1, &) and (o2, A) is a gamma distribution with parameter (0 + o2, A).

Next we shall consider another example in which we illustrate another method called
Moment Generating Function approach. This method js useful for finding the
distribution functions of sums or lincar combinations of independent random
variables.

Example 6 : Suppose X; and X; are independent random variables with

distributions N Lul, 012 ] and N [ Uz, 022 ] respectively. Define Z = X; + X2. Then
them.g.f. of Z i : ‘

Mz () = E[ o %50
=E[¢'x’ etxz]
. ’ =E[e‘X']E[e‘X2].

The last relation follows from the fact that ¢! and eX2 are indepehdent random
variables when X; and X3 are independent, But we have proved earlier that

E [etx,] - exp {Mit’r%lz 0;2}, i=1,2

' ' Mz(t)=cxp{t[ul+m]+%tz[c7;2+022]}, —o<t<o,

But this function is the m.g.f. of N [ Wi+ Ha, o+ @? ). From the uniqueness
property ( Theorem 1 of Unit 10), it follows that Z has
N[ +p2, 0 + 0 ;
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Have you understood the method discussed in this section? To verify that why don’t
You try some exercises now. '

E4) Suppose X; and X» are independent random variables with gamma densities
fi (x;) given by

fi (xi) = 1 ,a;-le-x;,v O<xj<coo

I (o) Xi
=0 ' otherwise
fori=1,2.LetZ; = X; + Xz and Z3 = — X1 . Show that Z; and Z; are
A X1 +Xz

independent random variables. Find the distribution functions of Z; and Z.
ES) (Box - Muller transformation) Let X; and X; be independent random
variables uniformly distributed on [0, 1]. Define
Z1 = (-2 log X1)!"? cos (2 = X2),
Z; = (-2 log X1)1? sin 2xX2)
Show thatZ; and Z; are independent standard normal random variables.
E6) Suppose (X1, X2) have the joint density function
f(x;,x2) =dx1x2 if0<x;,x2<1
=0 otherwise,

Define Z; = ;—; and Z2 = X1 Xz. Determine the joint density function of
(Z4, Z).

E7) Suppose Xj,.......;,Xpn arcn independent random variables with the same

distribution N (u, o? ). Define
n

X= 1 X
_ LS|

X is called the sample mean. Extending the m.g.f. approach for more than two

random variables, show that X has the distribution N [ TR % ‘

In the next section we shall talk about functions of more than two randonj
variables. g

13.3 FUNCTIONS OF MORE THAN TWO RANDOM
'VARIABLES

Suppose we have n random variables Xj,.......... » Xa not necessarily independent and -
we are interested in finding the distribution function of a function Z; = g1 X1,y Xa)
or the joint distribution function of Z; = g; (X1,.......... » Xd), 1 si s, where r is any
positive integer 1 =1 s n. The methods described in the previous section can be
extended to this general case. We will not go into detailed description or extension

of the methods. We will illustrate by a few examples. :

Example 7 : Suppose X, X;......... X, is a random sample of size n, from a certsin
population. We shall discuss this concept of random sampling in greater detail in
Block 4 Unit 15. In the present context it will suffice to record that the above _
statement is a convenient alternative way of expressing the fact that X;, X3,...X, are
independent and identically djstributed n random variables with a 'common _
distribution funiction F(x) which coincide with the population distribution /funcgion,




PR

|
l
|
r

(see Unit 15, Block 4). beline 41 = min (X,....... »Xn) and Z, = max (X;,i......... Xa). sm:';.":’ of Random
Let us find the joint distribution of (Z;, Z,).

We first note that Z; < Z,,. Let us compute the distribution function Gz, z, of
(Z1, Z,). Let (23, 2,) be a fixed pair where - o < Z) =2, < %, We first consider the
case zy = z;. Then

Gz, 2, 2.2, =P[Z1s2,,Z, s Zn ]
=P [Zy s 2,], since the event [Zn s 2,)
implies the event [Z: = z1),
=P[XisZ,1sis n} z; and z, being equal.
n
= IIP[X;sz],since X;’s are independent
i=1
=F (z,)".
Now, suppose that 23 <z,. Then we have

GZI- Z, (Zl, Zy ) =P [Zl £21,Z,s7, ]
'P[ZnSZn]—P[Zn<Zn,Z] > 21 ]
=P[Zn57.n ]—P[Zl<Zl SZnSZn]

=P[Znszn]—P(21<X;sznf0rlsisn)

n
=P(Z,=sz,)-TTp [Z1<X;s2z, ],;since X;’s are independent

i=]

n
=P[Xisz,,forlsisn]-HP[21<X;sz,,]
i=l

n n -
= I'IP[X;sz,,] ~IIP [z <X;sz.,]
i=] jwl

= [F(za )I" - [Fza ) ~ F(z )],

Therefore if — 0 < 7; < Zy <, we get the distribution function as

21, 20(21, Z0) = F (Za)" ~ [F(Zy ) ~ F(Zy )] | . {4)

the joint probability density function of (Z1, Z,) is obtained by the relation

9%Gz,.z, (21, 7,)

0212, (21, 7,) = 0zy 9z, -

Then from (4), we have 4
Gzy,2, (21, Z0 ) = n(n-1) [F(za ) - F(zy N2 €z ) tza ) if - 0 <2y < Zy< o

=0 otherwise.

The quantity Z, —Z, is called the range. Infact, Range is the difference between the
largest and the smallest observations, We shall now find the distribution of the range
Wi = Z, ~Z; for the observations given in Example 7.

Example 8 ; Let X1, X2, ooy X, and Zy,Z, are as given Example 7. Let us find the
distribution of W; = Z,-7;. ‘

Here we make use of the transformation method.

Set W; = Z

Now you can check that the transformation (Z1, Zy) = (W1, Wa) is one-to-one and
the inverse transformation is givenbyZ; =W,, 7, = W} + W,. The Jacobian of this
transformation is equal to ~1. Hence the joint density of (Wy, W) is given by

.~ . Sample output to test PDF Combine only e
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G (w1, w2) = gz,,7, (W2, W2+W;), 0 < W} < 90, — %0 < Wz < .

where gz, 7, is the joint density of (Z;, Z;) which we have calculated in Example 7.
Then we have

G(wi, w2) = n(n-1) [(F(wz+w;) - F(wz)]“’2 f(w7)f(wo+w;) if 0 < w; < ® and
—®w<Wr < ®

=0 © -, otherwise

and the marginal density function of Wy is

Gy (W1) = [[6 (w1, W) dw,

= n(n-1) f [F(wz + w1 ) = F(wa )]"'2 f(wa ) f(wa+wy ) dwo If0 <w <@

=0 , otherwise

Let us consider a special case of the above problem when Xj, ...., X, are independent
and identically distributed with uniform distribution on [0, 1]. Then

0 ifx<0
F(x)=1x if0<x<1

1 ifxxz1
and
1 if0<x<1
f(x) = {0 otherwise.
In this case

l—Wl

bw, (wy) = n(n—l)fw’l"z dws » if0<w1 <1

= n(n—l)w1 2(1-wy) ,if0<w <]
=0 , otherwise

Now for a short exercise

E8) Suppose X1, X2, ..., Xn are independent random variables and X; has
N (i, of) as its distribution for i=1, 2, ..., n. Find the distribution of

n
Z = T CX; where C, are constants not all zero.
i=1

In the next three sections we shall discuss three standard distributions each of which

appear as the distribution of a certain function of standard normal variable. We shall

make use of the different approaches discussed in this unit to obtain their distribution
functions. All these distributions play an important role in statistical inference which
will be discussed in Block 4.

13.4 CHI-SQUARE DISTRIBUTION

In this section we shall introduce you to a standard distribution known as chi-square
distribution.

Suppose X has the standard normal distribution. Let us compute the dlstnbutlon
function of Z = X, Then, forz =0,

e




Fz(z) = P[Z 57] Fuuctions of Random

Variables
= P[X* s 2
=P[-VZ=Xs Vz]
=P[XS\/Z—]-P[X<-\/Z]
= 0 [Vz]-¢[-Vz]
where ¢ is the standard normal distribution function.
Itis obvious that Fz(z) =0 forz <o,

Differentiating F,, we have the probability density function for Z, namely,
fz(z) = %z‘m o (Vz) + %z‘m ¢ (=VZ) for z= 0.

=0 for z < 0
where

¢(u)-\/§L_Ke'“z/2,—oo<u <,
Hence
f7(z) = %eﬂ/z 2 0sz<w

=0 otherwise,
Another equivalent form of the density function is

fz(z) = : 2121 g=22 forz = 0.

=0 for z<0 % isa Greek letter pronounced

‘kai",
A distribution with the above density function is called a Chi-square distribution ~ * **

with 1 degree of freedom and it js denoted by x%. We have now proved that if X is a

standard normal random variable, then X? has a X2 distribution with 1 degree of

freedom. Let us now compute the m.g.f. of Z = X2,
By the definition of m.g.t. it follows that
Mz(t) = E[¢'?]

- fetz — 1 221 22
212r(1/2)

<o

1 (172) -1 ~z/2(1-20)
. v I‘(l) Jz € dz
2] 0

@ -

1 ~172 2 1
. = u ¢ du
21/21\(%)(,[ (12072

(by the transformation Z(1-2t) = u)

provided that t < % .
Note that the integrals are finite only whent < % .
o But
f w2 ey 2y (%)
0

from the property of the gamma function (sce Sec. 11.3 of Unit 11) or equivalently
from observing that . ; ,
105
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f fz(z)dz = 1.

Hence

Mz(t) = fort<1/2. -(S)

1
(1-2¢)12

Let us now suppose that X1,X2, ...., Xq is a random sample from the normal
distribution with mean zero and variance 1. Consider the function

S is the sum of the squares of n independent and identically distributed (i.id)
standard normal random variables, Let us find the m.g.f. of S. Note that

M:s (t) = E[exp (tS))
= Efexp(t{X] +........ +X21)]

= IEI E[exp(tX?))
iel

by the independence of Xi, 1si=n. Buteach X; is N(0, 1). Therefore X;? follow

X ~distribution with m.g.f given by (5). Hence

n 1 172 )
Mg(t) = IT | — fort<1/2
s i-l (1"2()
1

= ‘-—(1 2t)“/2 fort<1/2

We leave it to you to check that the function

1

M) - (1=2t)*?

fort<1/2

is the m.g.f. corresponding to the density function

f(z) = 20721 g-22 for z>0 ' -(6)

22 (n/2)
=0 : for z<0.

E9) Determine the moment generating function of the % distribution with n
degrees of freedom directly from the definition of the m.g.f.

The distribution corresponding to the above probability density function given by (6)
is called the Chi-Square distribution with n degrees of freedom. An application
of the uniqueness theorem for m.g.f.’s (Theorem 1 of Unit 10) proves that

has chi-square distribution with n degrees of freedom. This distribution is usually
denoted by x,f. Let us now calculate the mean and variance of the Chi-square
distribution with n degrees of freedom. Since

wherenxl, X2, vy Xp are i.id. N(0, 1) random variables, it follows that
E(S) = E(X}) + ...... + E(X?)
and
Var(S) = Var(X?) + ... + Var(X2),

3
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But E(X?) = 1 and Var(X{) = E(X{) - E(X}z) = 2 for the standard normal random Functions of Random
variable X; for 1 < i < n (see Unit 11, Sec. 11.2). Hence Variables

|i E(S) = n and Var(S) = 2.

‘ Now suppose a random variable Y; is N(wi, of) for 1 si < n and Y, 1sis=nare
independent. Then, you can check that

Yi-ui

(@]

'1sisn

Xi=

are independent N(0, 1) and hence

n n
3 (Yi - wi)? -3
Py 1
. o7 .
=1 i=]
has a Chi-square distribution with n degrees of freedom: In particular if uwi=p for
alliand of = & for all i, then Y;, Y, ..., Y, is a random sample from N(y, 02) and

o (Yi- )
S= iu
has chi-square distribution with n degrees of freedom.
From the density of chi-square distribution for n degrees of freedom given in (6),
you might have noticed that it is a special case of the gamma density with o = n/2

and A = 1/2. The graphs given in Fig. 3 shows the shape of the function chi~square
density function forn = 1,2, 3 and 4.

.8 8
6 6
i : n=3 :
i ) n=4
, 4 . 4
§ o 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
il
' Fig. 3

In general, exact computation of probabilities under x%:—distribution for different

i values of n is not possible. Tables giving probabilities for the x;",-dist}ibution‘ for
different values of n are available. One such table is given at the end of this unit (see
appendix). Let us now see how can we compute probabilities under x2-distribution
using the table.

Suppose we want to compute P[3.25 s Z < 20.5] when Z has xlo distﬁbutionf.

: It is easy to see from the tables that P[Z<20.5)=0.975 and P[Z = 3.25] =0 025,
- Hence
P[3.25 5 Z 520.5] = 0.975 - 0.025 = 0.95
an important property of chi-square distribution is the additivity property. We shall
; illustrate the property in the following theorem.
f ' | | 107
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Theorem 1 : If Z; has x5 and Z has x2—distribution respectively and Z1 and Zz are
independent, then Z1+Z; has x:"mn distribution. '

Proof : Since Z; has x%, Z, can be written as the sum of squares of n i.i.d. random

variables Y;, 1 s i = n each of which is N(O, 1). Similarly Z; can be written asthe
sum of squares of m i.i.d. random variables Wj, 1< j=meachof which is N(0, 1).

n m
Hence Z1+Z; = E Y? + EWJZ which is the sum of squares of m+n i.i.d. random
i=1 jul

variables each of which is N(0, 1). Therefore Zy + Z2 has xﬁm distribution.

Another important result dealing with the chi-square distribution and the normal
distributions is given by following theorem. We omit the proof of the result as it is
beyond the scope of this course.

Theorem 2.: Suppose Y1, ...., Ya is a random sample from N(u, o) withn > 1. Let

n . n
7.1 . a_ 1 T2
Y—nEYl and S Bn—IE(Yi_Y)

i=1 i=1

(? is the sample mean and S? is the sample variance.) Then Y and S? are
v

2 .
d.) as its distribution and gl—glzls— has

independent random variables. Y has N (u, Y

xﬁ_l as its distribution.

This result has a large number of applications in statistical inference as you will see
in Block 4.

It is time to do some eXercises now.

E10) Show thatifZ; is? and Zzis3 and Z and Z; are independent, then Z1+
Zyis x,ZHm by using the m.g.f. approach.

E11) Suppose X1, X2, ..., Xn is a random sample from a population with
exponential density function

f(x) = ™ x>0
=0 otherwise.
Show that Z = 2kn X has x%.. - distribution.

E12) Suppose X, ..., Xa are independent random variables and X has an
: n

absolutely continuous distribution function Fl Define Y = -2 2 log Fi(Xi).
il

Show that Y has y3. — distribution.

(Hint :— use the fact that F; (Xi) has uniform distribution on [0, 1].)

In the next section we shall take up another distribution which is a functionof a
chi-square distribution and a normal distribution. ' N

13.5 t-DISTRIBUTION

Consider two independent random variablés Y andVS2 where Y is N(0, 1) and stis
2. Define '




freedom. The t—distribution is also known as Student’s t-distribution. The exact ~ Functions of Random

ariables
derivation of the density function for t is beyond the scope of this book. It can be
shown that the density of U is )
r ELI) 5y {(n+1)/2
2 4
f(u) = " 1+-n— , =% <Y < oo,
172 (0
(nm) F( 2) |

Itis clear from the form of the density function f(u), that the density function is

symmetric about zero. It is bell-shaped and for large n, it is close to the density

function for a normal distribution with mean zero.

Now we state some properties of t- distribution. The exact derivation of these

properties are beyond the scope of this course.
3 This distribution does not exist for n = 1. In fact, for n = 1, this distribution is the T:is_di:"ib““” ‘::S ‘ﬁ"; tcian

Cauchy distribution. For n > 1, the mean does exist. Further more, for n > °wg ::rscll,.y\::::ublished ;’}s

L,E(|U lk) < for k <n and E( l U Ik) = for k > n. In other words, the ’ research paper under the name

. coe . . Lo *‘student"’., hence the
t—distribution with n degrees of freedom with n > 1 has moments up to order n -1 distribution is also known as

but no moments of higher order exist. In particular, it follows that m.g.f.doesnot  gugents. distribution
exist for a t-distribution. The typical graphs for various degrees of freedom of the

distribution is given in Fig. 4. For computation of probabilities under i~distribution,

tables are provided at the end of this Unit (see Appeadix). Application of the

Y

Fig. 4
t—distribution in statistical inference will be treated in Block 4.

You can try some exercises now.

E13) If a random variable U bag the t— distribution with p degrees of freedom with
n > 2, show that

n
Var(U) = o

o E14) Suppose a random variable U has the t— distribution with § degrees of
freedom. Determine P[1.476 s U < 3.365].

Apart from xz—distribution and t—distribution there is vetanother distribution which
plays major ‘role”’ in st Mistical inference. We shall take up that in the next section.
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To avoid confusion, sometimes
n1 ts referred to as numerator
degrees of freedom and nz is
referred to as denominator
degroes of freedom.
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13.6 F-DISTRIBUTION

F-Distribution plays a major role in statistical inference especially in the area of
testing of hypothesis. You will sce application of this distribution in Block 4. Here
we discuss only some major properties of this distribution. Let us first define the
F—distribution with m and n degrees of freedom.

Let 812 and ng be two independent random variables such that 512 has )(,,215

distribution and S, and X,2,2 ~ distribution. Define

S12/n1 n2812
S»2/no?

4 -

=
niS»”

The distribution of W is called the F—distribution with n; and n; degrees of
freedom. This distribution in this particular form is due to Snedecor. It is said that
he named this distribution in honour of R.A. Fischer. It can be shown that the
density function of W is

ni+n2 .
F(—lz ) o282 o
fw) = : iy W > 0.

1"(%1-) r (%) (niw+nz2) 2
=0, w=(.

You should note that the order (ny, n2) is important in defining the F— distribution
unless ny = ny. The F-distribution with ny and n degrees of freedom is entirely
different from the F—distribution with n2 and n| degrees of freedom whenever n; »
n2. In fact if W has the F—distribuiion with n; and n; degrees of freedom, then 1/W
has the F-distribution with n; and n; degrees of freedom why don’t you try this for
yourselves (see E16). Let us see some examples.

Example 9 : Suppose X, ...., Xy is a random sample of size m from
N (u, o%) and Yy,..., Yy is another independent random sample of size n from

m ”
Xi-w)y . .
N (u2, 93) where py, pa, oF and o3 are all known, Then z (—-'-:2—"2)— is %%
A ay
. . i=l :

and.‘

n H 2 .

2 (Yj - W2) .2

> is %o

I

Hence

n
1 z Xi-)*
m - Cl;l)'
1 n
D

i=1

has the F- distribution with m and n degrees of freedom.

Example 10, Suppose X;, , Xm is a random sample from N(up, 02) and Yy, ..., Ya
is another independent random snmplc from N(uz, 0?). Observe that both the

population have the same variance . From the remarks made in Example 1, lt
follows that




m

1 (Xi - )
m 2 i
W= J

[35)

Functions of Random
Variables

-1
n Y 2
1 o (Yj-w)
n 1 o

has the F- distribution with m and n degrees of freedom. However W does not

m
n Z (Xi - up)?
depend on & from the above expression. Note that W = i'n‘
2
m E (Y - ua)?
Jj=1
In other words the distribution of W is F— distribution with m and n degrees of
freedom irrespective of the fact whether o? is known or unknown.

Example 11 : Suppose Xy, ..., Xm is a random sample from N(y,, le)a-nd Yy, ...,
Y is another independent random sample from N (ug, O‘% ) where i1, Uy and 02, 0%

m
are all unknown. Let us consider S; = m‘l—l— g (X; - )?)2 and
n
Sf, = ﬁ 2 (Yj—\_/)z. S;, S,z( are the sample variances of the X-sample and
Y-sample rjej;pectively. From our discussions in sections 13.2 and 13.4,
(m-1)Sk

2 has x5
o

and

distributions. Hence

—_——t
=

1

i .

| .

| o3 Sx
! 2
E c’% SY

has the F- distribution with (m-1) and (n-1) degrees of freedom. The ekpression for
i W involves 0% and of If 0% = 0‘3, theén W reduces to

and W has the F—distribution with (m-1) and (n~1) degrees of freedom.

In order to compute the probabilities under Fdistribution for different pairs of

degrees of freedom, tables are available. On such table is given at the end of this unit
(see Appendix).

See, if you can solve these. exercises.

E15) If arandom variable has the t-distribution with o degrees of freedom, show
that Z = U? has the F-distributed with 1 and n degrees of freedom.
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E16) If W has the F-distribution with m and n degrees of freedom, show that /W
has the F—distribution with n and m degrees of freedom.

E17) If W has the F-distribution with 7 and 10 degrees of freedom, find a andb
such that - '

P[W sa] = 0.975 and P[W s b] = 0.95.

13.7 SUMMARY

In this unit we have ( 1) given different approaches for finding the distribution of
functions of two or more random variables, and (2) introduced and studied
properties of the Chi-square distribution, t—distribution and F—distribution as the
distributions of functions of normal random variables.

13.8 SOLUTIONS AND ANSWERS

E1) By definition, the distribution function
Fz(z) = P[Z s 2]
=PX+Ysz]
- [, ¥(x,y) éx dy

D,

where Dz = {x, y} : x+y sz} and fx y is the joint density of (X, Y). Since X
and Y are independent r.v’s with uniform distribution on [0, 1], the joint
density will be given by '

by, v(x,y) =C;if0=sx,y,s1

= 0, otherwise

where Cisa constant.
Therefore we get
Fz(2) = [ [dx dy
D,”
Z‘: ,if0<z<1
2

.‘1 -z}, 1<2<2

0 , otherwise

Therefore the p,a.f is ’
z ifo<z<1
fz(z) = {2-z, it 1 <z2<2
0 , otherwise
' 2-2z,if0<z<1
E2) F(z)=
0 , otherwise.
E3) Fz(z) = P[min (X1, X2) s2}
= 1 - P[min (X1, X2) > z)
=1-P[X1>2X2>7] : '
= 1-P[X; >2] P[X2 > z] (By the independence of X; and X2)
-1-[1-F@)f




Y

since X; and X, are random variables with the same distribution function F(x). Fuactions of Random
Hence, the density of Z is Variables

f2(z) = 2[1 - F@)} £ 2).
E4) Note that
X1 =212 X2 =2, (1-Z2)
and the Jacobian of the transformation is
z z
I- 12—22 —Zi _
in the space 0 < z1, 73 < . Check that the joint density of (Z1, Zy) is

=—7Z1 =0

¢ z2 (1 7y @ a1 +oz-1_-Z; S ,
Z1, 22(Z1,22) = T (o) T (o) Z, e for0<z1 <o, 0<z<1

. =0 »  otherwise.
Check that Z; and Z; are independent random variables. Also verify that
[C(ou+az)
f7,(22) = =% 2,
. 2= To)(ar) >
=0 otherwise.
which is the beta density with parameters oy and o,
and

ar-1 (1_22)012—1, O<zp<1

z @ ¥ ort €%, 0<z) <o

2, (@) - C(a; + o)

=0 otherwise
which is the gamma density with parameters ay + o and 1.

ES) Note that
X1 =exp (— Lt

and the Jacobian of the transformation is

3 o]
1 21+
J=——exp{- }

2n 2

which is not zero. The joint density function of (Z, L) is

y2 2
X 1 _/..,+7.1 .
tZ,,Zz(Zl;ZZ)"‘the 2 ,-®<Z,23<®,

Hence Z; and Z; are independent standard normal random variables.

E6) The joint density function of (Z1,22) is

zZ
. fz,2,(z1,22) =2 -Z—E forz> 0,7 > 0, (ZIZg)l/z <1, (22/21)1/2 <1
) :
= () otherwise.
— n
E7) E[eX]=E [exp {ﬁ z X
i=1

= ﬁ E [exp{;ll— xi}}

im1
' 2 nb
=ex L + t i
p np' n 2
exp|tp+ £
pPitu "
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Vo,

which is the m.g.f. of N(p, -2—2) . Hence X has N (u, —noi) .

E8)  You note that in this situation the moment generating function approach is
very useful.

The m.g.f. of Z is given by
Mz (t) = E[e'?]

=E [exp [t i CiXi}

=1 E[exp{tC;Xi}] (by the independencé of X;)
=l

n
=.H exp{tC;u;+%t2C,2c'r,z}a_oo<t<oo

i=1
since the m.g.f. of X is

My (1) = exp{t Wi + —;- tchz} ’»~w<t< oo
Hence
n 1 n
Mz(t) = exp {t 2 Cui+ Etzz c? 0:7'}
=t i=1-
forall ~o0 <t < o,

The function on the right side is the m.g.f. of the normal distribution with the
n

n
mean 2 Ciui and the variance 2 Clot. Hence, by the uniqueness property of
jw1 w1

m.g.f.’s (Theorem 1 from Unit 10), it follows that
n L} n
Z= Y CGXiisN| Y Gu, 2 Fo?|
i=1 i=1 i=1

E9) Probability density function of the Chi-square distribution with n degrees of
freedom is given by

1
[2) =272 T(/2)

=0,z =<0.
Hence, if Z has Xﬁ— distribution,:"then
Mz (1) = E[e'Z]
‘ - etZ -1

YA
0 z“ar(g)

fzn/2-l e—z/Z(l—Zl) dz
0

n/2-1 e-Z/Z dz

1
= 0/2 r~n
2 r(f)

and the last integral is finite only if t < 1/2 by the properties of gamma
function. Apply the transformation z(1-2t) = u. Then

n

® 22
1 u \2 » du
M, (t) = w2 27
2 (1) L r(;)‘.) !(1—21) 1-2t
o1 1 fu( 1/2)_1 ¢4 gy
znﬁr(g) (1—2t)"/2'0
I
(1-2t)*2

iy



," since Functions of Random

Variables
-

f w0212 g ons T(n/2).
0
4 from the properties of gamma function (see Sec. 11.3, Unit 11).
E10) Mz .z7,1) - Elexp (1(z, +22]
=E[e®]E[e%)
=Mz, () Mg, (1)
1 1 1
1
(I_Zt)n/Z (1_2t)m/2 (I_Zt)(mm)/.?
fort < 1/2. Since the function Mz, .z, (1) agrees with the m.g.f, of 5 Xo+m -
distributed random variable for Cveryt<1/2,ina neighbourhood of Zero, it
follows that Z; +7, is Xem
£11) Check that

Ele™Xy. L _ .

. (1-2¢)

and use the fact that is the m.g f. of xgn ~distribution,

(1-2t)

E12) Letz; - Fi(Xi),1sisn. Then Z;1<j<p are i.i.d. uniform on [0,1].
Now

My (t) <E e-—Z(i g:og Z;
- (E[eZIlogz,] n
- (E [Zi—2! ] )n

1
=| [z dz
0
=———fort<1/2
(1-2¢)"
Wwhich is the m.g . of X3, ~distribution,
E13) Itis clear that E(U) = o, Hence -

n

e
)

e
Var(U) = E[U? =fx2 \2(1 + X

dx
12
o @yt

F( 2 x2

Apply the transformation z = # and verify that Var(U) = L using the
1+x*/n n-2

properties of the beta density function,

E14) From the table of F-distribution wit 0 =5 we get thiat PlU< 3.365] = .99 ang
P[Us1.476]= 90

P[1.476 s X < 3.365] = .09,
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Distril - tioa Theory E15) Since U has a t—distribution with a degrees of freedom, U can be represented as

Y

Us=—77

g

where Y is N(0, 1), W is yu and Y, W independent.

Hence
2
A e
W/n
Note that Y is X%aY: and W are independent and W is %2. Hence Z has
F- distribution with 1 and n degrees of treedom.

£16) W = g‘r‘l‘
T T S Z/n
where Y is Y, Z is %i.Y, < independent, then 1/W = n

where Z is X%,Y is X,z,l and Z, Y independent. Hence 1/W has an
F— distribution with n and m degrees of freedom.

£17) a=3.95 b=314.
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APPENDIX

B Table of 2 Distribution
N " distribution with n degrees of freedom, this table gives the value of x such that

.005 .01 025 05 10 .20 25 .30 .40

: 0000  .0002 .0010 .0039 .0158 0642 1015 .1484 2750
& 01066 .0201 .0506 1026 2107 4463 5754 7133 1.022
' 0717 1148 2158 3518 5844 1.005 1213 1.424 1869
; 2070 2971 4844 7107  1.064 1.649 1923 2195 2.753
f 4117 5543 8312 1.145 1610 2343 2675 3.000 3.655

6757 8721 1.237 1.635 2.204 3.070 3455 3.828 4.570
9893  1.239 1.690 2.167 2.833 3.822 4.255 4.671 5.493
1.344 1.647 2.180 2,732 3.490 4.594 5.071 5.527 6.423
1.735 2.088 2.700 3.325 4.168 5.380 5.899 6.393 7.357
2.156 2.588 3.247 3.940 4.865 6.179 6.737 7.267 8.295

2.603 3053 3816 4575 5578  6.989 7.584 8.148 9237
3.074 3571 4404 5226 6304 7.807 8.438 9.03¢ 10.18
3.565 4107 5009 5892 7.042 8634 9299 9.926 11.13
4075 4660 5629 6.571 7.790  9.467 10.17 1082  12.08
4.601 5229 6262 7261 8547 103l 11.04 1172 13.03

! 5.142 5812  6.908 7.962 9312 11.15 11.91 1262 13.98
: 5.697 6.408 7.564  8.672 10.09 12.00 12.79 13.53 14.94

6.265 7.015 8.231 9.390 10.86 12.86 13.68 1443 15.89

i 6.844 7.633 8.907 10.12 11.65 13.72 14.56 15.35 16.85

: 7.434  8.260 9.591 1085 12.44 14.58 1545 16.27 17.81

8034  8.897 10.28 11.59 13.24 15.44 16.34 17.18 18.77
8.643 9.546 1098 12.34 14.04 16.31 1724 18.10 19.73
9.260 1020 11.69 13.09 14.85 17.19 18.14 19.02  20.69
9.886 10.86 12.40 13.85 15.66 18.06 19.04 1994  21.65
10.52 11.52 13.12 14.61 16.47 18.94 19.94 2087 22.62

13.79 1495 1679 1849 2060 2336 2448 2551 27.44
2071 2216 2443 2651 29.05 3234 3366 3487 36.16
; 2799 2971 3236 3476 3769 4145 4294 4431  46.86
L I 3553 3748 4048  43.19 4646  50.64 5229 5381  56.62
‘ | 4327 4544 4876 5174 5533 5990 61.70 6335  66.40
1 SL17 5354 5715 6039  64.28 6921  71.14. 7292 76.19-
5920 6175  65.65 69.13 7329 7856  80.62 8251 85.99
6733 7006 7422 7793 8286 8795  90.13.92.13 9581

" permission from Biometrika Tables for Statisticians, Vol. 1 3rd ed. Cambridge

. w38, 1966, edited by E. S. Pearson and H.O. Hartley: and from "A new table of

~ L nint of the chi-square distribution." Biometrika, Vol. 51(1964), pp- 231 - 239, by H.L.
-space Research Laboratories. )
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Tablé of 2 Distribution (Continued)

S50 .60 .70 WA .80 .90 95 975 .99 995
4549 7083 1.074 1.323 1.642 2.706 3.841 5.024 6.635 7.879
1:386 1.833 2.408 2,773 3.219 4.605 5.991 7.378 9210 10.60

2.366 2.946  3.665 4.108 4.642 6251 7815 9348 1134 12.84
3.357 4.045 4878 5385 5989 7779 9488 11.14 1328 14.86

4351 5132 6.064 6626 7.289  9.236 11.07 12.83 15.09 16.75
5.348 6.211 7.231 7.841 8.558 10.64 12.59 14.45 16.81 18.55
6.346 283 8383 9.037. 9803 12.02 14.07 16.01 1848  20.28
7.344 8.351 9.524 1022  11.03 13.36 15.51 17.53 20,09 2195

8.343 9.414 10.66 11.39 1224 14.68 16.92 19.02 21.67 23.59
9.342 1047 1178 12.55 13.44 15.99 18.31 20.48 2321  25.19

10.34 11.53 1290 1370 1463 1727 ~ 1968 2192 2472 26.76
11.34 1258 1401 14.85 1581 1855 21.03  23.34 2622 2830
12.34 13.64 1512 1598 1698 1981 2236 2474 2769 29.82
1334 14.69 1622 17.12 1815 21.06 2368 26.12 29.14 3132
1434 1573 17.32 1825 1931 2231 25.00 2749 3058 32.80 .

1534 1678 1842 1937 2047 2354 2630 2885 32.00 3427
16.34 17.82  19.51 2049 2161 2477 2759 3049 3341 3572
17.34 1887 2060 21.60 2276 2599 2887 3153 3481 37.16
18.34 1991 21.69 22.72 23.90 27.20 30.14 32.85 36.19 38.58
19.34 2095 22.77 23.83 25.04 28.41 31.41 34.17 37.57 40.00

2034 2199 2386 2493 2617 2962 3267 3548 3893 4140
21.34 23.03 2494 2604 2730 3081 3392 3678 4029 42380
22.34 2407 2602 27.14 2843 3201 3517 3808 4164 44.18
23.34 25.11 2710 2824 2955 3320 3642 3936 4298 45.56
24.34 26.14  28.17 2934 30.68 3438 3765 4065 4431 4693

29.34 31.32 3353 3480 3625 4026 43.77 4698 50.89  53.67
39.34 41.62 44.16 4562 4727 5181 5576 5934 63.69 66.77
49.33 5189 5472 5633 5816 6317 6751 7142 76.15 79.49
59.33 62.13 6523 6698 . 6897 7440 79.08 8330 8838 9195
. 69.33 7236 7569 7758 79.71 8553 9053 9502 1004 1042
7933 8257 86.12 8813 9041 9658 1019 1066 1123 1163
89.33 92.76 96.52 98.65 101.1 1076 1131 118.1 124.1 1283
9933 11029 1069  109.1 11 1.7 1185 1243 1296 1358 140.2

1118}
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Table of the t distribution
! If X has a ¢ distribution with n degrees of reedon, the table gives the value of x such that P(X s x)

= 1,74

n p=55 .60 .65 70 5 .80 .85 90 .95 975 99 995

i A58 325 5100 727 1000 1376 1.963 3.078 6.314 12.706 31.821 63657
2 142 289 445 617 816 1.061 1.38 1.886 2920 4303 6.965 9.925
3 137 277 424 584 765 978 1.250 1.638 2.353 3.182 4.541 5.841
4 A34 271 414 569 741 941 1.190 1.533 2,132 2776 3.474 4.604
5 132 267 408 559 727 920 1.136 1.476 2.015 2.571 3.365 4.032
6 A31 265 404 553 718 906 1.134 1.440 1943 2447 3.143 3.707
7 300 263 402 549 711 896 1.119 1.415 1.895 2365 2.998 3.499
8 130 262 399 546 706 889 1.108 1.397 1.860 2.306 2.896 3.355
9 129 261 398 543 703 883 1.100 1.383 1.833 2262 2.821 3.250
7 10 29 2600 397 542 700 879 1.093 1.372 1.812 2228 2764 3.169
i1 A2 260 396 540 697 .876 1.088 1.363 1.796 2.201 2.718 3.106
12 1280 259 395 539 695 873 1.083 1.356 1.782 2.179 2.681 3.055
13 128 259 394 538 694 870 1.079 1.350 1.771 2.160 2.650 3.012
14 128 258 393 537 692 868 1.076 1.345 1.761 2.145 2.624 2.977
15 128 258 393 536 691 .866 1.074 1.341 1.753 2.131 2.602 2.947
16 128 258 392 535 690 865 1.071 1.337 1.746 2.120 2.583 2921
17 128 257 392 534 689 © 863 1.069 1.333 1.740 2.110 2.567 2.898 .
18 A27 257 392 534 688 862 1.067 1330 1.734 2.101 2552 2.878
19 427 257 391 533 688 861 1.066 1.328 1.729 2.093 2.539 2.861
20 27257 391 533 687 860 1.064 1325 1.725 2.086 2.528 2.845
21 127 7257 391 532 686 .859 1.063 1.323 1.721 2.080 2.518 2.831
22 127 256 390 532 686 .858 1.061 1.321 1.717 2.074 2.508 2.819
23 JA27 256 360 532 685  .858 1.060 1.319 1.714 2.069 2.500 2.807
24 427 256 390 531 685 .857 1.059 1.318 1.711 2.064 2.492 2797
25 27 256 390 531 684 856 1.058 1.316 1.708 2.060 2.485 2.787
26 A27 256 390 531 684 856 1.058 1.315 1.706 2.056 2.479 2.779
27 A27 256 389 531 684 855 1.057 1314 1.703 2.052 2473 2771
28 127 256 380 530 .683 855 1.056 1313 1.701 2.048 2.467 2.763
29 127 0256 389 530 683 854 1.055 1.311 1.699 2045 2462 2.756
30 127 256 389 530 683 854 1.055 1.310 1.697 2.042 2457 2.750
. 40 126255 388 529 681 851 1.050 1303 1.684 2.021 2423 2.704
60 126 254 387 527 679 848 1.046 1.296 1.671 2.000 2.390 2.660
120 126 254 386 .526 677 845 1.041 1.289 1.658 '1.980 2.358 2.617
o 126 © 253 385 524, 674 842 1.036 1282 1.645 1960 2326 2.576
3 This table is taken from Table 111 of Fisher & Yates : Statistical Tables for Biological, Agricultural
B and Medical Ressarch, published by Longman Group Ltd. London (previously published by Oliver

and Boyd Ltd., Edinburgh) and by permission of the authors and publishers.
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Tabie of the 0.95 Quantile of the F Distribution _ .
If.X has an F distribution with nf and n degrees of freedom the table gives the value of v such that P, (N sx)=0975.

AY
n V] 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 L

I 1old 1995 2157 2246 2302 2340 2368 2389 2405 2419 2459 2480 250.1 251.1 2522 2533 2543

2 1851 19.00 19.16 19.25. 19.30 19.33 1935 19.37 19.38 19.40 1943 1945 1946 1947 1948 19.49 19.50
3 10.13 955 928 912 901 894 889 885 881 879 870 866 862 859 857 855 8.53
4 771 694 659 639 626 616 609 604 6.00 596 586 580 575 572 569 566 5.63
5 6.61 569 541 3519 505 495 488 482 477 474 462 456 450 446 443 440 436
6 599 514 476 4533 439 428 421 415 410 406 394 387 381 377 374 370 3.67
7 559 474 435 412 397 387 379 3.73 368 364 351 344 338 334 330 327 3.23
8 532 446 407 384 369 358 350 3.44 339 335 322 315 308 304 301 297 293
9 512 426 386 363 348 337 320 323 318 314 301 294 286 283 279 275 271
10 496 410 371 348 333 322 314 307 302 298 285 277 270 266 262 258 2.54
15 454 368 229 306 290 279 271 264 259 254 240 233 225 220 216 211 207
20 435 349 310 287 271 260 251 245 239 235 220 212 204 199 195 190 1.84
300417 332 292 269 253 242 233 2.26 221 216 201 193 184 179 174 168 1.62
40 408 323 284 261 245 234 225 218 212 208 192 184 174 169 164 1.58 151
60 400 315 276 253 236 225 217 210 204 199 184 175 165 1.59 153 147 139
1200 302 307 268 245 229 217 209 202 1% 191 175 1.66 155 150 143 135 1.25
o 384 300 260 236 221 210 201 194 188 183 167 157 146 139 132 122 .1.00

Adapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., Cambridge University Press, 1966, edited by
E.S. Pearson and H.O. Hartley .
H X has an F distribution with m and n degrees of treedom, the table gives the value of x such that P, (X s x) = 0.975

"/m 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 ®

6478 799.5 8642 899.6 921.8 937.1 948.2 956.7 963.3 968.6 9849 993.1 1001 1006 1010 1014 1018
3851 39.00 3517 3925 3930 39.33 3036 3937 3030 39.40 3943 3945 3946 39.47 3948 39.49 3950
1744 16.04 1544 1510 1488 14.73 1462 14.54 1447 14.42. 1425 14.17 14.08 14.04 1399 1395 13.90
1222 1065 998 960 936 920 907 89% £90 884 866 856 846 841 836 831 826
1001 843 776 739 715 698 685 6.76 6.68 662 643 633 623 618 6.12 607 6.02
8.81 726 6.60 623 599 582 570 560 652 546 527 517 507 501 496 4.90 4.85
807 654 589 552 529 512 499 490 482 476 457 447 436 431 425 420 4.14
757 606 542 505 4.82 465 453 443 436 430 410 400 389 384 378 373 367
720 571 508 472 448 432 420 410 403 396 377 368 356 351 345 339 333

10 694 546 483 447 424 407 395 385 3.78 372 352 342 331 326 320 314 3.08
15 620 477 415 380 358 341 320 320 312 306 286 276 264 - 259 252 2246 240

26 587 446 386 351 329 313 301 291 284 277 257 246 235 229 222 216 - 2.09

30 557 418 359 325 3.03 287 275 265 257 251 231 220 207 _ 201 194 187 179

40 542 405 346 313 290 274 262 253 245 239 213 207 194 188 180 172 1.64

60 529 393 334 301 279 263 251 241 233 227 206 194 18 174 167 158 148

120 515 380 323 289 267 252 239 230 222 216 194 182 169 161 153 143 131

o 502 369 312 279 257 241 229 219 211 205 183 171 157 148 139 127 100

X DN AR W R ey

Adapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., Cambridge University Press, 1966, edited by
E.S. Pearson and H.O. Hartley.
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UNIT 14 LIMIT THEOREMS
|

} Structure

14.1 Introduction

Objectives
14.2 Chebyshev’s Inequality and Weak Law of Large Numbers
14.3 Poisson Approximation to Binomial
14.4 Central Limit Theorem
14.5 Summary

14.6 Solutions and Answers

14.1 INTRODUCTION

In Unit 13, we have discussed different methods for obtaining distribution functions
of random variables or random vectors. Even though it is possible to derive these
distributions explicity in closed form in some special situations, in general, this is
not the case. Computation of the probabilities, even when the probability distribution
functions are known, is cumbersome at times. For instance, it is €asy to write down
the exact probabilities for a binomial distribution with parameters n = 1000 and p =
5 However computing the individual probabilities Involve factorials for integers of
large order which are impossible to handle even with speed computing facilities.

In this unit, we discuss limit theorems which describe the behaviour of some
‘histributions when the sample size n is large. The limiting distributions can be used
-ir computation of the probabilities approximately.

Chebyshev’s inequality is discussed in Section 14.2 and, as an application, weak law

constant A > 0. An important limit theorem, known as the central limit fheorem, is
studied in Section 14.4. Central limit theorem essentially states that whatever the
original distribution is (as long as it has finite 'variance), the sample mean computed
from the observations following that distribution has an approximate normal

. distribution as long as the sample size (number of observations) is large. An
important special case of this result is that binomial distribution can be approximated
by an appropriate normal distribution for large samples. This is discussed in Section
14.4. Some examples are presented.

Objectives

‘After reading this unit, you should be able to
* apply chebyshev’s inequality;

* explain the weak law of large numbers;

* apply Poisson or normal approximation to binomial distribution under
appropriate conditions; and

*  apply the central limit theorem.
121
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Distribution Theory

14.2 CHEBYSHEV’S INEQUALITY

We prove in this section an important result known as Chebyshev’s inequality. This
inequality is due to the nineteenth century Russian mathematician P.L. Chebyshev.

We shall begin with a theorem.

Theorem 1 : Suppose X is a random variable with mean p and finite variance o
Then foreverye >0

2
P[lX—u|ze]s;—z. ..... (1)

Proof : We shall prove the theorem for continuous r.vs. The proof in the discrete
case is very similar.

Suppose X is a random variable with probability density function f. From the
definition of the variance of X, we have

o=E [(x - u)z] = f (x - ) f(x)dx.

Suppose € > 0 is given. Putg; = -e; Now we divide the integral into three parts as
C

shown in Fig. 1.

- g0 H+ 5O ®
Fuf G- ix)dx + [ - uidx + [ (x - ) Ex)X .n(2)
- u -0 u+¢g0

Fig. 1

Since the integrand (x - w)° f(x) is non—negative, from (2) we get the inequality

W- €0 g

o = f (x - w)?* f(x)dx +f (x—;-x;)2 fxdx ... 3)

-® W+ €T

Now for any X € |-, p - €10}, we have X s p - €10 which implies that
(x - u)z = 207 Therefore we get

1t~ €10 - g
' f (x - ) t(x)dx = f eior f(x)dx
M- g0
=el? [ f(x)dx.
-Q0
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Similarly forx € ] + €10, o[ also we have (x - w)* = ¢10? and therefore

o

f (x - p)? f(x)dx = efo? f f(x)dx

K+ €10 K+ eE10
Then by (3) we get
H-60 . ©
& = e}d? f f(x)dx + f f(x)dx
- K+ €0
1 u-go @
ie. = = f(x)dx + f(x)dx
2 J txax + [ fx)
-® P+ 5o

whenever & = 0.

Now, by applying Property (iii)' of the density function given in Sec. 11.3, Unit 10,
we get

-1—, 2 P[Xsp-e0] + PXzp+ea]
&1

, -P[X—p,s—slo]-i-P[X—p,zelo]
=P[|X-u| 2 e10]
That is, P[lX—uIzmo]s%- ...... 4
€1
Substituting g1 = %in (4), we get the inequality

[P[IX-uIze] = ;iz

Chebyshev’s inequality also holds when the distribution of X is neither (absolutely)
continuous nor discrete. We will not discuss this general case here.

Now we shall make a remark.

Remark 1 : The above result is very general indeed. We need to know nothing
about the probability distribution of the random variable X. It could be binomial,
normal, beta or gamma or any other distribution. The only restriction is that it should
have finite variance. In other words the upper bound is universal in nature. The price
we pay for such generality is that the upper bound is not sharp in general. If we
know more about the distribution of X, then it might be possible to get a better
bound. We shall illustrate this point in the following example. '

Example 1 : Suppose X is N(i, o). Then E(X) = wand Var(X) = 0. Let us
compute P[ IX - ul z20] ‘

Here € = 20. By applying Chebychev’s inequality we get

Pl |X-ul|z20 s-i;:l=.25
400 4

Since we know that the distribution of X is normal, we can directly compute the
probability. Then we have

p( IX—uIzZo)aP[IX;ulz 2}.

Since X% has N(0, 1) as its distribution, from the normal distribution table given
in the appendix of Unit 11, we get

i
g

z 2) =0.456
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which is substantially small as compared to the exact value 0.25. Thus in this case
we could get a better upperbound by directly using the distribution.

Let us consider another example.

Example 2 : Suppose X is a random variable such that P[X = 1] = 12 = P[X = -1]).
Let us compute an upper bound for P[|X - u| > o]

You can check that E(X) = 0 and Var(X) = 1. Hence, by Chebyshev’s
inequality, we get that

s
2
P( |X—u|>0)s E7-1.
o
on the other hand, direct calculations show that

{

In this example, the upper bound obtained from Chebyshev’s inequality as well as
the one obtained from using the distribution of X are one and the same.

X—p,j>0] =P[|X|=1]=1.

In the first example you can see an application of Chebyshev’s inequality.

Example 3: Suppose a person makes 100 check transactions during a certain period. -
In balancing his or her check book transactions, suppose he or she rounds off the
check entries to the nearest rupee instead of subtracting the exact amount he or she
has used. Let us find an upper bound to the probability that the total error he or she .
has committed exceeds Rs. S after 100 transactions. '

Let X denote the round oft error in rupees made for the ith transaction. Then
the total error is X1 + X2 + ..... + X100. We can assume that X, 1 = i < 100 are
independent and identically distributed random variables and that each X; has

. o 11 . e
uniform distribution on {- 5» 5| We are interested in finding an upper bound for the

P[ |S100|>5] where 5100=Xg+ ..... + X100.

In general, it is ditficult and computationally complex to find the exact distribution.
However, we can use Chebyshev's inequality to get an upper bound. It is clear that

E(S100) = 100 E(X1) = 0
and

Var(S100) = 100 Var (Xy) = 'li%(')' '

since E(X1) = 0 and Var(X;) = 1. Tﬁerefore by Chebyshev’s inéquality,
12 9

P( l Si100 -0 | >5)s _______Var;imo)
_ 100 ¢
T 12x 25
1
=3

Here are some exercises for you.

E1) 1f X is a random variable with E(X) = pn and Var(X) = o, find an upper bound
for P[|X - u| = 30].
E2) Suppose X is a random variable with the exponential density
f(x)=¢™ forx>0
=0 forx=0




Let the mean be u and variance be o? for X. (a) Compute the P(|X - | = 20) Limit Theorems
using Chebyshev’s inequality and (b) compare it with the exact probability
obtained from the distribution of X.

E3) If X is a random variable with E(X) = 3 and E(Xz) =13, find a lower bound for
the probability P[-2 < X < 8].

The above examples and exercises must have given you enough practise to apply
Chebyshev’s inequality. Now we shall use this inequality to establish an important
result,

Suppose Xy, Xy, ....., X, are independent and identically distributed random
variables having mean p and variance o*. We define

—_ 1 °
Xn-i = X|

i=1

Then X, has mean u and variance % Hence, by the Chebyshev’s inequality, we get

02
RTINS e

for any € > 0.-If n — 0, then iz ~> 0 and therefore
ne

P<|§n—u|zs>—+0.

In other words, as n grows large, the probability that X, differs from i by more than
any given positive number €, becomes small. An alternate way of stating this result
is as follows :

For any € > 0, given any positive number 8, we can choose sufficiently large n such -
that

P(|§n—u|ze>s§.

This result is known as the weak law of large numbers. We now state it as a
thcorem.

Theorem 2 (Weak law of large lfumbers) : Suppose X1, X,.....,.X, are i.i.d.
random variables with mean w and finite variance o7, ‘

' Let
— 1"
. Xn=“in.
i=l
’ Then ‘
P[lin-ul 28]-—>0asn—>oo.
for any € > 0,

- The above theorem is true even when the variance is infinite but the mean u is finite
However this result does not follow as an application of the Chebyshev’s inequality
., in this general set up. The proof in the general case is beyond the scope of this
course.

We make a remark here.

Remark 2 : The above theorem only says that the probability that the value of the
difference | Xa ~ X | exceeds any fixed number ¢, gets smaller and smaller for
successively large values of n. The theorem does not say anything about the limiting

125

. Sample output to test PDF Combine only




Disiribution Theory case of the actual difference. In fact there is another strong result which talks about
the limiting case of the actual values of the ditferences. This is the reason why
Theorem 2 is called ‘weak law’. We have not included the stronger result here since

it is beyond the level of this course.
Let us see an example.

Example 4 : Supposc a random experiment has two possible outcomes called
success (S) and Failure (F). Let p be the probability of a success. Suppose the
experiment is repeated independently n times. Let X; take the value 1 or 0 according
as the outcome in the i—th trial of the experiment is a success or a {ailure. Let us

apply Theorem 2 to the set {Xi}i- i
We first note that
P[Xi=1]=pand P[X;=0]=1-p=gq,
for 1 =i < n. Also you can check that E(X;) = p and var (X;) =p q for i=1,..n.

Since the mean and the variance are finite, we can apply the weak law of large
numbers for the sequence {Xi lsis n}. Then we have

{

.S .
for every € > 0 where Sy = X1 +X2+..... + Xa. Now, what is ?" ? S, is the number

n

2 e] ~ (Jasn—>x

. . . o Sa . . .
of successes observed in n trials and therefore == is the proportion of successes in n
n

trials. Then the above result says that as the number of trials increases, the
proportion of successes tends stabilize to the probability of a success. Of course, one
of the basic assumptions behind this interpretation is that the random experiment can
be repeated.

In the next section we shall discuss another limit theorem which gives an
approximation to the binomial distribution.

14.3 POISSON APPROXIMATION TO BINOMIAL
DISTRIBUTION ‘

Suppose X is a random variable with the binomial distribution with parameters n and
p. Here n is the number of trials and p is the probability of success. From the
properties of the binomial distribution, are studied in Unit 7, Block 2, you know that

Computation of these probabilities when n is large is complicated due to the fact

n\ _ n! ,
(r) Trt(n-r)!

involves n! and (n —r)! which increase rapidly as n increases. You have seen in Unit
7 that ‘

E(X) =n pand Var(X) =np (1-p).

Let us look at the limit of the binomial probability

(?)pr (1_p)n-r

as n — oo such that np = A where A > 0 is fixed. You note that as n increases, p has to
decrease so that np becomes the constant A. That is if n — % such that np = A, then
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P = 0. In other words we are conSidering a situation where p js "large" and p is
"small" and np = A, Now

LIS A N A
=r’(n—r)' n’(l—n)(l—n)
SAom 1y
! (n-r) (n )\)'( yn)

ﬁ
] Besides,
’ n! n(n - 1)..... n-r+1

m T O-N)(n- A)...(n=1)

which tends to 1 as n —» . Thus we have
- A A
(:)p'(l -p)"T > e "r—asn — o,
such that np = A, We Summarise the above discussion in the following theorein,

Theorem 3 : When q is large and p is close 1o 0, the value of : P (1-p)" "for

the probability X = r of 4 binomially distributed r.v. X can be approximated by the
~Mr

value e::)‘ » I=0,1,2..., for probability Y = r where Y is the poisson distributed v

with mean A = np.

; In order to get an idea what we mean by n is "large” and p is "small", let%us consider
the case when A = 1. Since A = np, we have p=1/n. .

For illustrative Purposes, we consider the cases n=5p=1/Sandn = 100, p =
1/100. See the tables given below,

Table 1

r Binomial (n,p) Poisson (A)
| 0 0.328 0.368
J 1 0.410 0.368
| ; 0.205 0.184
! 3 0.051 0.061
| : 0.006 0.015
| ’ 0.000 0.003
? L ' 0.001
/
i
!
f
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Distribution Theory Table 2
1
n = 100, P-m, A=1
r Binomial (n,p) Poisson (A)
0 0.366032 0.367879
1 0.369730 0.367879
2 0.184865 ’ 0.183940
3 0.060999 0.061313
4 0.014942 0.015328
5 0.002898 0.003066
6 0.000463 0.000511
7 0.000063 0.000073
8 0.000007 0.000009
9 0.000001 0.000001
10 0.000000 0.000001

In Tables 1 and 2 given above, the entries are rounded off to the third decimal place:
in Table 1 and to the sixth decimal place in Table 2. The entries corresponding tor
greater than 10 in Table 2 are zero when rounded off and hence are not presented.
As can be seen from Tables 1 and 2, the approximation of Binomial by Poisson is
not very good when n is small, but the approximation is very good for large n. The
agreement is evident, even up to the third decimal place, for every value of r from
Table 2.

Let us see an example.

Example 5: Suppose the probability that an item produced by a company is
defective is 0.1. Let us compute the probability that a random sample of 10 items of
the same kind produced by the same company contains at most one defective item.

If X denotes the number of defective items, then X has the binomial distribution with’
parameters n= 10 and p = 0.1. We are looking for P [ X = 1]. The exact probability
is given by

P[X s 1] = P[X = 0] + P[X = 1]
- ( 18) 0.1)° (0.9)10 4 ( li’) (0.0%) (07

= 0.7361 - |
On theA other hand suppose we approximéte the distribution of X by Poisson
distribution with A = np = (10)) (0.1) = 1..Then
PXs1]= P[Ys1]=e'+el=07358
where Y has the Poisson distribution with mean A = 1,

Note the close approximation between the exact probability and the approximate
probability. :

Try these exercises now.

E4) In a large population, the proportion of people having a certain diseases is 0.01.
Find the probability that in a random group of 200 people at least four will have
the disease. : '

o E5) Defects in a particular kind of metal sheet occur at an average rate of one per
100 sq. mtr. Find the probability of two or more defects in a sheet of size 5 x 8
$q. mtr,

Thus in this section we have studied that we can approximate a binomial distribution
using poisson distribution. In the next section we shall introduce you to another
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important limit theorem which gives an approximation to not only binomial Limit Theorems
distribution but to many other standard distributions.

14.4 CENTRAL LIMIT THEOREM

Let us now state the main theorem,

Theorem 3 (Central Limit Theorem) : Let X1, Xa,........ be an infinite sequence of
independent and identically distributed random variables with mean L and finite
/ variance o?. Then, for any real x,

Xt+..+X, -
P[ Lt o;rT nusx}-—wp(x)asn-—-oo -(5)

/ where ¢ (x) is the standard normal distribution function.

We have omitted the proof because proof of this result involves complex analysis
and other concepts which are beyond the scope of this course. Let us try to
/ understand the above statement more clearly. Let S, = X1+Xy 4.+ Xn. Then we

) ‘ know that P [ S:):/;“ < x] Tepresents the distribution of the random variable

Sn - nu N L Sp —np . .
. d t ————
i~ Then the theorem says that the distribution of ovn 'S approximately a

standard normal distribution for sufficiently large n. Therefore the distribution of S,

will be approximately normal with mean nu and variance no?, I other words the
theorem asserts that if X; + Xa2o.. + Xy are . i d.r.v'sof any kind (dis¢rete or
continuous) with finijte variances, the T S, = X1+ X2 4.0t X, will approximately be
a normal distribution for sufficiently large n. The importance of the theorem lies in
this fact. This theorem has got many applications. An important application js toa
Sequence of Bernoulli random variables, '

Normal approximation to the binomial distribution

| LetX; i=1bea Sequence of i.i.d. random variables such that
PXi=1]=p, P[Xi=0]=1-p
where 0 <p <1, '

Observe that S, = Xi+.... + X, has the binomijal distribution with parameters n and
P- You can check that E (Xi) = pand Var (Xi) = p (1-p) for any i which is finite and
positive. An application of the centra] limit theorem gives the following resuylt:

For every real X,

Sp ~np
P[Vmsxj—-q)(x) asn — oo,

In other words, for large n

P[S,,snp+anle-pH= ¢ (x) «(6)
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Where = denotes that the quantities on both sides are approximately equal to each -
other. '

An alternate way of interpreting the above approximation is that a binomial
distribution tends to be close to a normal distribution for large n. Let us explain this
in more detail.

Suppose S, has binomial distribution with parameters n and p. Then, for 1 st sn,

P[S"sr] P[ np(1-p s np l-pJ
~ ~f=np
° [Vnp - P5J

for large n by (2). In genéral, it is computationally difficult to calculate the exact '
probability '

P[s., s r] - :EO m P (1-p)p-i

when n is large. A close approximation to this probability can be obtained by
computing

Vnp(1-p)

where ¢ is the standérd normal distribution function. It has been found from
empirical studies that this approximation is good when n = 30 and a better
approXimation is obtained by appl ying a slight correction, namely,

¢(_r_-9_p_) :

r+Z-np
| Vartiy|
Let us illustrate these results by an example.

Example 6 : The ideal size of a first year class in a college is 150. It is known from
an earlier data that on the average only 30% of those accepted for admission will
actually attend. Suppose the college admits 450 students. What is the probability that
more than 150 first year students attend the college?

Let us denote by S, the number of siudents that attend the college when n are
admitted. Assuming that all the students take independent decision of either
attending or not attending the college, we can suppose that Sy has the binomial
distribution with-parameters n and p = 0.3, Here n = 450 and we are interested in
finding the : :
P[s,, S 15'0].

Note that E(Sh) = np = (450) (0.3) = 135 and

Var (Su) = np (1 - p) = (135) (.7).
Further more .

P[Sa = 150]=1-P [s., < 150]

= 1-P[s, si49]

and

149 + 4 - 135]

P[s., s 149] = ¢ [—————m

= ¢ (1.59)"




Hence Limit Theorems
p[s,, = 150] =1-¢(1.59)
=.0559

This shows that the probability that more than 150 first year students attend is less
than 6%.

Let us now consider 3 different type of application of the centra] limit theorem.
Example 7: Suppose X3, X».... is a sequence of i.i.d. random variables each N(0,1),

Then Xf, X%, ....... is a sequence of iid. random variables each with xf -distribution.
Note that E(Xiz) = land Var (Xiz) =2 for any i. Hence by central limit theorem we get

v nsx]—-q)(x)asn—»oo.

ButS,=X? 4+ ... + X2 has xﬁ - distribution. What we have shown just now s that if

C Sh-n . o
. Sy has x,z, - distribution, then ‘;27 has an approximate standard normal distribution

for large n. In other words, for every real x,

P[S;zlnnsxj= ¢ (x)

for large n whenever Sn has X,Z. -distribution,

We make a remark now,

Remark 3 : The centra limit theorem is central to the distribution theory needed for.

statistical inferential techniques to be developed in Block 4. You must have noted

approximately,

E8) If 10 fair dice are rolled, find the approximate probability that the sum of the
numbefs observed is between 30 and 40.

E9) Suppose X is binomial with n = 100 and p = 0.1. Find the approximate value of
P(12sX <14) using ’ ;

a) the normal approximation,
b) the poisson approximation, and
¢) the binomial distribution,
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14.5 SUMMARY

In this unit, we have:

1) derived Chebyshev’s inequality and obtained the weak law of large numbers as
~a consequence.

2) obtained Poisson approximation to binomial,

3) discussed the central limit theorem and obtained normal approximation to
binomial as an application. :

As usual we suggest that you go back to the beginning of the unit and see if you
have achieved the objectives. We have given our solutions to the exercises in the
unit in the last sqgction. Please go through them too. With this we have come to the -
end of this block.

14.6 SOLUTIONS/ANSWERS

El) By Chebyshev’s inequality,

1

s ===

P[IX—u|z3o

E2) a) First note that E(X) = 1 and Var (X) = 1. Then by Chebyshev’s inequality,
we get '

P .|x-1|>2];%=0.25.

b) P[IX—1|>2]‘-P[ |x|>3]
-1-—P[|X|s3]'
-1- [l—e ](seeUnltll Sec. 11.3)

=1
=73

(¢

= 0.05. ‘
E3)P[ 2<X<8] P —5<X—3.<5]
=P |X—3|55]
=1—P[_IX—3|>5]
By Chebyshev’s inequality, we get
- 4
P[IX‘3|>5]SE’0-16
Note that Var (X) = 4. .
l P[IX 3|>5]zl -0.16.= 0.84

Heénce P [ -2<X <8]‘z 0.84.
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E4) Let X denote the number of people‘having the disease. Then X has the binomial Limit Theorems
distribution with parameters n = 200 and p = 0.01. If we approximate the
distribution of X by Poisson distribution N with A =np = 200(0.01) = 2, we get

P[X=>4]= P[N=4]=1-P[N<4]
= 0.1428.

ES5) 0.0616.

E6) According to the central limit theorem the distribution of X will be
approximately normal with mean 0.5 and variance

1 1
00 x = x == 25, C
100 x > x > 25 Therefore

P[ X = 50] = P[ 495=sX= 50.5]

V3 VB Vs

=0.08

X-0.
=P[ 49 0.5 50]

n
= -.np
n} _ X - np 2
E7) P[X>2} P[‘/np(l-p)>\ﬁ1p(1-p)]’

Here p = 0.55 and by the CLT,

LU
'[X-np 7" P ]

Vap(i-p)  Vap (1-p)

27"
Vop (1-p)
where Z is N(0.1). In particular

P[Z(- > %] 2 0.95

‘plz>

n
provided,
n
27"
P| Z > ——=| 2 0.95.
o=
In other words
. (1.645)* p(1 - p)

(N

_ (1.645) (0.55)(0.45)
(0.05)?
= 268.
E8) 0.65.
' E9) (a)0.2417 (b) 0.5710 (c) 0.5642
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ELEMENTS OF STATISTICAL
INFERENCE |

This is the last block which you will be studying for the Probability and Statistics
Course. In this block, we shall be dealing with the basic concepts of statistical
inferences and also with some methods of making inferences on the basis of sample
observations. Since all the procedures described in this block are based on sample
observations, you will find a discussion on Random sampling and Sampling
distributions in Unit 15. In the same Unit, you will be introduced to the basic
concepts regarding point estimation, testing of hypothesis and interval estimation.

Some common methods of point estimation are discussed in Unit 16. In Units 17
and 18, you will find discussion on testing of hypothesis and interval estimation.
Here procedures for testing hypothesis involving the parameters of some important

distributions and procedures for constructing confidence intervals for parameters
are discussed.

In Unit 15-18, we have included a number of illustrative examples. If you go
through these examples carefully, you will have a better understanding of the
concepts discussed. These will also serve as a guide for solving exercises.
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Notations and Symbols

Q ¢ Parameter space

8' ! Anestimator of 6, a parameter.
H(orHp) :  Null Hypothesis

A(orHp) ¢ Alternative Hypothesis

C ' Critical Region

Co :  Optimum critical region

n
La(0) : £( X;; 0)(i.e. Likelihood function) -
io1 ,

swp L(8 |X )
0EQ

A(X) (i.e. Likelihood Ratio)
Sup L(0 |X )
6EQ

a(0) :  Probability of Type I error v

B(O) :  Probability of Type II error

v(6) i 1-8(0)

Ta(0) : " Fisher information in the sample ( Xi ..........

Also see lists in previous blocks.
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UNIT15 GENERAL INTRODUCTION

Structure

15.1 Introduction
Objectives

15.2 Inductive Inference

15.3 Random Sampling

15.4 Sampling Distributions Related to Normal Distribution

15.5 Point Estimation
15.6 Testing of Hypothesis
15.7 Interval Estimation

15.8 'Summary

15.9 Solutions and Answers
15.10 Additional Exercises

15,1 INTRODUCTION

In the earlier blocks, you have studied the concepts of probability theory and its
various applications in model building for different random phenomena. In
probability theory, we proceed from a known population and derive probabilities of
events associated with a phenomenon. The basic problems in Statistics, on the other

_ hand, is concerned with the reverse process of drawing conclusions (or, inferences)

about a population on the basis of a sample.

In order to be able to make probabilistic statements about a population on the basis-

. of a'sample, the sample itself has to be chosen in a appropriate manner. Broadly, the

methods or sample selection go by the name of random sampling. In this unit, we
confine attention to simple random sampling only. We shall also discuss, in a

-general way, the problem of statistical inference, viz., that of point estimation and'
those of testing of hypotheses and interval estimation.

‘Objectives

After reading of this unit, you should be able to

o derive some basic properties of sample statistics

o define sampling distribution of a statistic and derive some basic sampling
distributions

e define the important properties of an estimator

o definethe important concepts relating to interval estimation and testing of
hypothesis.

15.'2_,,\ INDUCTIVE INFERENCE

Stientific progress is often ascribed to experimentation. A research worker.
performs an experiment and obtains some data and on the basis of the data so
collected, some conclusions are drawn. The conclusions usually go beyond the
materials and operations of the particular eéxperiment, that is, the research worker
may generalize from a particular experiment to the class of similar experiments.
This type of extension from the particular to the general is called inductive

“inference and is one of the ways in which new knowledge is acquired.
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Inductive micrence is known o be a hazardous process because of the uncertainty
present in the inference. Onc simply cannot make perfectly certain generalizatiops.
However, uncertain infercuces can be made and the degree of uncertainty measured
if the experiment has been performed according to certain well defined principles.
One function of Statistics is the provision of techniques for making inductive
inferences and for measuring the degrec of uncertainty of such inferences.
Incertainty is measuvs=d in terms of probability of mak}ng a wrong inference.

Let us illustrate inductive inference by an example. Suppose we have a storage bin
containing say 1,00,000 seeds of flowers. It is known, that these seeds will grow
into plants with either a white or a red flower. The information sought is: how many
(or, what proportion) of these seeds will produce plants with red flowers? The only
way in which we can be sure that this question is answered correctly is to plant
every seed in the bin and count the number producing red flowers. However, this is
not feasible as the seeds are for sale. Even if the seeds were not for sale, one would
prefer to have an answer with 1t ooin g through such an enormous effort of planting
the seeds and sce them flower., Al this siage, a natural question to ask is: can we
plant a few of the seeds and on the basis of the colours of flours observed on
individual plants make a statement as to how many of these will produce plants
with red flowers? The answer (0 this question is that we cannot make an exact
prediction as to how many plants with red flowers the secds in the bin would
produce, but we can make a probabilistic statement if we select the few seeds in a
certain fashion. This is inductive inference: We select a few of the 1,00,000 seeds,
plant, observe the number of red flowers and on the basis of these few make a -
statement as tc how many of the 1,00,000 will produce plants with red flowers;
from the knowledge of the colour of a few, we generalize to the whole 1,00,000.
We cannot be certain of our answer but we can have confidence in our statement in
a frequency-ratio probability sense.

15.3 RANDOM SAMPLING |

As seen in the previcus Section, we will attempt to make inference on the basis of a
sample, chosen suitably from the population. We now formalize some concepts
regarding sampling.

Definition ! : The totality of elements which are under discussion and about which
information is sought is cailed the (Target) population. ‘

In the example of the previous Section, 1,00,000 seeds in the bin form the target
population. The target population may be (i) the totality of dairy cattle in a state, or,
(ii) the prices of a certain commodity on a given day, or, (iii) the collection of al!
hypothetical sequence of heads and tails obtained by tossing a coin an infinite
number of times. The imporiant point is that the target population must be well
defined. It could be real as in the case of population in examples (i) and (ii: abor -
or hypothetical, as in the case of example (iii).

Now, consider a statistical experiment that results in outcomes X, which are &
values assurned by a random variable X. For instance, in the-example of the
previous section, if we select one seed from the bin containing 1,00,000 seeds at
random, then on planiing this seed, the resulting plant will either produce a red
flower or a white {flower. Here the random variable X takes two values, X = 1, if
the plant gives rise to a red flower and X = 0, if the plant gives rise to a white
flower. Suppose the probability of the seed producing a plant with red flower is P
and that with a white flower be q = (1-p), then the random variable X clearly
has a Bernoulli distribution with probability of “success” (producing a plant with
red flower) p, which may be unknown. Thus, we have a random variable X with
known form of distribution function with its parameters p, possibly unknown. Let F
be the distribution function (d.f) of X. In practice, F will not be known completely
in the sense that one or more parameters associated with F will be unknown, (for



example, p is unknown in the above illusiration) and, the statistician desires to make Genel‘alm :
inferences about the unknown parameters. For this purpose, the statistician can Introduction
obtain n independent observations x;, X,, . . ., X, assumed by the random variabie

X. Each x; can be regarded as the value assumed by the random variable
X,i=1,2,...,n,where X}, X,, ..., X, are independent random variables with
common d.f.F. The observed values ( x, X, . . ., X, ) are then values assumed by
the random variables ( X, X,, ..., X ). The set (X, X,, ..., X, ) is a sample of

size n taken from a population with distribution function F and the set of values
(X4, Xy, . .., X, ) is called a realization of the sample.

Definition 2: Let X be a random variable with distribution function F and let
Xy, Xy - -+, X be independently and identically distributed (i.i.d.) random

variables with common d.f. F. Then, the collection X1, Xy, ..., X, is known as a
random sample of size n from the d.f. F, or simply, as n independent observations
on the random variable X.

Definition 3: A statistic is a function of observable random variables which does
not contain any unknown parameter. Let X, . . ., X, be a random sample from X
and letx, . . ., x, be the values assumed by the sample. Let H be a function defined
for the n-tuple (x;,...,%, )Y = H(X,,...,X, ) is defined to be a statistic,
issuming the valuey = H(x,,...,x,).

Example 1 : Let X, X,, . . ., X, be a random sample from a d.f.F. Then

X = ( X+ Xy + ...+ X, )/n, the sample mean, is a statistic. Similarly, let
v n
s - 2 (X; -X )2/( n -1). Clearly, S is also a statistic.
i=1
Another example of a statistic would be the smallest (or, the largest) of the sample

observations. It follows that the difference of the largest and smallest observation in
_the sample, called the sample range, is also a statistic.

Example 2: Let the random variable X follow a normal distribution with known
mean p and unknown variance o*. Then X ~  is a statisticbut ( X — @ )/ois not.

E1) Let X be a random variable that takes only two values 1 and 0 with respective

probabilities pand q = 1 - p, where p is possibly unknown. A random sample
of size S is drawn from X and the realizations are 0,1,1,1,0. Cqmpule

X and Sz, where these statistics are defined in Example 1.

15.4 SAMPLING DISTRIBUTIONS RELATED TO
NORMAL DISTRIBUTION

We now investigate certain distributions that arise in sampling from a normal
population. Let X;, X,, .. ., X, be a random sample from a normal population with

n
mean p and variance 02. Let, as before, X =n" E X;

i=1

n
2 _ —
S =(n-1) ! E (X,.-X )2. Then, the following results are true.
i=1
(@) Xhasa normal distribution with mean p and variance o’/

(b) (n—-1) s*/0%hasa chi-square distribution with (n - 1) degrees of freedom
(D.F.)

3.
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Tlemerts of Statistical €) X and S‘arc independently distributed.

Lot anile |

“ou have already seen in Unit 12 (Section 12.5) that if X and Y are two ' |

~-tupendent random variables such that X has a normal distribution with mean zero |

.+ unit variance and Y has a chi-square distribution of n D.F., then the random :
variable Z = X/V(Y/n) is said to have t-distribution with n D.F. From this fact and

the properties (a), (b), (c) above, it follows that the statistic
(X - w)/(o/VR) Vi (X-p) ‘

U = =
172
s Vs?
@-ns /(n_l)}
g

toliows a t-distribution with (n ~ 1) D.F.

|
f
)
|
|
|
!
fl
Again, recall from Unit 12 (Section 12.6) that if X and Y are independent ll
chi-square random variables with m and n D.F. respectively, then the random
variable (X/m)/(Y/n) is said to follow an F-Distribution with (m, n) D.F. Let
X Xp oo, X, and Y,, Y, ..., Y, be independent samples of size m and n
?

respectively from N (,, o ) and N (p,, o ) and let

m n m n
% -m! E X, ¥ = n! ;Yi,sf - m—l_Tgl (X-XV, 8 = —= }; (Y;-Y)
ft follows then that the statistic (by (b) above).

. Sf
-

foilows an F-distribution with (m -~ 1,n -1 ) D.F.

E2) LetX;, Xy, ... X, be a random sample of size n from N (0, o %). What is the

1]
o 2, 2
distribution of ‘%3 = z X,/0%?
i-1

E3; X, X,, ... X, is a random sample from N (u, 1), what is the distribution of

N

n
T=Y (X, - X)*?
i=1

15.5 POINT ESTIMATION

In this section we shall discuss the basics of the theory of point estimatiogwl'he
problems of point estimation of a parameter can be visualized as follows’:.,;'“ ‘

Let X be a random variable with df F (x ; 6) where 6 is a parameter. The pér;uﬂe{cr
could be a scalar or vector. The parameter 6 is a scalar if it is real-valued and 0 is a -
vector parameter if it is of the form 8 = ( 8;, 8, ... 6, ), where for B
i=1,2,...,k, 6 isreal-valued and k is finite. The set of possible values of 6 is o
called the parameter space . In the discussion that follows, Q will mostly bea
subset of the real line R or Rk; the k-dimensional Euclidean space for some finite k.
It is assumed that the functional form of F is known, except for 0. For example, F

might be the df of a normal distribution with mean zero and variance o >
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(unknown), or, F could be the df ui a binuniial distribution with n, the number of General
trial known and p, the probability of success, unknown. The first one is an example Introduction
of a continuous d.f. and the second one of a discrete d.f. Of course, it is possible
that F is a mixture of a discrete and a continuous d.f. However, in what follows, we
T shall restrict our attention to the case where F is the d.f. of either a discrete random
' variable or a continuous random variable.

Suppose a random sample of n observations, X;, Xy, ..., X, is taken from a

df F (x ; 8) and suppose Xy, X,, -, X, are the realizations of X, X,, ..., X, i.e., the
observed data is ( Xy, X« Xy )- The‘problem of point estimation is then to estimate
the unknown parameter © through a suitable statistic, which by definition 3, is a
function of X, X,, ..., X, and is free of 6. If the chosen statistic is

T(X; Xp -y Xy ) then T (X, Xy, .y X, ) is called an estimator of 8. If we
substitute the actual observations Xy, Xy, ..., X, in the functional form of

T (X,, Xp, ---» X, ) and compute the value of T ( Xq» Xp, -y Xy ) » then this value is

called an estimate of 8. An estimator of 8 is usually written as
8=T(X;, .., X,)

Example 3 : Let X;, X;, ..., X, be a random sample from a Poisson distribution

1]
with parameter A, which is unknown, Then, X = o 2 X; is‘an estimator of A.
=1
Similarly the mean of (n — 2) observations, obtained by discarding the smallest and
the largest observations in the sample is also an estimator of A

Example 4 : Suppose X, X, ..., X, is a random sample from a binomial population
with n (=number of trials ) = 10, and p, the probability of success, unknown.

e n
Then, X = n”' 2 X; and (X, +X,)/2 are both estimators of p.
i=1

From the above example, it is clear that we need some criterion to choose among
many possible estimators. Below, we give some criteria which can be used to judge
the performance (“goodness”) of an estimator.

Definition 4 :(Unbiased Estimator). An estimator T ( X, X,, ..., X, ) is said to be

an unbiased estimator of g { 8 ) (a known function of 8 ) if the expectation of
T ( Xy, Xy, -, X, ) exists and is equal to g ( 8 ) for all 8 in the parameter space Q.

In symbols, T (X, X,, ..., X, ) is unbiased for g (8 ) il

Eg [T ( Xl? X3 0 Xy) ] = g (0)forall @ € Q where E4 denotes the expectation

taken whﬁ%‘is the parameter.
The intuitive implication of the concept of unbiasedness is as follows: Even though
the value of T may not be equal to g ( 8 ) or near to g ( 6 ) for a particular
realization ( X, X,, ..., X, ), on the average, T is close to g (9). In other words, in
repeated sampling of n observations from the population, the average of

&T.( Xy, Xy, -y X, ) is equal to g ( 8 ). We illustrate this concept through some
examples. '

Example 5 : Let X, X,, ..., X, be n independent Bernoulli random variables, eacéh

_’gvjth the same probability p of success. We wish to obtain an unbiased estimator of
k‘;pibased on the observations X,, X,, ..., X,. Now, we know that
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Elemcnts of Statis " P(X;=1)=pand P(X; =0) = 1-p = q(say)

Inference

Hence

Ep(X;) =p forany i = 1,2,...,n.

Thus, every one of the observations can be considered as an unbiased estimate of p.
. . b -1

There are other unbiased estimatorsof pas well,e.g. X = n (X; +X; +... +X, )

is also unbiased for p, because, ’

E,(X) =17 YE,(X;) =p.
i=1

Example 6 : Let X, X,, ..., X, be a random sample from a normal population with
known mean i and unknown variance 2. S0 8 = 02 and Q = [8;8>0}
Consider the estimator ( X; - pg }*. Since (X; - ug )/ o is distributed as normal

2
with mean zero and unit variance, it follows that { (X;-npo )/o} is distributed as
chi-square with one D.F.

The mean of { (X; -y )/ o }2 is unity and hence

Eg(X;-pg) = o = 6

Since the above identity holds for eachi = 1,2,...,n, we have

Eq E(Xi—uo)z -c’-0

i=1

n
and hence § = n! E (X;- uo)z is an unbiased estimator of 8 = o2
=1 ,
Example 7: Now let X, X,, ..., X, be a random sample from N (u, a?) where both
u and o ° are unknown. Here 2 = [(u, 02);—00 <p <o, o? >0l. Clearly, in this

n

- 2. L .

case, n ! E X~ )" is not a statistic and hence cannot be used as an estimator of
i=1 '

o] 2 . Let us consider the estimator

n . n
S(Z, =n" 2 (Xi--g(-)2 where X = n™ in

i=1 i=1

. ‘ .

We know that z (X;-X )2/ o’hasa chi-square distribution with (n~1)D.F. and
: i=1

therefore

E,; z (% 4%)*| = (n-1)02
iwl

n-1 2

Hence E 2 ( S(z, ) = o

2. . .
so that S is not an unbiased estimator of o 2. However,

10
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§ - as¥/(n-1) = (n-1)" 3 X, - X’
i=1

is an unbiased estimator of O 2, Note that S is defined only whenn = 2.

Example 8 : Suppose it is desired to estimate the standard deviation, 0, of a normal

. . . 2 o
population with unknown mean @ and unknown variance o *. Since

s = (n- 1)_1 2 (X -X )2 is an unbiased
' i=1

estimator of 0 2 one may be tempted to use S as an unbiased estimator of o. Using
the fact that (n — 1) s2/o 2 is distributed as Chi-square with (n — 1) D.F,, it can be

shown that
ol (n/2) ‘/ )
EG(S) = r n—1 n-1
2

E4) LetX;, X,, ... X, bea random sample from a Poisson distribution with

so that S is not unbiased for C.

n

parameter A. Show thatX = n~! 2 X; is unbiased for A. Is
i-1
n —

st = (n- 1)—1 Z (X; —-X)2 also unbiased for A ?

i=1

ES) Let X, Xy 0 X,ben independent Bernoulli random variables with constant v
unknown probability of success p. LetX = o 2 X; . Show that X(1 -X)is
i=1

not an unbiased estimator of p (1 - p).

Note that sometimes, an unbiased estimator may turn out to be absurd, as shown in
Example 9. ‘

Example 9: Let X, be a random sample of just one observation frbm a Poisson
distribution with parameter A. Suppose it is desired to estimate g (A) = exp (—3A).

Consider the estimator T = (- 2)x1.

Then

x Ao - i(—ZX)X‘

‘ _;,°° oo
Eo(T) = ¢ xzo(-z)l)—(l—! e X! e et =g @)

Therefore, T = (- 2)Xl is an unbiased estimator forg (A) = ¢ » However
T>0 if X, iseven and is negative if X is odd, which leads to an absurd situation

asg (M) >0.

At this stage a natural question to ask is : how to choose from a collection of
unbiased estimators for the same parameter, whenever they exist ? Our discussion is
restricted to only those unbiased estimators which have finite variances. Let T be an

ut to test PDF Combine only
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Llements v Statistical unbiased estimator of a scalar parameter 6. Then, T — 8 measures the departure of
Inference the estimator T from 6. Since T — 8 is a function of observations X1 Xy vens X, as

well as of 8 a measure of deviation of T from 8 may be chosen as Ey (T - 6).

However, since T is unbiased for 8, this expectation is always zero, so this is not a
meaningful measure. A better measure of deviation can be considered as

Eg|T-8] or Eg| T-8 I”,p = 1. A convenient choice of p is 2 and the precision

2
of T is measured by the quantity Eg | T8 |, Since T is unbiased for 6, this
measure is simply the variance of T, denoted henceforth as Varg (T). The larger the

variance of T, the greatcr is the departure of T from the true value 6, on an average.
On this basis, we may prefer an unbiased estimator T, over another unbiased
estimator T, (both of ), if

Varg (T, ) s Varg (T, ) for all 0EeQ,

with strict inequality of at least one 6 = Q.

Consider now the class of all unbiased estimators of 6 that have finite variances. Is
it possible to find an estimator in this class that has the smallest variance ? If such
an estimator exists, it will be called a minimum variance unbiased estimator of 0,

We shall discuss in the next unit more about this aspect.
We now turn to another criterion for the choice of an estimator.

Definition 5: (Consistent Estimator). An estimator T (Xy, X5, . ., X,) is said to be
consistent for 8 if T; = T (X,, X,, ..., X,) converges in probability to 6, as n
increases indefinitely, that is T, a consistent estimator of 0 if

Py(|T,-0l5>¢e) = 0.

asn — « foreverye > 0,

Example 10: Let Xp X, o X, constitute n independent Bernoulli random
‘ n
variables with the same probability p of success. Then,X = n~ E X, isa

i=1

consistent estimator of p, because,
PP<|§—pl>a) — Oasn— o forevery € >0.

This can be seen as follows : By Chebychq“v’s‘inequality

P, (X-pl> "s L var (X)

p ( ~Pi>¢ 2
Now, we know that X has a binomial distribution with parameters n and p and hence

n
X) = & /n—0
Varp(X) = 2 Var in = p(l-p)/n—>0asn — o,
i=1

Therefore, Xisa consistent estimator of p.

Example 11: Let X, X,, . . ., X, be a random sample of size n from N (u, 02), both

n
u and o being unknown. LetS % = (n- 1)"1 Z X; —5(_)2.

i=1
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sz(|$2_02 I >e)s—15E02<Sz—02>2 = -8—12-Var02<82)

€

But
2 1 XV
Varg (8°) = (n_l)zv‘“(z(x' X))
i _0_"_Va,(z<x._'i)2/02)
(n-1) ‘
4
Zj([‘_—_ll))_;’_ = 204/(n—1),
n.._

n
where in deriving the above variance, we have used the fact that 2 X;-X )2/ o
, i=1 .
has a chi-square distribution with (n — 1) D.F. and the variance of such a
distribution is 2 (n — 1). Thus, P? ( | sf-o? |>¢ ) — Qasn — o forevery

¢ > 0 and S’ is a consistent estimator of 0.

From the above examples, it is clear that a set of sufficient conditions for T, to be a

consistent estimator of O is :
(i) Eg(T) — Basn —>
(ii) Varg(T,)) — 0 as n — .

A consistent estimator for 6 need not be unbiased. If there is an unbiased estimator
for 8, then condition (i) above is automatically satisfied and only condition (ii) has
to be checked for consistency. :

E6) Let X,, X,, ..., X, be a random sample from N (i, o%). Show that the sample
mean is a consistent estimator of p.
E7) LetX;, X,, .., X, constitute n independent Bernoulli random variables with

constant probability of success, p, which is unknown. Obtain a consistent but
biased estimator of p.

15.6 TESTING OF HYPOTHESIS

In this section, you will be introduced to some basic notions about testing of
hypothesis. A hypothesis-testing problem results from questions of the type: “Does
smoking increase the risk of cancer?” “Does a certain feed increase the milk yield
of dairy cattle?” Thus, we have an underlying parameter © (in our examples, this
might be cancer rate, milk yield) and we wish to known whether it changes in
specified ways (e.g. does it increase ?) when an element of a system is changed.

ple output to test PDF Combine only

7o)
Ay L



Elements of Statisticn!
Inference

Sample output to test PDF Combine only

To fix ideas, we now formally define the concepts involved. As before, let X be a
random variable with . F (x ; 6) where 6 € €2, the parameter space. We shall ,
assume that the functional form of F is known except for the paramet:r 8. Also, we
assume that 2 has at least two points.

A (parametric) hypothesis is an assertion about the unknown parameter 0,

Example 12: In coin tossing experiments, a question often asked is whether the
coin is unbiased (fair), that is, whether the probability of getting heads or tails is the
same, 0.5. Thus, in this case, one may set up a hypothesis, H: p = 1/2, where pi
the unknown probability of obtaining a head in a single toss.

Example 13: A manufacturer of dry cells claims that the cells manufactured by hir.
last 30 hours. To test this claim, one may set up a hypothesis, H: u = 30, where u
denotes the average life of a dry cell.

In the above two examples, the hypothesis taken were such that the difference
between the unknown parameter and the hypothetical value were zero (null). This
gave rise to the term Null. Hypothesis. However, the term null hypothesis is not
restricted to the hypotheses of the kind described in Examples 12 and 13. We shall
refer to any hypothesis under test as the Null hypothesis. Note that a null hypothesis
is a statement about the parameter (s) belonging to a subset £ of . The null

hypothesis can therefore be specifiedas H: 0 € Q.

Corresponding to any null hypothesis, the statement A : 8 € Q) = Q-Q, usuall:
referred to as the alternative hypothesis.

Definition 7: If Q, () contains only one point, we say that H (A) is simple;
otherwise, we say that the hypothesis (H of A) is composite. Clearly, if a hypotl;esis
is simple, the probability distribution of X is completely specified under the
hypothesis. '

Example 14: Let X be a random variable having a normal distribution with mean n
and variance o %, If both wand o are unknown Q = {(u, ol )i —o< p, <o,
02>0} .Thebhypotheses,H:u>u0,02>0,H:p.spo,02>O,

H:p = pyo 2 0, where p, is a specified constant, are all composite. On the other

hand, if o is known, then H: . = “'0 is a simple hypothesis.

The problem of testing of hypothesis can now be described as follows: Suppose
X5 X5, ..., X, is a random sample from a population with d.f. F (x ; 6). Let X"
denote the sample space corresponding to X, X,, . . - » X;- Choose a subset C C X"

We call C a critical region. Suppose (X}, X,,. .., X_ ) is the observed sample.
Then, the test procedure is: :

reject Hif (X, X,,..., X, )eC
and do not reject H (or, accept H ) if(Xy, Xy .., X, )EC.

Such a procedure is called a non-randomized test for testing the null hypothesis H
against the alternative A. :

Some caution should be exercised when the second of the above two actions is
taken. Accepting the hypothesis H does not necessarily mean that we conclude
definitely that 8 € Qy; instead what is meant is that on the basis of the data



available there is no evidence for not supporting the hypothesis that 8 € €. General
Introduction

From the above discussion it is clear that one might commit two kinds of error with
- ' the test procedure described above. The test procedure may lead to rejection of H
when really it is true, or it might lead to rejection of A (or, acceptance of H) when
in fact A is true. The two types of errors can be represented in a tabular form, as

| shown below:

E Action Taken

- H accepted H rejected
State of H True ' Correct Type Lerror
Nature A True Type U error Correct

The problem then is to devise test procedures to control both types of errors.
Ideally, one would prefer a test procedure that minimizes o and p where

o = Probability of Type I error
. and P = Probability of Type I error

However, this in general is not possible. Let

. (68) = Py(Reject H)and B (8) = Po(AcceptH)

Then a (8) denotes the probability of Type I error when 6 € € and p (8) is the
probability of Type Il error when 8 € Q;. If y (8) = 1P (6), theny (8) is called
the power of the test at 6 € Q,. In constructing a test procedure, we fix the

probability of the Type I error to a desired small level and choose a test for which
v (8) is maximum (equivalently, B (6) is minimum). Given0 s a = 1, our interest is
then to construct a test procedure for which

a(6) s aforall €,

andy (8) = 1—P (8) is as large as possible for all 8 € Q,. The number a is called

the level of significance of the test. In practice, we choose a. to be small, usually
3 0.05 or 0.01. To illustrate these ideas, we consider an example.

Example 15: Let X follow a normal distribution, N (i, 1), where u is unknown. Let
the problem beto test H: u = 0 against A : g = 1. Clearly, both H'and A are
‘simple hypotheses. Suppose X, X,, .. ., X, is a random sample of size n drawn

" fromN (1, 1) and let X = ( X, + X, +...+X, )/nbe the sample mean. Since X is

an estimator of u, it is natural to base our test on X and we may say that Ais true if
X is large and H is true if X is small. Thus, our test procedure may be

reject Hif X > k
acceptHiffsk |

where k is a suitable constant. What are the probabilities of type I and II errors for
this test? We have '

a(w = P, (X>k)

If we want a test with level of significance o (a given constant) then the constant k
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p(X>k|H) = a.

But, we know that (X —p )/( 1/vn ) has a N (0, 1) distribution. Hence, under H,
(X =0)/(1/vn ) follows a N (0, 1) distribution. Therefore

X-0 k
P(X>k|H'P[1/V‘ 1MTJ

If a = 0.05, then from the tables of the standard normal distribution, we have

k
7= = 16450r,k = 1.645/Vi.

The test at level of significance a = 0.05 is thus: ; reject Hif X > 1.645/Vn and
accept H, otherwise, i.e., if X < 1.645/Vn.

The probability of Type I error in this case is
B - P[is 1.645/\/E|A]
and the power is
=1-B = I—P’[is 1.645/\/:T|A]

P[§>1.645/w/rT|A]_

X-1 1.645
- "{w; >( Ve ‘1)‘/—]

=P[Z>1645-Vn ]

Where Z is a standard normal variate. The above probability can be evaluated usmg
tables of standard normal dlsmbutlon

How do we know in a given situation whether a test is best (in the sense of having '
_ maximum power)? Or, how do we construct a best test procedure? These and
related questions will be taken up in detail in Unit 17

E8) In the fol]owmg cases, examine which of the hypotheses are simple and wlnch
are composite:- :

(i) H:psp,(given) where p,>0, and X follows a Binomial distributien' '
with known n and unknown p.

(i) H:p = 0.6, where p is as in (i).

(iii) H:p = uo where p is the mean of the normal populanon with unknown
variance 0’.

(V) H:0’%=1where o *is the variance of a nonnal population with mean
Zero.

16
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15.7 INTERVAL ESTIMATION | General

. In Section 15.5 of this Unit, we studied some notions about the point estimation of a
parameter. In point estimation, a single value (based on the sample values) is
suggested as an estimator of the parameter in question. Alternatively, one may be
interested in proposing an interval or a set, of which the parameter is likely to be a
member. This interval or set will depend on the observed data. Such an estimation
problem is called interval estimation, or, obtaining confidence interval or
confidence set for the parameter. We shall illustrate the basic theory of interval
estimation with the help of a simple example.

Example 16 : Let X be a random variable having a normal distribution with mean p

(unknown) and variance unity. We know that X, the sample mean of a random
sample of size n from N (u, 1) is a (point) estimator of p. Also, the random variable

Z= (5(- ~n)/(1/vn) has a standard normal distribution. Given a number
a, 0< a < 1, we can choose a and b such that

PlasZsb] = 1-a.

Since the standard normal distribution is symmetric about zero, let us choose Z,
such that

P[-—Za/z sZs Za/Z] =1-a

The point Z, can be found from the tables of standard normal distribution. The
above probability statement can be written as

X-u
1"'a - P[—Za/z S,Z < ZO./Z] = Pu[—zu/z < ‘1'/—'\/;" < ZO./Z}
where P,, is the probability when p is the parameter. We may again rewrite it as
i-a -’Pu[i—zm/w/isusinm/ﬁ].

The above is a confidence statement about the unknown parameter p. Note that
while p is a parameter and not a random variable, the end points of the interval,

(X = Z,,,/Vn ) are random variables, being dependent on the sample observations.

The above statement is interpreted as follows: the probability that the random
interval contains the parameter p is 1 — a. The interval

[i-zm/ﬁ,?(:rza,z/\/i]

is called a 100 (1 — o) percent confidence interval for p and (1 - a) is called the
confidence coefficient. The term ‘confidence’ is based on the fact that the
statistician believes that the random interval is likely to contain the parameter
i, 100 (1 — ) times in repetitions of computing the interval from 100 random
samples { X;,i = 1,2,...,n . We now have a formal definition.

Definition 6: Let X be a random variable with d.f. F (x; 6) here 0 is a scalar
parameter. Suppose X = (X, X . - - » Xy ) is a random sample from F (x; 6). The
random interval [ 1y (X), ry (X) ] is called a confidence interval for 8 with

17
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confidence cuefficient (1 — o) if

Pe[0ER X),ry(X) = L-aforaifEQ.

Here rL (X1, . .., Xa) and ry (X1, . .., Xa), IL (X1, . . ., Xo) <1u (X1, . . ., Xp) are
two statistics such that the probability that r; (X) and ry; (X) contain 0 is 1 - a.. The
interval [ r; ( X ), ry (X)) ]is also called an interval estimator of 6.

Referring to Example 16, we have
1L = X=Zq/Vi, 1y = X +Z,/V00.
Therefore the length of the interval is |
ry—1, = 2Z,,,/Vn.
If we want to have confidence interval of specified length, say d, then the relation
d=2-Z /0 |
should hold, or equivalently, in terms of the sample size n, we must have
n o= (2Z,,/d)
This formula is helpful in determining the sample size n needed in order to geta
confidence interval of specified length d and confidence coefficient (1-a)In
practice, n computed from the above formula may not be an integer. If that be the

case, one chooses the sample size to be the smallest integer greater than or equal to
n defined by the above formula.

E9) Let X follow a normal distribution with unknown mean p and known variance
ol o- It is desired to have a confidence interval for u with confidence coefficient
0.95 and length 20;. What should be the sample size to achieve this?

Itis obvious that P {8 € (-, )] = 1 for any scalar parameter 8 and hence the
entire real line is a confidence interval for 8 with confidence coefficient 100
percent. However, this interval is too large to be of any practical use. In interval
estimation, we look for confidence intervals whose lengths are as small as possnble
with largest confidence coefficient. We shall discuss more about this in Unit 18.

15.8 SUMMARY

In this Unit we have

1. briefly introduced the problem of statistical mference and introduced the
concept of random sampling,

27 discussed some sampling distributions of statistics based on samples from
normal population,

3.  introduced the problem of point estimaubn of parameters and discussed
unbiasedness and consistency of parameters and discussed unbiasedness and
consistency of estimators,

4.  discussed the problem of testing of hypothesis and introduced the basic
concepts like types of error, level of significance and power,

5. discussed the problem of interval estimation.
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159 SOLUTIONS AND ANSWERS Introduction

E1) The sample values are 0, 1, 1, 1, 0. Note that since the random variable takes
only two values 1and 0 with respective probabilities p and q (= 1 -p), the

5
sample values are 0 and 1 only. Sincen = 5,X = n Exi = 3/5 = 0.6.
i=1

Also

5 5
$* - (n- 1yt 2 X.-X = %_EI(Xi-o.ﬁ)2

- -‘1;(0.36 +0.16 +0.16 + 0.16 +0.36) = 1.20/4 = 0.3.

Hence,X = 0.6,S = 03.
E2) X, X5, .-, Xpis2 sample from a normal population with mean zero and

varianoe'oz. Define Y; = X/ofori = 1,2,...,0. Then,Y; = 1,2,...,0
are independent (because X';is are so and o is a constant) and each Y; has a
normal distribution with mean zero and variance unity. Hence

$ X/ - 3
© sl i=1

follows a chi-square distribution withn D.F.

i E3) Here X;, Xy, - - -5 X, isa random sample from a normal population with mean

i —

n
p and variance unity. X =n" z X; isthe sample mean. Now, we know (cf.
i=l

Section 15.4) that if X;, Xy, - - - X, is a random sample from N (n, 02) then

» .
3 ;- X):/o? has a chi-square distribution with (n - 1) D.F. Here 0 a1
iwl .

. n B
~and it follows that 2 X - -i)z has a chi-square distribution with (n-1)D.F.
i=1

E4) I X,, XQ, o, Xparen independent Poisson random variz'ibles, each with the

2 :
same parameter , then Y = ) X; alsohas a Poisson distribution with

: i-1 .
parameter n0. Now, in the given problem, since Xy, Xy, - -« X, is a randem
sample from a Poisson distribution with parameter 8, X;’s are independent and

n
“each X; has a Poisson distribution with parameter 6. Therefore 2 X; is
‘ i=1

Poisson with parameter n6. Hence

EX) = E n-lzxi - nlE iX'i -nl(ne)-e,
i=1 ' i=1 '

- and X is unbiased for 6. (Recall that the mean of a Poisson random variable with
parameter 0 is 6).
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Elements of Statlsticy? Also, if X, X,, .. ., X_isa random sample from a distribution with finite variance

Infereuce

n
02, then §° (n— 1)_1 E X, ~5(_)2 has expectation o 2 (cf. Section 15.3), In the
i=1 :
present problem, o % - variance of a Poisson random variable with parameter
8 = 8. Since 9 is finite, s? is also an unbiased estimator of 0, :

n
E5) LetS = nX = > X; . Then

el

£[%0-%)] - Eﬁ(l—ﬁ!n)J = E(§/1)<E (§/4),

i

.ﬁut Shasa bigomial distribution with parameters n and P, 86 it i¢ the sum of |
fﬂaéﬁéndent Bermoulli random varizbles, each with parameter p: 'I'hergggp;'

E(S) « up, Vi §) o p(i=p

IndE (gg) « Vi B4y s 9 (1) 404y
Hetic,

EIXU-5) - wp/n—pp (t-p) +p

=p-p(1-p)/n-p’
=P-p)(1-1/n) P-p)@~1)n,

Thus, ')E(I - )?) is not an unbiased estimator ofp (1-p).

E6) Since X is unbiased for y, the first sufficient condition for consistency is
automatically satisfied. Also, '

Var(X) = 0%n = Dasp —  for all finite o 2.

Hence the second condition is also satisfied and X is consistent for .

E7) Hefc X, %5, .., X, aren independent Bernoullj random variables with _
common probability of success, p. Hence ( Xi+Xo+... 4 X, ) is a Binomial
i ;
random variable with parametersn and p. Let § = 2 X; and consider the
- i=1
estimator T = S/(n + 1), Then

E(T) = E(S)/(n+1) = % = p/(1+1/1) = pasp -,

Also, Var (T) = Var (8)/(n + 1)2 = 1p (1~p)/(n + 1)2 — 0asn —» oo,

1 :
Thus, T = E Xi/(n + 1) is not unbiased forpasE (T) = P, but is a consistent
i=1

estimator of p,

E8) i) Comiposite, because H, contains more than one point.
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iii) Composite, because olis unspeclfned and hence Q, = {Po» o> 0} General
contains more than one point. Introduction

iv) Composite, because £2 = { 0’0’21 } contains more than one point.
E9) DefineZ = (-)Z -n)/ (oo/\/x_f ). Then, Z has a standard normal distribution. Let
Z,, ,, be such that
P[—Za/stsZa,z =1-a, O<a<l.

.l:lApre, 1-a = 0.95sothata = .05 and from the tables of standard normal
distribution, Z, , = 1.96. Then length of the interval

ri—zm oV, X +Zy 00/\/1'1_] is 2Z , 0,/Vn. We want the length to be
d = 20, Therefore, we equate d to 2Z, ,, o/Vn and solve for n. This gives
Vo = Zgy0rn = (Zy ) = (1.96) ~ 4. ~

ADDITIONAL EXERCISES

n
1. .Letxi =ifori=1,2,...,n ComputeX = ot zxi and
i=1

n
~1 ET2Y
n 2 (X| - X) .
i=1
2. LetX;,X, be a random sample of size 2 from a df. Define
n
g =07 Y (X -X)"IS; = ¢ (X, ~X,)’, what is the value of c?
i=l

3. LetX;, X, ..., X, bearandom sample from a normal population with mean

B
u and variance o 2 Find the mean and variance of Sg - E X;- X*)/n where
i=1
n

X =1t 2Xl .

i=1
4. Let }(1 and X, be two independent random variables with
Var (X,) = k, Var (X;) = 2.1f the variance of Y = 3X, - X, is 25 find k.

5. LetX,,X,,...,Xsbe arandom sample from the distribution with probability
densnty functxon f(x) = 6x(1-x),0<x <1, zero elsewhere. If
= (X, +X,+...+Xs)/5, find the mean and variance of X.

6.  LetX;,X,,...,X, bearandom sample from a normil population with mean

) a
zero and variance 6. Show that 2 Xiz/ n unbiased estimator of 6.
i1

7) LetX;,X;,...,X, bearandom sample from a Poisson distribution with
| parameter 6, and let Xanlz X s* - (n- 1')'12 X - i)z. Show that
, : ai+(1-—a) % with 0 < a < 1 is unbiased for 6.

. 8) LetX, be an observation drawn at random from a distribution with probablhty
mass function

f(x;0) =08(1-0)x =0,1,2,...
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Lomienis of Statlstiows! = 0, otherwise.
e Let an estimator T (X,) be defined as
‘ T(X;) = 1,ifX, = 0

= 0, otherwise

Show that T (X, ) is unbiased for 8.
9) ,
Let X, X,, ..., X, be arandom sample from a distribution function for which the

2r-th moment about zero, Py, exists,r = 1, 2,....Let B, be the r-th sample
moment about zero. Show that m’, is a consistent estimator of 'm,-'. u,’-

10) LetX,X,,..., X,s5 be a random sample of size 25 from a normal population
with mean 6 and variance 100. It is desired to test the hypothesis, H: 8 = 75
against the alternative A : 8 > 75. If the test procedure is to reject H if X > 78,

where X is the sample mean, what is the level of significance? You are given
that P(Z <2.5) = 0.994 where Z is the standard normal variate.

11) Let X be the sample mean of a sample of 25 6bservations drawn from a normal
population with mean 6 and variance 100. Find the confidence coefficient for

the confidence interval (X + 3.92) for 6.

12) Itis desired to test whether a given coin is fair. For this purpose, we set up the
hypothesisH:p = 1/2 against the alternative A = : p=3/4 (say) where p is
the probability of obtaining a head. The coin is tossed § times and number of
heads noted. It is decided to reject the hypothesis if 5 heads show. Find the
level of significance and power of the test. For facilitating the computations,

the values of f (x, p) = (5 ) Pr(1- p)5 “¥ are given below for p = 1/2and

X
p.= 3/4,
X 0 1 2 3 4 5
f(x;1/2) 132 532 1082 1082 532 132

f(x;3/4) 1/10:24 15/1024 90/-1024 - 270/1024  405/1024 243/1024
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UNIT 16 POINT ESTIMATION

Structure

16.1 Introduction
Objectives

16.2 Properties of Estimators

16.3 Methods of Estimation
‘ 16.3.1 Method of Moments
16.3.2 Method of Maximum Likelihood

16.4 Summary
16.5 Solution and Answers'
16.6 Additional Exercises

161 INTRODUCTION

In Unit 15, you have been introduced to the problem of point estimation and also to
some basic concepts of the theory of point estimation. There we have also discussed
two desirable properties of an estimator, viz., unbiasedness and consistency. In this
unit, the problem of point estimation will be discussed in greater detail. To begin
with, we shall introduce some more concepts. Next, some methods of point
estimation are discussed. In particular, we shall concentrate on two methods of
estimation that are used widely in practice, viz., the method of moments and the
method of maximum likelihood. The first one is easy to implement in practice and
the latter leads to estimators with “good” properties. '

Objectives.
After reading this unit, you should be able to;

o list the criteria for the choice of a good estimator
« derive estimators by one of the methods discussed

o decide which one in a given class of estimators is best according to a given
criterion ’

o assess the goodness or otherwise of any given estimator.

16.2 PROPERTIES OF AN ESTIMATOR

We have already discussed in Unit 15 two properties of an estimator, namely,
unbiasedness and consistency. Let us recall the definitions of unbiasedness and
consistency. ‘

Definition 1: An estimator T (X, Xy, .- -5 Xp), Which is a function of the sample
values X,, X,, . . . , X, is unbiased for g (6), a known function of the parameter 6, if

EQ[T(X,,Xz,...,Xn)] = g(6)forall 6 €EQ

where Eq denotes the expectation taken when 0 is the parameter and Q is the
e parameter space

Definition 2: An estimator T, = T (X;, Xy, . . ., X,) is said to be a consistent
estimator of 0 if

Pe[ {T,-6] > e]—*Oasn—»ooforeverye>0
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Elements of Statisticai In a given problem there might exist more than onc unbiased estimator for the same
Inferencs parameter 6 or the same parametric function £ (6). How do we choose among these
unbiasea estimators? As mentioned in Unit 15, one way to choose among various
unbiased estimators for the same parameter is to compare their variances. That is, if
T, (X, X,,... X, ) and T, (X, X, ... X,) are two unbiased estimators of g(9),
then T, will be preferred over T, if ’

Vary (T}) < Varg \T,) for all 6 € § and with strict inequality for at least one 6 € 2 .

This brings us to the concept of uniformly minimum variance unbiased
estimators (UMVUE). We bave the following definition:

Definition 3: For a fixed sampie size,n, T = T (X1, Xy, ... X,) is called a
minimum variance unbiased estimator of g (6)if (i) Eg(T) = g(0)foralleEQ,
Le., T is unbiased for g (), and (ii; Vary (T) < Vary (T') for all 8 € Q with strict
inequality for at least one 8 € Q, where T' is any other estimator based on

X1 Xas - - X, satisfying (i).

How do we locate a minimum variance unbiased estimator in a given problem ?

From definition 3 alone, it may be a very difficult task, if not impossible, to find a
minimurmn variance unbiased estimator. The following example illustrates this fact. ’

Example 1: Suppose a random variable X follows a normal distribution with
mean 6 anc variance unity, apd Iet Xp Ny . .. X, be a random sample of ¢ize 10
from the poputation . We know that X, the samplc mean, is unbiascd for © and so is
%, Now, Var, (X) = 1/10, Vary (X,) = 1. Therefore, X is superior to X, for
estimating 0 unbiasedly. However, this does not necessarily mean that X is the
minimum variance unbiased estimator of 8. To check whether X indeed is the
minimum variance unbiased estimator of 8, it will be necessary to compare the
variance of X with the variances of aij other unbiased estimators of 8, which is
clearly an impossible task. One has therefore take recourse to other methods for ,
locating an unbiased estimator with the smallest variance in the class of all unbiased
cstimators.

To formalize the concepts, we now consider a population with probability density -
function (if the random variable in qQuestion is continuous) or probability mass
function (in the discrete case) f (x ; 0) where the parameter 6 EQ CRisa scalar.

The set of all x where f (x ; 8) = 0 is called the support of f (x ; 8). We shall  *
assume that the support of f (x ; 8) is independent of 0. For example, our
discussion will not be applicable to a uniform distribution over the interval (0, ),

since the support (0, 8) is dependent on the parameter 6. ¢

The problem is to estimate a parameter 0 on the basis of the data XXy Xn,.'
which is a random sample of size n from f (x; 8).'At this stage, it is important to
bring in the notion of a likelihood function. Let Xy, X35 - .« X, be a random sample
from { (x ; 6) where f (x ; 8) is the probability density (or mass) function of a
random variable X. The joint probability density or mass functign of X1, X5, .. X,
for given 8, is f R

a5 .-
.
[

I{II f(xi; 6) = Ln (9)) say,
i=l

where X, x,, . . . x, are a realization of X5 Xy, - - - X, for the given sample. If 0 is
unknown and varies over £, L, (6) may be regarded as a function of the variable 0,
and is called the likelikood function of 6,

24
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We shall henceforth assume that X is continuous and hence f (x ;- 0) is a probability Point Estimnation
density function. The likelihood function based on the sample X, X,, . . . X is

L, (0) = f(x;;8)f(x;;6)....0(x;;6).
(XIXZ. xn)

Suppose g ( x ) is an estimator of § such that dx = (da, dxa -y do)

Eol g(X)] <. Let

B(6) = Ep[g(X)]-0

B (6) is called the bias of the estimator g ( X ) in estimating 6. Clearly, if g ( X ) is
unbiased for 0, then B (8) = 0. Now,

L, @) = 3 inf(x;0)
iml

and assuming f (x ; 8) to be differentiable w.r.t. 8.
d o d
B L © = iEIdel“f("i’e)

The functxon — ln L, (8) is called the score function based on the observations

X Xs - Xn. Now, since f (x ; 8) is a density function, we have

fff(xl, )£ (%050)..... f(x,;6)dxy, dx,...,dx, = 1

n tlmes

for all ©.
For brevity, we write the above equation as

f‘ﬁlf(xi;e)dg =1 (1)

-

Since Eof g (X )] = 6+ B(8), we have

[e(x) M f(x;0)dx = 64B(O) @
A i=1 B
where A is that part of R" where L, (8) is positive.

We now assume the (1) and (2) can be differentiated w.r.t. © under the integral sign.
Then, - '

S[fma]-fpuoass o

‘and

el

[f x) L, (6) dx ] fg(x) L, (6)dx
A

= 1+B'(0) )
where B’ (9) = B C)]

25
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Making use of the relation

2L, - ( L, (e)_) L (6), we can write (3) and (4) alternatively as

{[(%lnme)]g@dz-o B
and fg<£>%[mg(e>]g<e>d5-‘1+B'<e) @
J |

respectively,

Since L, (6) is the joint density of XX .., X, when 0 is the parameter, the
relations (5) and (6) may be written in terms of expectations, as

Ee[%lnme)]-o B @
and Ee[g@)%mme)]-uw(e) ®

Combining (7) and (8) we have
d '

Ee[<g<§>—e>d—§mg(e)]-1+B(e). ©®)
The Cauchy-Schwarz inequality states that for any two random variables U and V
withE(U2)<oo,E(V2)<oo,

) _
[Ee{UV)T < By (U?)Ey(v?) (10)

with equality if and onlyif Uand V are linearly related.
Let . U=g(§)—e,v-,dd—eln1,,(e)

Then from ( 10) we have

. ' 2
[1+B'@®) - [Ee(g(&—e)(%mme)}

"2 d 2
< Ee[g()_()—GJ EO[Eln_L,,(G)]

[1+B'(9) T

or Ee[g(K)—elézl\(mf

'5(11)
2 |

where 1, (8) = E, % InL, (6) ] -1, (8) is called the Fisher information in the

sample (X, X, .. ., X,)- The equality (11) is known as the Cramer-Rao
inequality. ' : '



{

- - ; M:;'. X
It can be shown that

1, (6) = nl; (6)

where L, (6) is the Fisher informatéen contained in one observation. The inequality
(11) can then be written alternativifly as

[1+B' @) T

12
nl (8) (12

E[g(X)-0] =

where, we write I (8) in place of I (9) for simplicity.

If g (X ) is unbiased for 6, that is, ifEq(g(X)) = 6, then

Bo[g(X)-07 = Vary[g(X)]andB (8) = 0 and hence B' (6) = 0. Thus,
for an unbiased estimator g ( X ) of 6, we have

Varg[g(X)] = 1/{ni (6)] (13)

The lower bound 1/(nl (6)) to the variance of an unbiased estimator g(X)of8,is
called the Cramer - Rao lower bound. Thus if the regularity conditions assumed
carlier hold, the variance of an unbiased estimator g ( X ) of 6 cannot be smaller
than 1/(nl (6)) and hence if an unbiased estimator of a 8 has variance equal to
1/(nI (8)). It is the minimum variance unbiased estimator of 6.

If g (X ) is an unbiased estimator of & (6), a known function of 6, the Cramer-Rao
inequality takes the form

Varg[g(X)] = [ & (6)]/|nl (8)} (14)

We can now define an efficient estimator.

Deflnition 4: An unbiased estimator g ( X ) of 8 (8) is said to be efficient in the

Cramer-Rao sense if its variance is equal to the lower bound [6'(®)T/TnI(8)]
where n is the sample size and I (8) is the Fisher information in a single observation.

It is also a uniformly minimum variance unbiased estimator (UMVUE)of 8(6)in
the sense that it has the smallest variance uniformly for all 8 € Q in the class of all
unbiased estimators.

Note that it is possible that there exists a uniformly minimum variance {unbiased
estimator for 0 (8) but the variance of this estimator does not attain the Cramer -
Rao lower bound. ' : '

- The __Fishér information I (8) can be shown to be equal to

2
-Eo[%mf(x;e)]-

This is sometimes computationally simpler compared to the formula

: 2
" Eq [ % In L,, ©) ] » given earlier.

Example 2: Let X, X,, . . ., X, be a random sample from a normal population with
unknown mean p and variance unity. The density function of a normal random
variable with mean y and variance unity is
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£(cs ) = (2012 exp[—%(x-u)z.}

and thus

Inf(x;p) = —-21-ln2n—%(x—u)2,

d
dulnf(x,lu)-x—lu

&£
—hnf(x;p) = -1.
dp

2

dd—zlnf(x;u)} = 1and the Cramer - Rao lower bound is
W

HenceI () = —E

n . ) .
1/[nI(1)] = 1/n. Now, we know that X = n~! 2 X; is unbiased for u and
i=1
Var, ( X ) = 1/n. Therefore, Var,, ( X ) attains the Cramer-Rao lower bound an:
is the UMVUE of p. It can be shown that there is only one such UMVUE, that i

. is the unique UMVUE of p.

Example3: Letfornz3,X,,X,,..., X, denote a random sample of size n fron.

n .
Poisson population with parameter A. Then, X = n~! 2 X; isunbiased forA, and -
i=1

‘Jark(i) = An. Now,
f(x;A) = e A%y,

IME(x;A) = ~A+xInA—In(x!)

%lnf(x;k) = -1+x/A,
&
and ——ZInf(x;A) = —x/A?
dA
g = 2 -1
Therefore, I (A) = "Ek[az_h‘f(x,;)")] = E(X)/\° = A7,

So that the Cramer-Rao lower bound is. 1/[nI (M)] = A/n. Since
Var, (X) = Mn, X is the UMVUE of A. .

El) LetX;,X,,...,X, be indepen;icnt Bemoulli random variables, that is, -
X1, X2, - - . , X, are independent random variables with PX; = 1) =p,

P(X; = 0) = 1-pfori = 1,2,...,n. Show that if
S = X1+ Xy +...+X,, S/n is the UMVUE of p.

-

The next example demonstrates that a uniformly minimum variance unbiased
estimator for a parameter might exist but the Cramer-Rao lower bound is not
attained.

Example 4: Let X be a Poisson random variable with parameter 6 and suppose we

wish to estimate 8 (8) = ¢ ® on the basis of a sample of size one. Consider the -
estimator ' ' :



1(A) = LifX =0
- 0, otherwise.

-6 ‘ . . -8
Th X)] = 1-P,[X = 0] = ¢ ,so that T (X) is unbiased fore ~ Also,
e Fo [T ] ol ] ) Point Estimation

2

2
Varg [T (X)] = Ee[{T((X)} ]—[EelT((X)}]

- Eo[{T(X))T -

2
ButEe[[T(X)} ] - EG[T(X)] = ¢ % and hence

Varg (T(X)) = ¢ = = e ®(1-¢"%).
_Now, the probability mass function of X is

f(x;e) - e“"e"/x!
and thus,Inf(x;0) = -8 +xmlO6-In(x!),

4

delnf(x;e) = —1+%x/60

d2 2
—zlnf(x;e) = —x/6".
do

Hence I (6) = —Ee[a%lnf(x;e)] = 9'2Eg(x) -0

Also,8(0) = ¢ 9, so that 8’ (8) = Edﬁ d5(0) = —¢ ® Hence, the Cramer-Rao

lower bound to the variance of T (X), using (14), is

[8 () /1(8) = 0 asn = 1.

But Varg [ T(X)] = ¢ ° (1 -¢ % > 8¢ for 8 > 0. Thus, T (X), though unbiased
for5(6) = ¢ 6, has a variance larger than the Cramer-Rao lower bound. However,
it can be shown that T (X) is the only unbiased estimator of 5(6) = e ® and hence
| is the UMVUE of ¢,

We now Bring in another important concept, namely, that of sufficient statistic and )
! " touch upon it briefly. Let X be a random variable having probability density (or,
mass) function f (x ; 8) and X;, X,, . . ., X, be independent observations on X that
is, let X;, X,, . . . , X, be a random sample from a population with density (mass)
function f (x ; 8). The joint distribution of ( Xl, ) CHNNNID & cleaﬂy depends on 6.
' "Is it possible to find a statistic (a function of ( X, X,, . . ., X, ) which contains all
ic “information” about 8? Such a question becomes relevant when we want to
summarize the available data, because storing large bodies of data is expensive and
might give rise to errors of recording etc. Moreover , it is unnecessary if we are able
to summarize the data without losing any “information”. A statistic containing all
-information about 8 is called a sufficient statistic. We give below a precise
definition.
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AstatisticT = T(X,X,,....X_)issaid to be a sufficient statistic for the
parameter 6 if the conditional distribution of (Xp X ey X, ) given T does not
depend on 6. :

From the above definition, it is clear that if there is a sufficient statistic for 8, then
since the conditional distribution of X;, X,, . . ., X, given the sufficient statistic is

independent of &, no other function of the observations can have any additional
information about 8, given the sufficient statistic.

16.3 METHODS OF ESTIMATION

In this Section, we shall discuss some common methods of finding estimators. We
concentrate on two useful and commonly used methods, namely, the method of
moments and the method of maximum likelihood.

16.3.1. Method of Moments

The method of moments for estimation of parameters is often used mainly because
of its simplicity. The method consists in equating sample moments to population
moments and solving the resuliing equations to obtain the estimatofs.

LetX,,X,, ..., X, be a random sample from a population with distribution
function depending on a k-dimensional parameter 8 =(6,6,..... » 6). Let

m,’n=n_l2X,f , n=12,..., .

be the r-th sample moment. Suppose i = E(X")exists forr = 1,2,...,k The
method of moments involves solving the equation
m’ =u'(8,6,..... ,0 ), 1srsk

In order to estimate the k components of 8, one clearly needs to equate at least k
sample moiments to k population moments. However, which of the k moments are
to be equated is not specified. In practice, one generally takes the first k moments .
The method is now illustrated by some examples.

Example5: Let X, X,, ..., X, be a random saxhple from a normal population with

mean p and variance o % Here, the parameter § = (p, o 2) is 2-dimensional. In

order to obtain the method of moments estimators of pand o, we equate the first
two sample moments to the corresponding population moments, that is,

n
m = n? EXi = )—(isequatedtoE(X) -

i=1 .
. ‘
andm,’ = n”’ EXf is equated t0E (X %) = w+o’
i=1

The first of these two equations gives X as an estimator of u; ﬁ = X. From the -
A — L
second, using u = X, we have an estimator of o 2 as

A

2 —
0" = m'2—-x2

-n’ }n:x?-iz -n! i(x,.-i)’ |
i=1 i=1



‘ A e a9, i . .
Observe that p = Xisanunbis  :Suinaiof of wbuto 2 .¢ not unbiased for Polat Fstastion
A A . 2 .
However, both p and © 2 are col...ent estimators of p and o respectively.

Example 6: Let X;, X, . - - X, be a random sample from a uniform distribution
with density function

f(x;op) = —%a-, asxsf

B

= 0, elsewhere.

Then,p', = E(X) = (@+B)/2E(X}) = uy = (o +af + B3
Instead of equating m’; to 'y and m’; to u',, we may as well equate m'; to p)

andm,; = ™ z X; X} tow, = Var (X). It is easy to see that

i=1
Var (X) = E(X%)=(E(X))’

- (B-a)/12.
Thus, the equations to be solved are -

X = (a+p)/2
and 0 Z(xi-)‘i)2 - (B-a)/12.
i=1

The solution of these equations give us the method of moments estimators of
aand f as
. )
a=X-{3) X, -X)/n
i=1 .
A — L — 2 lé
B=X+|3)X-X)"/n
i=1

‘ E2) LetX;, X5, .. +» X, be a random sample from a Poisson distribution with
parameter A. Obtain two estimators of A using the method of moments.

E3) LetX,X;, ..., Xybea random sample of size N from a binomial populatici:

with parameters n and p, both unknown. Obtain the method of moments
estimators of n and p.

As we have mentioned earlier, the method of moments is useful in practice because
of its simplicity. The properties of such estimators are not established in general and
have to be investigated separately for each estimator. Another method, which gives
“efficient” estimators for large samples, under some reasonable conditions, is the
method of maximum likelihood. We study this method in the following subsection.
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To appreciate this method of estimation, it is perhaps best to start with an example.
Example 7: Let X, X,, . . ., X, be a random sample of size n from a Poisson
population with parameter 6. The likelihood function, based on the-observations
Ky X 08

L, (6) .'1"'11¢="’e"i/xi 1,850,
i= ‘

The method of maximum likelihood consists in choosing as an estimator of 6 that
value of 8 (say 6y) which maximizes the likelihood function L, (6). 6 is called the
maximum likelihood estimator of 8. Obviously, 8, depends on the observed sample

X, X;5 -« -, X, In order to find 2 maximum likelihood estimator of 8, we have to
find the value of 8, at which L, (¥} is maximum over the interval (0, «),as 6> 0
here. Now, '

InL,(8) = -n0+{ ¥ X, 1ne-im(xiz).
- i=1

i-1

It is known that In L, (8) attains its maximum at a point 6, if and only if L, (6)
attains its maximum at 6, Now,

L, @) - -n+ in/e'

d . -1 %
Therefoie, ) InL,(8) Ie_eo = 0 provided 6, = n 2 X,

i=1

In order to verify whether L, (8) is indeed maximum at @ = 6y, we compute the .
second derivative of In L, (8) at® = 6, and check whether it is negative . Here,

d2 ‘ 2 o
—7inL, (6) = -6° Y X;
de i=1

2 ‘.
and clearly, 5%5 InL,(8) |q. o, < U- This shows that L,, (6) is maximized at

0 =6, = z X;/n. Since there is a unique maximum for L,, (6) and the maximum

i=1 :
. .
is attained at 6 = 6, = ! 2 X;, 6 is the maximum likelihood estimator of 6.
i=1

We next consider an example where the parameter 6 is a vector instead of a scalar
as in Example 7.

Example 8: Suppose X,, X,, . . ., X, is a random sample from a normal populatior

with mean . and variance o 2, both unknown. The likelihood function is

Lo = o)™ exp |- =5 3 06-u [t
i=1 )
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L, (1,00 = c=5mo"-—5 ) (X-n
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where c is a constant independent of p and O 2 The partial derivatives of In L, ©

w.rt.pand O 2 are

d < 2
quin ke o’ = 21 (X; - w)/o

d 2 n < 2,4
—InL (o) =-—73+ X, -w/20 .
do’ 0’ ;%

Equating these two partial derivatives to zero, we get the likelihood equations.
These equations have unique solutions

n
pe X=X & =t S -X0P
i=1 i=1
The verification of the fact that these solutions actually maximize the likelihood
A
function is left to the reader. Hence, p and &2 are the maximum likelihood
estimators of u and © 2 respectively.

E4) LetX;, X;,..., X bea random sample from a population with density
function

f(x;0) = B'le-"/e, x>0

= 0, elsewhere.
Find the maximum likelihood estimator of 6.

In the case of a scalar parameter, the likelihood function is a function of one
variable (as in the case of Example 7) and if this function is twice differentiable in
the domain of its definition, then one can use the methods of Calculus to find the
maximum. However, if the parameter € is a vector parameter, the likelihood
function is a function of several variable and finding the points of maxima of such
functions might be difficult in general. In such cases, special methods, depending
on the problem on hand are needed. Of course, it is possible that the likelihood
function may not be differentiable at all and in that case also, we might have to
resort to special techniques. The following example is an illustration of such a
 situation. ‘

Example9: Let X, X,, .. .. X be a random sample from a uniform distribution
with density function
.

f(x;0) = 1/6,0=X=s90

= 0, elsewhere.
The likelihood_ function is

L,,(e)-e“‘ if 0s X;s Bfori = 1,2,..... ,n

= (), otherwise
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We can write the likelihood function alternatively as
L.n(e) - e—n, if OSX(n)Se

= (, otherwise

Where x ) is the largest observation in the sample. The derivative of L, (8) does not

vanish and hence, we cannot use the methods of Calculus to get a maximum
likelihood estimator. However, L, (8) attains its maximum at 8 = x, and X, is

the unique maximum likelihood estimator of 6.

There is another way to look at the same problem. Since L, (8) = 6™ °,0< X; 50

is an ever-decreasing function of 6, the maximum can be found by selecting0 as
small as possible. Now, 8 =X fori = 1,2,..... , 0 and in particular, 6 = x,).

Thus, L, (8) can be made no larger than 1/x{, and the unique maximum likelihood
estimator of 8 is x,y.

Are maximum likelihood estimators unbiased and unique in évery situation?

The answer to both the above questions is in the negative. That maximum
likelihood estimators need not be unbiased is demonstrated by making an appeal to

n
Examples 8 and 9. In Example 8, we had seen thatn~ 1 2 X - X)2 is the

iel

maximum likelihood estimator of 2, the variance of a normal population with
unknown mean p. Clearly, this estimator is not unbiased for o 2 Again, in Example
9, it was demonstrated that X(5) the largest observation in the sample is the
maximum likelihood estimator of 0. But, it can be shown that :
Eq < X(m) ) = n8/(n + 1), so that X, is not unbiased for 6.

To see that maximum likelihood estimator need not be unique, consider the
following example.

Example 10: Let X;;X,, . . . , X, be a random sample from a uniform distribution v

2 2
likelihood is

over[6«-1-,6+l],whereeisunknc')wnandBEQ - [x:—oo<x<°°}.'l'he

L,(8) = 1,if6-1/2sX;<0+1/2fori = 1,2,...,n
- 0, otherwise; =

or, - -
L,(8) = 1,if9—1/2$min(X1,....,Xn)gmax(xl, ..... » X)) s0+1/2

= 0, otherwise.
Thus, L, (8) attains its maximum provided
80-1/2 = min(X;, ..... » X3)
and 6+ 1/2 = max (le, ..... » X p)s

or, when

8 = min(X;,..... » Xp) +1/2



ilnd e s maX (Xl’ ..... 'Y }{n) - 1/2- ru!nt Esmauon

This means that any statistic T (34, . . ., X,) satisfying

max X;-1/2 s T(Xg5 ...+ , K= mim X, +1/2
is a maximum likelihood estimator of 6. In.fact, forO<a<l,
T(Xp X oovvr Xp) = (miaxXi—1/2)+a(miinXi—m?xXﬁ 1)
lies in the interval max X,-1/2=sTs m’m X; + 1/2. Thus, for anya,0<a <1,

| the above estimator is a maximum likelihood estimator of 6. In particular, for
i a = 1/2, we get an estimator T; = ( max X, +minX;)/2and fora = 1/3, we
1 1

! get the estimator T, = (4 maxX;+2 min X; -1 )/6.
1 1

Both T, and T are maximum likelihood estimators of 6.

Are there any “good” properties of maximum likelihood estimators?

Before we attempt to answer this question, we introduce the concept of asymptotic
efficiency. An estimator T, based on a sample of size n for a parameter 0 is said to

be asymptotically efficient if lim n Var o (T,) = 1/1(6) where 1(0) is the per

n ~-» XD
observation (Fisher) information. Recall that the Cramer-Rao lower bound to
Var, (T,) is 1/{nI (8) }, under some regularity conditions. '

P The important properties of maximum likelihood estimators are that under certain
| regularity conditions, these estimators are
(i) Consistent
(ij) Asymptotically efficient
_ (ili) Asymptotically normal with mean 6 and variance 1/{ nl (8) }.

The third property says that for large samples, the distribution of the maximum

‘ likeiihood‘ estimatox\é of 0 is approximately normal with mean 0 and variance
‘ 1/{nl (8) }. :
The exact statements of the above results and their proofs are beyond the scope of
this course and are therefore not given here.

154 SUMMARY

In this unit, we have

1. discussed some properties that an estimator should preferably possess, like
- unbiasedness, consistency and efficiency, :

2. derived the Cramer-Rao lower bound to the variance of an estimator and
demonstrated the use of this bound in finding minimum variance unbiased -
estimators,

3. discussed two commonly used methods of estimation, namely, the method of
moments and the method of maximum likelihood.
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16.5 SOLUTIONS AND ANSWERS

E1)

E3)

Here, the probability mass function of the random variable, X is

fGx;p) = P (1-p) X = 0,1
Therefore Inf{X;p) = XInp+(1--X)In(1-p),
4N P) = X/p=(1-X)/(1-p)

2
and ad—z-lnf(x;p) - —X/pz—(l-X)/(l—p)z.
p

Henee 1 (p) Eplfd;‘lnf(?flp)]
dp
- EP[X/p2+(1—X)/(1—p)2]

= 1/pt1/1/p) = l/lp(l"‘m],

since E, (X) = p. Therefore, the Cramer-Rao lower bound to the variance is
p(1-p)/n.LletS = X, +X, +...+ X,. Then S/n is unbiased for p. Also,

Var, (S/n) = n? iVarp(X,.) = n'z[np (1-p)] = p(1-p)/n. Hence

i=l

S/n is the UMVUE of p.

Here X, X,, ... . X, is a random sampie from a Poisson distribution with
parameter A. Hence E (X;) = A for i = 1,2,...,n. Equating the sample
mean to the population mean leads to the following equation:

n! iXi = A
i=1

which gives a moments estimator of A as A = X. Again, since
E( X’ ) = 2+ A, equating the second sample moment about zero, viz.,

n
-1 2 Xi2 to the corresponding ;population moment yields the equation
iwl
-1 . 2 2
LIS SR A
i=1

Since A > 0, a unique positive solution of the above equation gives the seoond
moments estimator of A as

n Ye
A=f-1+ | @m) TXi+1 /2
i=1
We are given that X, X,,.... Xyisa random sample from a binomial

population with parameters n and p, both unknown. We know that if X has a
binomial distribution with parameters n and p, then

E, (X) = np, Var, (X) = np(1-p).

Therefore,E, (X°) = Var, () + (E, (X))’ = np(1-p)+1"p" Ifwe



N N Point Estimation
equate the first two sample moments Nt z X, andN ' 2 Xf to the first
{01

i=1
two population moments, the following equations result:

X =N! ixl = np
i=1

N
% =N' zxf - np (1-p) +0°p".
i=l

The first of these gives 6 = X/n as an estimator of p, where 1 is an estimator
of n. Using this estimator in the second equation and solving for n gives

ol

. 2 ')ZZ
ns= — p— -
X2+X-9

+

o
X2+X-N' ¥
il

E4) Here X;, X, - . - - X, is a random sample from a population with density
function

£(X;0) = 67" exp (-X/0),X>0,8>0

= 0, elsewherc

Therefore, the likelihood function is

L, (8) = 6 exp| - ixi/e
i=1

InL,(8) = ~nln® - ixi/_e

x=1
. _d_ - ) n 2
and gl 1, (6) = -n/8 + xExm/e :
Equating -(;% In L, (9) to zero, gives on solving for O,

é - z X/n = X the sample mean.

im1
Also,
ilniﬁ,(é) - -6 -2 ixi/tf
e i=1

_ which is negative at ® = 8 = X, Hence X is the maximum likelihood
estimator of 0. ' '
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16.6 ADDITIONAL EXERCISES

1.

|9

Let Xy, Xy, . . . . X, be a random sample from a distribution with density
function

f(x;0) = 6'1e°"/9,6>0,ifx>0

= 0, otherwise.

Show that X = n” 2 X; is unbiased for @ and Var, (X ) = 92/_n.

i=1
Does Var, ( X ) attain the Cramer-Rao lower bound?

Let X, Xy, . ... X, be a random sample from a normal population with mean

. 2 . . .
zero and variance o °. Construct an unbiased estimator of O as a function of

n
. o . . 2
2 I X; l You are given that if X is normal with mean zero and variance o %,

iw=1
E(1X]) = oV 2.

Let X, X, . ... X, be a random sample from a distribution having finite mean

. . 2 ' 2 -3
u and finite variance o “. Show thatT (X}, X,,....X,) = n—m ;Ell X;

is unbiased for p.

Let Xy, X,, . ... X, be a random sample of size n from a distribution with
probability density function

£(X;8) =08X*"0<X<1,650
= (), elsewhere.

Obtain a maximum likelihood estimator of 6.
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17.1 INTRODUCTION

In Unit 15, we introduced some basic notions about testing of hypothesis. There we
described some concepts and definitions useful in testing of hypothesis problems. In
this unit, we shall discuss the problem of testing of hypothesis in greater detail. To

begin with, we shall introduce some conegpis and definitions. Ngx[’ we §hﬂ_”
describe, an important result (Neyman-Pearson Lemma) for constructing critical
regions for testing a simple hypothesis against a simple alternative. We also discuss
the likelihood ratio test. The usage of these two procedures of testing are illustrated.

Objectives

After reading this unit, you should be able to:

e derive critical regions for testing of hypothesis,

e derive the power of these tests.

17.2 SOME CONCEPTS

In Unit 15, Section 15.5, you have been introduced to some basic notions about
resting of hypothesis, like two types of error, level of significance, power critical
region etc. We recall these concepts.

LetXy,..., X, bearandom sample with joint distribution function
F(x,0),8 € Q. On the basis of the observed sample we wish to test the null

.

hypothesisH,: 6 € €2, against an alternative H:0e€eQ =q- 2. Both
H, and H; may be simple or composite hypotheses. Let X", the set of 'all possible
values of X, ..., X , denote the sample space. Then X" C R"™. A rule that specifies
a subset C, CC X", such that

if(X,..., X,) € C, reject H,

if (X, ..., X,) & Cdo not reject H,

(or, accept Hy)
is called a test of H, against H, and Cis called a critical region of the test. The

statistic used in the specification of C is called a test statistic. In such a test
procedure, one might commit two types of error. The probability of type I error is

a(8) = Pq(Reject Hy), when 8EeQ,

10
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and provauiiity of type il error 1s

p(8) = Pg(acce;ptHo),whenQEQl. Lét
v(8) = Py (reject Hy), when 6 € Q,
=Py (C)whenpegq,
- 1~B(Q)whenQEQl.

The function y ( 8) =1-8¢ 8 ) as a function of 6 is called the power function
of the test. In the construction of a test.procedure, we fix the probability of the
Type Ierror to a desired small level and choose one for which y ( 8 ) is maximum
(or, equivalently, B ( 8 ) is minimum). Thus, given 0 s o s 1, our interest is then to
construct a test procedure for which

a(Q)saforQEQO

andy(8) = 1-B¢( 8 ) is as large as possible (or B ( 8 )) is as small as possible,
8EQ, ). A test of null hypothesis H, =6 £, against H) ~ 8€Q, issaid to

havesize o, 0s o 5 1,if

Supa (8) = a.
BEQ,

The chesen size o is generally unattainable. In fact in many problems only
coutnitable number of levels o in [ 0, 1) are attainable. In such a case we usually take
the largest level less than o that is attainable. We also call a as the level of
significance of the critical region Cif

a(9)saforallOEQo.

fSupa(d) « a, then the level of significance and size of critical region, C, both
seQ,

equal a. On the other hand, if Sup @ (6) < a then the size of critical region Cis
- eEQ,

smaller than its level of significance ¢, if H, is a simple hypothesis, then it is clear
that a (6), 8 € ) is the size of the critical region C, which may or may not equal a
given significance level o, : ‘

We now define a criterion for selecting a test statistic for testing Hy: 6 € Q, against
H :8€Q)ifH,isa composite hypothesis. A test with critical region G of size -

& = Sup a(6) is said to be Uniformly Most Powerful of size ¢ of testing H,, if it
8EQ, -

has the maximum power among all critica] regions C of the same size. In other :
words, G is the best (Uniformly Most Powerful) if for all tests C with size a
(Which is the size of Qo) the inequality Py (Go )2 Py (C)

holds for each 6 € Q

Uniformly most powerful tests do not exist for many hypothesis testing problems.
Even when they do exist, they are often not casy.to find. We now describe a test
procedure (equivalently, obtain a critical region ) for testing a simple hypothesis



against a simple alternative. In this case, the power function, y (9) reduces to a
single number, so that the “uniformly”, in uniformly most powerful, becomes
redundant, sad we examine the question of the existence of a most powerful test of
giver significance level .

17.3 NEYMAN-PEARSON LEMMA

We first state (without proof) an important result, called Neyman-Pearson Lemma
which 15 very useful for constructing uniformly most powerful tests.

Lemma 1: Let f;, f;, . . . be integrable functions of Xy -+, X, over a space S and
iet Cbe any region such that

ffidx = a;(given),i = 1,2,... - (1)
C

Farther, let thexe exist constants Ky, k,, . . . such that for the region G, within which
fpzkfy +kb+... .. outside which fy <k, f; +k, £, +.....,

and the conditions (1) are satisfied. Then

[ foax = [ fdx _ - (2)
G, C

We now describe the application of Lemma 1 to the problem of testing of simpie
hypothesis against a simple alternative. :

For a fixed positive integer n, let b, CTRNNN X, denote a random sample from a

density f ( x, 8 ). Let Xis -+ ... X, denote ihe observed sample. Then the density of

n
X=X, ... X,) is Py ajl‘llf (Xj, 6). Let Peo( x )and Pol ( x ) be the densities of
X under H, and H, respectively. The problem is that of determining a critical region
Cg such that

f Pao(?ﬁ )dx = a(assigned value ) ‘ - (3)

S

and

0

The optimum region Gy is provided b‘y choosing fy = PB: (x)andf, = Feo (#)in
Lermma 1. The optimum region Co is defined by

Co'{ilpe,(l‘.)ZKPBO({)} (9
provided there exists a k such that (5) is satisfied. The test can thus be written as

PG (.’.(.) » i 6
.8 | (8
Peo(l‘.) z k. (

Thus we determine the distribution of T under H,. If the distribution is continuous
then there exists a k such that

P, (T2K) = a
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fPel(g)dgisamaximum., . o (4)
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Elements of Statistical for any assigned a. The test, T = k, depends on the simple alternative H,. If the test
Inference is independent of the alternative hypothesis in a class of alternatives, then we have a
uniformly most powerful test with respect to all such alternative hypothesis against
a simple hypothesis.

We now consider some examples.

Example 1 : Let 3}, X, ..., X, be a random sample from a normal distribution

N (i, 02"). Assume that o ° is fixed and known and p € (- o, ). We wish to
obtain a criticai region for testing Hp:u = pgagainstHy :p = p,;, where
Hg and w, are the specified values of y.

We have,
-2 n
2 2
Py (X) = (200"} expl-—5 ¥ (X;-n,)
i=1
and

2 -n/2 1 had 2
Py (X) = (2n0%) " exp —Fi_Zl(xi—uo) :

The critical segion, using Neyman-Pearson Lemma, is obtained as follows :

P, (x)=zkP, (x)

n
I B

i=1

i=1

1 a
= kexp[—;;? E (xi_uo)zl

. 1 n . n 2 . ':-:«
= = D G-m) - Y K- [ 2k
1207 {01 i=1 .
=> X (i — W) = k, (say)
' - . n
taking naturai logarithm and simplifying where X = 1/ z X;.
i

Case ]

Let u. > i, Then the critical regioh is
X = k; (say)
where k; is to b determined such that

E’"o{f F kl} =
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e

T .
or P{X Mo 1 Ho}ga

o/Vn = o/va

K, - pyg
or P{ZZW}=G

where Z is distributed as N (0, 1). Therefore choose k, so that

P(Z=Z,|uy) =f %Zn exp [—%xz}dx =
(k=) _

o/vn

Denoting by Z_ the upper a probability point of N (0, 1) distribution, we have
(ky —pg)/o/vn = Z,
=  k =py+o/vnzZ,
Hence the best critical region in this case is
G, = {X|5(—>p0+0/\/ITZu}
orCy = {XI\/:T()?—;JO)/CDZQ}
Case Il Let p, < pg,. Then
X s k,
where k. '3 choosen such that
P[i < kzIP-o] = q.
The best critical region in this case is

G -»»{XI)—(<;1,O—ZGl 0/\/17}

or C0=

Xl\/rT‘(X?T“'”<—Zu’

where -Z, = Z, __ is the lower a probability point of the standard normal
distribution.

It may be seen that the test X = k; ( Xs k; ) is uniformly most powerful for the
class of alternatives p; > (k1 < no) because k; ( k, ) is independent of . But

there is no uniformly most powerful test for the entire class of alternatives' Ky = W

In case I, the power of the test is

P, (C) = P, (X=k)

- P X-w - ki -y
o/vVn o/Vn



Ficmenis of Statistici: kl -
Iaference =P|Z = 0'/\f[1_
Ky — iy
= 1-P [ Z = oy~ ]
kj — iy
-1 hos Bl
’ ¢[ o/Vn

where § (+) 18 the ¢istricution function of a standard rormal distr:bution.

Similarly the power of the test for the second case is
P, (C)) = P, [x s k, ]

k-

=P[Z‘W5‘

ky -1y
-9 q/VtT

£l Led A t¢ 2 random sample of size 1 from a population with p.d.f.

5

f(x 6 - /M exp ( - g— J, x = 0, 8 > 0. Obtain a best critical region of size a
for testing b, 1 © = Oy against H; : 0 = B, = 6, and also the power of the test.
L2) Colatm a wost e sie of we test and power of the test for testing a null

B
hypothesis 8, 1 5 ~;f—7;= €XD ( ) ), X € R against an alternative
LA

H, : X~1/2 exp 1 ~jx] }, x € R. Develop the test on the basis of a single

observation.

17.4 LIKELIHOOD RATIO TESTS

In Section 17.3 we described the Neyman-Pearson lemma for obtaining the best test
for testing a simple hypothesis against a simple hypothesis. But when the
hypothesis to be tested is composite rather than simple, it becomes necessary to
introduce some other principle for obtaining good tests. ‘

Neyman and Pearson suggested a simple method of construction of a test statistic
which is closely related to the maximum likelihood method of estimation.

Suppose L (8 | X) is the likelihood function of 6 corresponding to the set of values
X = (X}, Xy, ..., X,). Suppose we are required to test the simple hypothesis

I'Io 10 = 90
against the compuasite hypothesis

lee » 90.

Sample output to test PDF Combine only

. e
v - |



In this situation, given the observation X, intuitively we should reject Hy in case Testing of Hypotheses
L (8, | X) is too small and accept it otherwise. This means that the test be based on
the critical region

Go = {XIA(X) <2)

where A is the likelihood ratio defined by

L(6|X)
") = el
eEQ

and A is a constant so chosen as to make the probability of Type I error associated
with the test equal to a..

When Hj itself is a composite hypothesis, say
Hy:0€Q,

the likelihood is not a constant under Hy, and in order to judge the acceptability of

the null hypothesis in the light of the observation X, we compare the highest value
of the likelihood under H,, i.e.

SupL(8]|X)

8EQ,

with its highest value under the model, i.e.,

SupL(8]X)
0EQ

Thus here we base our test on the likelihood ratio

SupL(8|X)
6EQ,

“ SsupL(8]X)
6EQ

A(X)

The critical region of the size-a likelihood ration test of Hy against H, is
G = [XIM(X) <)
--iT Ay is determined by the céndition

Sup Py{X|M(X) <X} = a
8EQ,

The critical value of the ratio is determined by consideration of the size of the test.

Itis clear that 0 s A < 1. As in the case of Neyman-Pearson lemma, if the

- distribution of A is continuous as, then any size . is attainable. If, however, the
distribution of A is discrete it is difficult to find a likelihood ratio test whose size is
exactly equal to a. It is, however, possible to obtain a likelihood ratio test of size a
by using a randomization procedure which we shall not discuss here. We may
also choose the largest C such that '

Pe{xlx(X)<c}saforaueeQO.

- Sample output to test PDF Combine only



Elemcats of Stath: i Example 2: We consider here the problem of testing Hy : b = U against all its
Inference .
alternatives ir sampling from N (i, o 2), where both p and o are unknown. In this

case
Q = {(uo,oz);oz>0}and
Q= {(po,u,oz);-oo<p,<oo,02>0}(

We shall write 8 = (i, 02).

Sup L(8]|X) = Supf(xpxz,---,'xmg)

8egq, 8€Q,
1 exp i (xifl‘o)z
o (V2x)® N

1

n
Under Hg,the MLE of 0”is 5% = % 3 (% - o)’

-n/2
Thus, Sup L{6]X) = £ —
seQ, n
@n/n)*? {z(xi-ué)]
i=1
Now
Sllp L(_l_.) Sup f()(lvx29 . :xn’g)
8EQ
Sup L exp i X -u)’ .
(ovVZr)" “ 20?
Under H, the MLE of p.,ozare
;11-2 ;6% e 2 3 (%-X)
iml l-vl
Thus
-0/2
sup L@8|X) = = e
8EQ, ] —
(2n/n)™? {2 X,-X ]
3 1
r 2 T‘/z
Y x-XY
AE) = | ——
Y Xi—no )’
1
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1“’2 Testing of Hypotheses

3 x,-% )
1

i(xi-i)zm(i-uo)z
1

1

1+ n(i—uo)z/i(xi-'i)z
1

The likelihood ratio rejects Hy if

=> — <C

n
Since A (X) is-a decreasing function of n ( X - Uo )2/ 2 X;-X )2, we reject Hy if
1

v (X -y ).

V=, -X)7?

-

ihat is, if

Vo (X -pq)
ln Sl‘o ‘>Cl,

n
where §° = (n-1)"1 2 X; -X )2. The
1

Vi (X —pg)

statistic t(X) = 3

has a Student’s t distribution with (n — 1) d.funder Hy: p = p, but under
H; : 1 = pg, t (X ) has a non-central t-distribution with (n - 1)'d.f. and
non-centrality parameter & = (i - iy)/0. Thus the critical regionis

{t]> G, (for simplicity, we write t for t (X ) )
where C, is so chosen that

P9{|t|>Cz} - a.

Let G, = t,_, o in accordance with the distribution of t ( X ) under Hy. Thus the
two sided test obtained here is
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Inference

Suppose we now consider the problem of testing Ho : 1 = Mo against the class of

alternatives H, : u = [t; > o. In this case
Qp = {(po, oHlo? >’0}and

Q= {(ul,oz);upuo,ozw}

) ) . e—n/l
Sup L{8| X) = , /2
sEQ, n
- va)”? ‘Z(Xi—uo)"
1
andk
< 2
-3 Xi-w
1 i
Sup L{8|X) = Su exp -
Sup LOI0 = B \ovmr 20°

o >0

The MLE of pis X, when X = pg and is pg if X.< po- Similarly, the MLE of

2.1 2 7 ¥ 1 S 2 z
ois z(xi-X) wheanp.oandlsn;(x_i—uo) when X < W

Thus
Sup L@|X) = 1 — e ™ if Xupg
eeQ ‘' m _
(2n/n)™? \z(xi-xf}
1
- 1 — & if X<
(2n/n)"? lz(xi-po)z‘
1
Thus ‘
o 1
Y &% -X)
AX) = | ,if Xzpg
3 ;- o’
T
-1 if X<l

Thus the observation X, for which X < Yo fall under acceptable region.
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Hence we consider those x for which X = Hg- Proceeding on the same lines as for Testing of Hypotheses
the set of alternatives Hj:p = pg, we get the test as

Vi (X -
t_LSLo) bt

to reject the null hypothesis. The one sided test is UMP.

In the preceeding illustrations, A (X) was a simple function of X and S* whose
distribution is known. In general, however, there is no guarantee that some such
nice relationship to a familiar variable will exist. Then we must use whatever tools
available to find the distribution of A. Fortunately, for large samples there is a good
approximation to the distribution of A which eliminates the necessity for finding the
distribution of A in situations where this is difficult to find. Under certain regularity

conditions, the random variable — 2 log, A has an asymptotic xz-distribution. The

degrees of freedom equals the number of unknown parameters under $ minus the
number of unknown parameters under £

E3) LetX,..., X bearandom sample from the Bernoulli distribution with
parameter p, 0 < p < 1. Construct a level o likelihood ratio test of Hy:p = p,
againstH, : p > p,,.

17.5 SUMMARY

In this unit we have

1. briefly introduced the problem of testing of hypothesis,

2. discussed the Neyman-Pearson Lemma for testing a simple hypothesis against
a simple alternative,

3. described the likelihood ratio test for testing hypothesis

17.6 _SOLUTIONS AND ANSWERS
E1) We have |

Py (X) = -ell- exp [ -X,/6, ]

and
1
Peo (X) - 'e_o‘ exp[—Xl/eo ].

Using Neyman-Pearson Lemma, the best critical region is obtained as
Py (X) |
W =k
=> 6y/8; exp { % ( 1/6; - 1/60) | =k
After taking logarithms, we have

AQ
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{nference

The test is

X 2k
where K, is to be determined such that

Peo[X1 z kz] =a

that is,lfexp (-x,/8)) dx;, = a

or exp (— ky/6y) = a
=> k, = log (1/(1)eo
The critical region is thus
Co = {X1X; = log (V/a)*]
The power of the test is

Py, (Ca) = Py, [x1 zlog(l/a)e°]

1 f exp (- X,/6,) dx,
log (1/a) °

-3

log (1/a)

[ —exp (- X,/6, )' ]

= exp [ ~log (l/ot)e"/61 ]

—e
Case II
Let 8, <8,
The test is ,
Xisks:

whpre k, is to determined such that
’ Py, (X;sk;) =

that is
1 k
9% {exp (—XI/B(‘,)dxl =-a
-> [—exp(—X/G) 5
Vo - a
=> 1-exp(-ky/By) =
5 = I = log(1-a)™®
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The critical region is thus : Testing of Hypotheses
G - {xl IX, = log (1 —a)‘e"}

The power of the test is

kJ
1

1-exp (—ky/8,)

l—exp{—ei—log (l—a)"%}
1

1-exp { log (1- a)e"/e’ ]

= 1-(1-a)%"

E2) Since both the densities (under H; and H,) are completely specified, it is a case

of testing a simple hypothesis against a simple alternative. Using
Neyman-Pearson Lemma, the test is obtained as

Py, (X)
Py, (X)

zk

P X) 5y x?
TX) = W - exp{-lei»T}

= V(n/2) exp{%(XZ—ZIXHl-l)}

-Mexp{é[am—lf—l]}
- \/(nTZ)"exp(—%)exp{(IXI-l)z/Z}

It is clearly seen that T (x) is an increasing function off' |X|-1 | Hence

T (x) z k if and only if , IX]|~1 l = K'. It therefore follows that C, is of the
form

C(,-{X,lXIzk1 orleskz},

which means that if either a very large or a very small value of Xis observbd,
then we suspect that H, is true and H, is false. The size of the test is

Py, [T(X)2k] = f%‘_ exp (-X2/2) dx + f‘/—l_g exp (- X /2) dx
. : [xllkl D(Isk2

- Z{P(szl)+P(O<Zsk2)},whereZ

is the standard normal variate. The power of the test is

|



Elem: nts of Statistical Pe [T(X)zk] - f le)(p (_lx l)dx + f lexp (_[XI)dx
Inference 1 2 2 :
Wik, sk,
= exp (—k;) + 1 —exp (-k,)
E3) The likelihood function is given by

L{p;X) -jl}lp(x = Xj) = P%xj(l—P)'n—%xj

Letr = ixj.
1

Now

Sup L (p,X) = Sup p' (1-p)' ™"
6EQ Ospst

'The maximum likelihood estimate of p isﬁ = r/n. Thus

r

Sup p'(1-p)"”" - (5) (1—5) )

Osp=1 n n

Sup p'(1-p)" ™" = Sup p'(1-p)" "
8EQ, PSp,

. I . i e r . r
The maximum likelihood estimate of p is p, if p, < py and is y if py = .
Thus,

Sup p (1-p)" ™" = pp(1-pg)" " if Po<I/n

P=p,

r o-r

(4] mee

T 1_ n-r .
Po (1 —po) if po<r/n

n-r

40

=1 if pg 2 1/n

NowAi{X) =

Since A (X) s 1forr>npyand A (X)) +1forr s np, A(X)isa
decreasing function of r. Thus the test statistic A (X) < c implies r > ¢, where
c' is so choosen that

Sup P(r_>c') =-a.
P‘Po'

The distribution of r is binomial with parameters n and p, b (n, p) and
Pe>e) - 3 (§)pa-pr
jmc'+1

It can be seen that P, (r > ¢’} is a non-decreasing function of p, so that

59

feda)
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Sup P(r>¢') = z
© PSPy .

('-')P’c) (-py - Tingof Hypotheses

j=c'+1
Thus for a preassigned o, 0 < o < 1, choose ¢’ so that

o (n) n-j
a -j-c2’+l(j )Pi)(l-Po)

Since r has a discrete distribution no ¢’ may exist for which we get the exact
~hability a. In this case, choose ¢’ such that

n

az y (?)P’é(l—po)"'j

c'+1

a < z(;’)r’%(l—po)""'-

’
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UNIT 18 COMMON TESTS AND
CONFIDENCE INTERVALS

Structure

18.1  latrodudtion
Objectives

18.2  Somwe Lommon Tests of Hypothesis for Normal Populations
18.3 Confidence Iniervals

18.4  Chi-Syuare Test for Goodness of Fit

18.5 Summary

18.6 .Solutions and Answers

18.1 INTRODUCTION

In Unit 17, you bave been introduced to the problem of testing of hypothesis and also
10 some basic concepts of the theory of testing of hypothesis. There you have studied
{wo important procedures for testing statistical hypotheses, Viz. using Neyman-Pearson
Lemma and the likelihood ratio test. In this unit, you will be exposed to the problem
of testing siatistical hypotheses involving the parameters of some important
distributions tarough some selected examples. In this unit, you will also be exposed to
the problent of construcling confidence intervals for parameters of some important

distributions through some selected examples. Youwill also learn the use of chi-square-

test for gocdaess of fit.

Objectives

After readiag this unit, you should be able to:

« derive tsi statistic for various testing of hypotheses problems as well as to
derive power functions,

. construct confidence intervals for parameters of various distributions,

« conduct large sample tests.

18.2 SOME COMMON TESTS OF HYPOTHESIS
FOR NORMAL POPULATIONS

In Unit 17, we have already described with examples two procedures for testing
statistical hypotheses. (See Example 1 and Example 2). In this section we will
employ Neyman-Pearson Lamma and likelihood ratio test for testing of hypothesis
related to a normal population.

Example 1: LetX,, ..., Xpand Yy, ..., Y, be independent random samples from
N (u;, © 2) and N (1), © 2), respectively. Itis desired to obtain a test statistic for
testing Hy: iy = Vo againstpy = iy # when o2 (>0)is unknown.

In order to obtain the test statistic, we use the likelihood ratio test. We have

) 2 2
Q= {(ul,l.bz,o }: —® <Py, Wy <%, 0 >0}

Qo = {m = = u (say), 0°): ,—°°‘<u<°°,‘02>0}

We shall write 8 = (W, Woy 02)

SRPUSTIN




We have Common Tegs gpg
onfldence Interygy,
{Sup ®1x,v)
beQ .
1 1 | e 2 v 2
e 20?2 Xi-w) 2 imy)
@n)2 (o)t 20714 I
UnderHo By = K2 = wand the maxxmum likelihood estimate of Wis
ﬁ = mX +ny and of ¢ 2 is
m+p
X T2
mm 2<x ~uy)* +2<x ~ty +\~(m+n)<x—w
= U’ (say)
Thus  Swp Lg|x,y) . — =55 (m + 0y
' OEQO (ZJCU’)T ZU
D+n
2 (m +n) :
(7)) (-t
Under H,, the maximum likelihood €stimates of Ky o and o ¢ gpe Tespectively
m ~2 n =
D X=X, 2(Y,-¥)
A = A v a2 1 i
Hi=X,p, Y,o° - * = U (say)
and
SupL(8]X,v)
‘m+p
| - 1 2 ex m+nq
‘ 2nu p
{
The likelihoog ratio test js thus
Sup L(g/X, )
, A%, Y) 8eq,
! =
i Sup L(g]x, Y)
!m+n[
u ( 2 )
= u’
m+ g
m - n _ 7
- E(X‘;-X)Z+E(Yi— )?
1 i
e T2 . v Y)y¥._mn — T2
lE(X,-—X) + iE(Y;-Y) +m(X~Y) 55

« . ine onl
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1
mn ()T—?)z

m+m){ ¥ X;-X)* + E(Yi-?'f’
1 1

1+

: X-Y
Now under null hypothesis, B = Uy = g,andt = follows a
V[i+a)
“{n m
e e . 2 u(m+n)
Student’s t distribution withm + n — 2 degrees of freedom, where $° = m
“Thus
s (m+n-2) ma(X -Y)
t - m . 2 n
(men) i ¥ X-X)" + Y (v;-
1 1
and
m+n
1 2
AX,Y) = —_—
t
1+ m+n-2
The likelihood ratio critical regjon is given by
m+n
1 2
AX,Y) = 3 <cC
: t
1+ m+n-2
2
1 (m+n)
=> 2 < C
1+ t

m+n-2
where ¢ is to be determined so that

Sup PG[A(X',Y)<c] -q -
8€q, '

Since A (X, Y) is a decreasing function of t2/(m +n-2)we rejeci H,

if
2
t > c2/(m+n)
(m+n-2)
or
[t]>¢,



where ¢; is s0 chosen that Common Tests and
' ' Coafldence Interval
Sup Py[|t]{>¢] = a '
6eQ,
Letc, = _ in accordance with the distribution of t under H,,. Thus, the
< tm-rn 2, a2
two sided test obtained is
(X-Y) ‘/ mn
S (m+n) >tm+n—2,a/2
Example2: LetX,,...,X, be arandom sample from N (u, 02), u is known and
02>0,isunknown. We wish to obtain a test statistic for testingHO:cy2 - 0(2,
' against an alternative H, : o? - of(> 0(2, )
" We have
1 [ 12 ) |
Po (X )= ——5 expj-—5 ) (X;-n)
% (20, )2 Zof ; '
1 R 2 |
Po,(X ) = —— exp| -—5 3 (X;-p)
% (2:1:00)"/2 P 20(2, ;( '
A
Using Neyman-Pearson Lemma, the test statistic is
T‘(X) Po, (X ) k
- =
Pg (X )
02 -
2
-> (—) exp {172 5 -— E(X‘—u)
1 % %71
2 2w 2 ’ L
= (01-0g) Y (X;-y) = k, taking logarithms
1 .
n » o
- 3 (X;-u)zk since 03 > o), under H,
1 .
Here k is so determined that
Pe (T(X) 2 k) = a
[ 2 2
- Peo E(XF'N') Zkl = QO
1 .
o n B
=> Py E(Xi—u)z/ogzkl/og = a 5
1 ] ’ S

(o)
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1

Inference
(chi-square distribution with n degrees of‘freedom). Let x,z,_ « be the upper -a
probability point of x,z, The test statistic is thus

n
E X,- u )2> = k; and hence

n
XIE(Xi—u)2/0§>Xia
1

2 2 2.2
andk;/0g = ¥, , = ki = 00 Xn, o

On the other hand, if the alternative hypothesis is H;: o = of (of < o(z,), then the
test statistic is

n
> X-w’<k,
1 .
and hence

G - {xlz(xi—luf/o%xil-a.}

where Xn 1 - o 18 the lower a -probabnlxty point of the x distribution wnth n degrees
of freedom.

Example3: LetX,,.. Xm and Y, ..., Y, be independent random samples

from N (u,, o 1) and N (u,, o 2) We wish to obtain a test stausuc for testing

2 2
H,: of = crzagamstHl Oy » O,

Here Q = {(p.l,u,z,of,og):—oo<ui<00,o§>0,i - 1;2}
and ) = {(ul,pz,of,og):—oo<p,i<oo,‘li - 1,2,0% - cg - 02>0}

Weshall use 8 = (u,, p,, of, 02).

Also L(8]X,Y)

m+n

m/2 n/2

(OGN o

1

The maximum likelihood estimates of py, ,, a2, 03 are respectively

A - l
W m
5% | ’

(44

...Mg

T oA 1w S
Xi-x,pz-;EYi,-Y
1
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1 1
Further, ifof - o% = 07, the maximum likelihood estimate of o is
A2
(m+n) E(x -Xy +2(Y -Yy
Thus
‘gSéngo L(8|X,Y)
,k exp [ -(m +n)/2}
m+n m n . m;n
2vmen] 2§ D (X=X P+ 3 (Y -T)
1 1
and
Sup L(8]X,Y)
eeQ,
exp{-—(m+n)/2}
o 2 [ 7
(2n/m)™* (2n/n)"> [ 3 x,-X)? [ XL -Y)
1 1
The likelihood ratio test is thus
‘ Sup L@IXY)
A(x Y) = o
Sup L(8]X,Y)
fen
m % n ;-
w2, »n/2l2(XI X Z(Y' Y)}
m . n
- (m+n) (m+n) E%
S -XP . E(Y,—Y)zl
1 1
Now
@ 2 (. z
[E(Xi-x)z} ¥ -vy
1 i
(2 s, N
> X=X+ ¥ (v, -7
" ! 9
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(X ]!

S1L]

é 14 2 , _?)2/§ (X~ X)*
‘ 1 1

i

14 % (X, —i)z/i (Y, - V)
1 1

m

VX, -X)*/(m-1)
‘\N;"\hdg foa ;

Sy -V n-1)

ey

1
we have
m/2 m/2
m n
( m+n ) ( m+n )
»(X)Y) =

[u(‘:%f] [ni—lu/f)J

The Lkeiiliond ratio test criterion rejects Ho if A (X,Y)<c

i‘ l:; Lu ,‘ “l

- wv that A (X, Y) is a monotonic function of f and A X,Y)<cis
equivalem 1 f < ¢, or f > ¢;. Under H,

3 (X -X)/(m-1)
1

f =
n

S -Y/@-1)
1

B P
(LTS £ 31

¥ {m -1, n - 1) distribution, so that €4, ¢ can be selected, such that

SupPy A (X, Y)<c] = a
8eQ, -

0
or

P(Fs¢) = .P(cmz) 1 a/2

Thus ¢, = F{m~1,n—1, a/2) is the upper o2 probability point of '
F (m - 1,n - 1) distribution and ¢ = F(m-1,n-1,1-a/2)is the low&
probability point of F (m —1,n -- 1)

. ‘ o Y -
e ﬂr__ .
ED) 1.4 Xy, - .., X, be a random sample from N (u, a ), both u hx;dap unknown
Obitain a test statistic for testing H, : o’ = o2 o against all 1t§alt$mat1ves
E2) Let(Xy, Y;), (X, Y,), ..

norma)} dmtnbunon with parameters p, p,, ol b 02, p- Obtain a test for t&snng
Ho P = ()agamstHl p = O,say. :

St

» (X, Y, ) bea random sample froma bivariate
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Common Tests and

18.3 CONFIDENCE INTERVALS Confidence Interval

In Section 15.6 of Unit 15 you have been briefly exposed to some notions of
interval estimation of a parameter. In this section we discuss in detail the problem
-f obtaining interval estimates of parameters and describe, through examples, some
methods of constructing interval extimates of parameters. We may remind you
again that an interval estimate is also called a confidence interval or a confidence
set. We first illustrate through small examples the need for constructing confidence
intervals. Suppose X denotes the tensile strength of a copper wire. A potential user
may desire to know the lower bound for the mean of X, so that he can use the wire
if the average tensile strength is not less than say 8,- Similarly, if the random

variable X measures the toxicity of a drug, a doctor may wish to have a knowledge
of the upper bound for the mean of X in order to prescribe this-drug. If the random
variable X measures the waiting times at the emergency room of a large city
hospital, one may be interested in the mean waiting time at this emergency room. In
this case we wish to obtain both the lower and upper bounds for the wailing time.

In this unit we are concerned with the problem of determining confidence intervals
for a parameter. A formal definition of a confidence interval has been given in
Section 15.6. However, for the sake of completeness we define some terms here.

LetX,, X, . .., X, be a random sample from a population with density (or, mass)

function f (x, 8), 0 € Q C R, The object is to find statistics 1 (X, ..... , X, )and
ry (Xy, . . ., X,) such that

Po (L (X, X,) 5 0 s yXp-.,X,) | = 1-aforall6€EQ C R'. The
interval ( L (X),ry(X) ) is called a confidence interval and the quantity

iane[rL(Xl,...,Xn)sesrU(Xl,...,Xn)]

will be referred to as the confidence co-efficient associated with the random interval.
We now give some examples of construction of confidence intervals.

Exampled: Leg X, X,, ..., X bea random sample from a normal population,

‘N, o 2). We wish to obtain a ( 1 — « ) level confidence interval for p.

&
- i |
¢ b - '

’n .
*LetX = n ! 2 X;: Consider the interval (X —a, X + b). In order for this to be a
*(1 - &)drvel-confidence interval, we must have

P{f—a<u<i+b'}zl—-’a

(hus

«‘:P{——P— n <(X_u)\/17<3\/;} zl-a
. o b

Since, -(X—;L)\/E/JN {0, 1) we can choose a and b to satisfy

p{_h\/;<§_x_—ﬂ)_\/—£<i,/;} - 1l-o
(o] (o] (e} g‘/
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provided that o is known. There are infinitely many such pairs of values (a, b). In
particular, an intuitively reasonable choiceisa = b = ¢, say

In that case
cvn , .
TG = Zaspy Where Z, , is the o/2 percent point of the standard normal

distribution, and the confidence interval is
(X=(0/V) Zyyp, X+ (0VE) Z, )

The length of the interval is (20/Vn) Z,, 2 Given o and a one can choose n to get a
confidence interval of desired length.

Figure 1 : Probability density curve of normal distribution with mean uand varhancedz/; Shows
area %2 in each of two talils

2.
If o “ is unknown, we have from

P{~b<—X-—u<a} zl-a

- that ‘
P{—-%\/17<£)(—S—"El<§ﬁ} zl-a
and - . (n—l)_1 2(xi-i)2.

1

It is known that %(% ~ t,_;. We can choose pairs of values (a, b) usinga
students ¢-distribution with (n — 1) degrees of freedom such that

L ]

bvinh X-p avm
P{" S “SWa<"s }'1‘“

In particular, an intuitively reasonable choiceisa = b = ¢ say. Then

V_ .
c__sl L



and (X - (S/VR) 1,1 os X + (SAVA)1,_y o ) is 1 —a level confidence interval Common Tests and
for w. The length of the interval is (2S/V) t, _; o, Which is no longer constant. Confidence Intervals

Therefore, in this case one cannot choose n to get a fixed length confidence interval
of level 1 — a.. The expected length is, however,

2 i 2 I‘(n/2)
‘ﬁ%-l,a/on(S) - /ah-la2 V o1 I‘(n—l)/2)o

which can be made as small as we want by making a proper choice of n for a given
oand a.

Probability density
curve of ¢ distribution
withn — 1 df

Figure2:¢ values such that there Is an area o./2 in the right tail and a/2 in the left tail of the
distribution. .

Example 5 : Let X, X,, . . . , X, be a random sample, from N (u, 02). 1t is desired
1 A2 p

1o obtain a confidence interval for o 2 when p is unknown.

: . a
Consider the interval (aSZ, bSZ), a,b>0, §? - (n— 1)°1 2 X~ —X—)z. We have
Y |

P[aSz<02'<bSZI = (1—01

‘o that

.18 known that

m-1)S/F~ ¥,

Ve can therefore choose pairs of intervals (a, b) from the tables of the chi-square
fistribution. In particular we can choose a, b so that

2 2
p{—s-;z-l-}-a/z-P[%s
o a o

[- 2

<>

.. ‘Sample outpL’rt to test PDF Combine only
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R RES | -1 2 .
ien -~ = xn 1L a2 and b = Xa-1,1-asand the 1 -alevel confidence

interval for o © when W is unknown is

(n— 1)s (n 1)s*

2
ana/2 anl%

If however, p is known then (n - 1) % is replaced by 2 (X;- u)2 and the degrees
‘ 1
n
of freedom of x2 is n instead of n - 1, for z X;- p.)z/ o
1
— Probability density curve

of chi-square distribution
D withn — 1 df

2 2
’\n L1-an2 xn-l.afl

Figure 3 : Chi-square values such that area 1~ a/2and /2 are to their right.

Example6: Let X;,...,X and Yy, . .., Y, denote respectively independent
random samples from the two independent distributions having respectively the
probability density functions N (1, o ) and N (u,, o ) We wish to obtain a
confidence interval for B~ .

Consider the interval { (X- Y) -a, (X Y) +b } In order that this is a (1 — a) level
confidence interval, we must have

P{(i—?)—a<p.l,—u2<(i—?)+b} z1l-a
which is the same as
P{—b<(i—?)-—(p,l- p2)<a} zl-a

or

. X-Y) - (1 ~ )



7.1 vl \ » | Common Tests and
Here X = n 2Xi and Y m ZYi Confldence Intervals
X -Y) - (b~ 1)
Since ( 1% N@©,1)
(3]
R
n m
we can choose a and b to satisfy
_ X-Y)—(u -
P b - ( )= —wy) - a lea
Viea)  Vwa) V(o)
o . o —+= o i
n m {n m n m
provided that o is known . There are infinitely many such pairs of values (a, b). In
particular, an intuitively reasonable choiceisa = b = c, say. In that case
172
c/{ o ( ;11- + i) } = Z,,; and the confidence interval is
12 172
i 1 1 T 1 1
{(X—Y)—O(;+;‘)- Za,z,(X—Y)+O(;+;) Za/z}
: 11 172
The length of the interval is 20 ( ot ;) Z, /,- Given a and o one can choose n
and m to get a desired length confidence interval.
Ifolis unknown, we have from
P{—b <(i——Y—)—(ul—u2)<a} zl-a
that
- X-Y)—(u, -
> b K D-tm-p) 4
S (l+i) s (L,i) S (1+L)
n m n m n m
n —2 m ’ =2
> X=X+ ¥ (v:-9) .
where . % o 3 i _@m-)S+@m-1s]
m+m-2) n+m-2
Itis known that
X-Y) = (1) |
1t ta + m - 2- We can choose pairs of values (a, b) using Student’s
gV(L, 2 |
n m
1-distribution with n + m — 2 degrees of freedom such that ¢ s
65
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E i

In particular, an intuitively reasonable choiceisa = b = c, say. Then

-a

C
= tn+m—2,a/2!

12 . 172
_ — 1 1 - = 1 1
and{ (X-Y)-S ;+;1' tnﬂ‘!_z_q\/z,(x"Y)"'S ;"';{ them-2a72

is a 1 — o level confidence interval for p; — i,

Example7: LetX,,...,X,and Y}, ..., Y, n,m > 2, denote respectively
independent random samples from the two distributions having respectively the
probability density functions N (u,, cf) and N (u,, o %). We wish to obtain a

' . . 2
confidence interval for the ratio o %/0 { when u; and , are unknown.

Consider the interval ( a S%/ Sf, b S%/ Sf ) a, b > 0, where

n _ m —2
2( -X), S - (m_l);(Yi—Y),

st 9§
so that .
1 (si/Sf)
P b < <=tzl-a

(og/cf) a
Itisknownthat(n—l)Sf/of ~ x%n_l)and(m—l)sg/og - 'x%m—l)'

It is also known that if X and Y are independent x2 random variables with m and »
degrees of freedom respectively, the random variable F = (X/m)/(Y/n) is said to
have an F-distribution with (m, n) degrees of freedom. It is also. -known that if X has
an F (m, n) distribution then 1/X has an F (n, m) distribution, and

Fm.n.l ™ l/Fn m, o Therefore
s/t Si/st .
=2 2 "Ffm-1),@-1
s/t dyd Ehe-d



——

We can therefore choose paris of values (a, b) from the tables of F-distribution. In Common Tests and
particular, we can choose a and b so that Confldence Intervals
2,2 : 2,2
(5/9) 1 (8y/9%) 1
P 7 2 e = (x/z = P 2 7 < g .
(Sy/0y) 2 (S;/07)
Then % = Fo 5, o2 and % = Foni-arandthel —a lcvél confidence interval
foro %/ o f is
2 2
S . 8
= ~a/2 2 " Fo,m, 1702
Sf nml-~-an Sf a,m,1/a/

'E3) LetX,,...,X, beindependently and identically distributed b (1, p) random
variables. Obtain a confidence interval for p.

18.4_CHI SQUARE TEST FOR GOODNESS OF Fit

An important limiting distribution used in connection with categorical data is the

xz-distribution. By categorical data we mean data which are presented in the form

of frequencies falling in different categories or classes. The categorisation may be
- with respect to a character which is either an attribute or a variable. The
categorisation may also be with respect to two or more characters.

In this section we introduce some tests of statistical hypothesis that are commoilly

called xz-tests. These tests have been immensely uséful in practical applications
particularly in problems dealing with categorical data. A test of this sort was
originally proposed by Karl Pearson before the formal theory of testing of
hypothesis was developed. ‘

Suppose X,... ., X, isarandom sample from a discrete distribution given by’
P[Xf j]-pj’j-l""-’k

= 0, elsewhere,

k . .
where p; > 0 and 2 P; = 1. We wish to obtain a test statistic for testing the null
- 4 e

hypothesis
Ho:P, - Poyj = 17”-_’kt
~here poJ are known numbers, on the basis of the observations.

Letn; be the number of X's that equal X; in a sample of size n. Then

k
nj's, i=~bh...,k are random variables, satisfying E n; = n. Further, the
' 1

 distribution of (y, ..., n, _,) is under Hy, multinominal with parameters
k n
o1 s Po - 1))- We are not considering n, (p, ) because 2 n;and z p; are fixed. &7
1 1

/1

.. Sample outpyt to test PDF Combine only

i
t



Elens. ats of Stati - .
Inference
LB

70

. Sample output to test PDF Combine only

Itis known that n; has a marginal binomial distribution with parameter p; Hence

E (n;) = np;, so that E (ny/n) = p;

and we can use njﬁ/n, j = 1,..., krespectively as unbiased estimates of py, . .. , Py
Intuitively, it appears meaningful to compare the observed proportions n;/n with the
postulated proportions pg;, j = 1,. .., k.. The various way which can be used for
such a comparisonare, €.g.,

x "
2 lnj/n—poj | or E(nj/n—poj)z

1

Another measure most common!y used in practice is the weighted sum of squares

k
Q= 2(;“(;)(nj/n—poj >2

k <nj — NPy, )2

1 NPg;

Since, under Hy, npy;, is the expected value of n;, we would feel intuitively that the
observed value of Q should not be large if Hy is true. Thus large values of Q would

lead to large discrepancy between the observed data and the postulated hypothesis
and thus lead to the rejection of Hy.

What is the distribution of Q under the null hypothesis? This is answered below.
We however, omit the proof,

Theorem 2 : In a random and large sample of size n,

k 2
Q | 2 (ni - npOi)
: 1 Py

follows approximately chi-square disiribution with k-1 degrees of freedom, where
n; is the observed frequency and npy; is the corresponding expected frequency of the

: k
“class(j = 1,...,k), Dong=n.
. : :

Since the distribution of the random variable Q, under Hy is approximately xz with
k-1 degrees freedom, the test rejects the null hypothesis Hy if Q = ¢ where c is so
determined that ’

Py, (Qzc) = a(-the desired level of significance).
Thus, we getc = xi_ 1, « and reject the hypothesis Hy at level a if Q > xi_i, a
Fork = 2,Q has appfoximately a chi-square distribution with 1 degree of freedom.

Indeed, fork = 2, the problem reduces to testing Hy : p = pp againstH:p = po in
sampling from binomial population. '
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Probability Common Tests and
density . Confidence Intervals
function .
A
B A A e : x?
0 Xi:1. + Rejection region
Do not reject Hy, i; D Reject H, o

Figure 4: Probability density curve for chi-square distribution with k - 1 df and the decision rule.

Also under H,
k 2 k
(n; —npgy) 1.
E - E Ay M L - —v .
@ ; npy; ;npo,' ar o)
k. 1 k
- —-n 0 1— - 2 1— 0
;npoj pg; (1-po) 21:( Py)

= k-1

We can use the test statistic Q to test that a random variable X has a specified
probability density function f. In order to do that, we divide the entire real line R
(~, ®)intokintervals I;, ..., I, and let Poj = P¢[XE Ij],j =1,...,k Let p; be
the observed proportion of observations in the sample that belong to the interval L

‘Then the statistic

. e A ) ‘
Y
» 1 NPy ;

has approximately a chi-square distribution with k — 1 degrees of freedom, under H.
But, then an important question which arises now is as to how to choose the
intervals I;, . . ., I. The answer to this question comes from the fact that the .
chi-square distribution is only an approximation to the true distribution of Q. So the
cheice has to be made in such a way that this approximation is good. Secondly, the
underlying assumption to the chi-square approximation is that each random variable

B

NPoy

np; )
(‘—p“'/————q— has approximately a normal distribution with mean zero and variance
1 —pg;. This holds provided n is large'. ' |

But if npy; is small, then the term S nﬁj —JPoj ) /npy; in Q will have a dominating
effect on the other terms because of a small denominator. Although the
approximation is often good even for npy; as small as one the following rules of -

~ thumb are generally used in deciding upon the intervals SRS - 61
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1)  Choosel,..., I, such that under H,, Py = PIXE I;] is approximately

equal to 1/k and each npy = E = 5.

ii) Ifany np,’s is less than S, pool the corresponding interval with one or
more intervals to make the cell frequency at least 5. The decision which
intervais (or cells) to pool is arbitrary but we restrict pooling to a
minimum. The degrees of freedom associated with the chi-square
approximation, after pooling, are reduced by the number of classes
pooled. '

Example 8: A random sample of 80. points is picked from the interval (0,1) so that
the underlying density is f (x) = 1,0 <x <1, and zero elsewhere. The data are as
follows :

.03 69 30 92 10 85 53 6
35 01 70 24 2 . .93 22
10 37 25 65 36 64 95
81 15 41 74 66 31 .06
18 34 38 .04 99 17 91
09 47 13 36 .54 35 45
70 33 77 79 13 72 52
29 89 60 33 38 .40 72
91 57 28 47 11 69 14

We construct the frequency distribution with equal class intervals of equal width.
We wish to test the null hypothesis Hy, that the sample comes from the uniform

distribution on (0,1).

The following table gives the observed and the expected frequencies.

Interval - (.005,.105) (.105,.205) (.205,.305)  (.305, .405) (:405, 505)

n; 8 11 8 13 6
npg; 8 8 8 8 8
Interval  (.505,.605) (.605,.705) (.705,.805) (.80S, 905) (.905, 1.00)
n; 5 8 " 9 4 8
npy; 8 8 . 8 8 8

10

2
n. — NDn:
= npg)” 8.0

Wehave Q = 2 -
- 0j

1

The value of chi-square at 9 degrees of freedom and .05 level of significance is
16.919. )

Hence the observed value of Q is not significant at 5 percent level and we cannot
reject Hy, -

We have just described the chi-square test of goodness of fit when the cell
probabilities are prespecified. But a more interesting situation is ane when insteaa
of fitting the data reasonably with one specified distribution, the data can be fitted
by one of a family of distributions. The question to be answered in such a situation
is; could the observations have come from some Poission distribytih ? Some
normal distribution ? Some binomial distribution ? Some exponentigl distribution ?
etc. In particular the null hypothesis H, is not a simple hypothesis now. Under H,,'
the probability mass or density function is specified except for one or more
parameters.




LetX,, ..., X, be arandom sample from a discrete distribution given by Common Tests and
: Conflidence Intervals
PX = i1 = p; (6),j = 1,..., kand zero elsewhere, where
k
p; (6) >0, 2 p; (6) = 1and 8is a scalar or a vector parameter that is unknown. Let
1 -

k
n; be the number of X's in the sample that equal x;. Then 2 n. = nand under

Hy: (ny, ..., n, _;) has a multinomial distribution . Let

E —np; (9)]

Q(6) =
1 np_' (e)

We wish to test the null hypothesis that for some value of 6, P ©),j =1,...,kis
a good fit to the data. To achieve this, minimise Q (8) for all possible values of 6 in
the parameter space. In other words, find that value of 6 for which p; (6) best fits

the data. Let 8 be the value of 8 for which Q (6) is minimum. 8 is called the
minimum chi-square estimate of 8. Under certain conditions and for large n the
minimum value Q (6) of Q (6) gnven by

—np; (9)]
; np; (6)

has approximately a chi-square distribution with k — 1 — s degrees of freedom where
s is the dnnensnonallty of 8. If 8 is scalar, thens = 1,if0 = (u, o ), both

wand o unknown thens = 2, and so on. It can be shown that for sufficiently
large n the O that minimizes Q (8) is approximately the maximum likelihood
estimate of 0 and moreover Q (9) has a chi-square distribution , when 8 is the
maximum likelihood estimate of 6.

We reject Hy at level a if Q (8) = xﬁ Lo

In the continuous case the procedure is the same as described earlier. let X be of
continuous type with density function f (x, 8) where 8'is unknown Pamtxon the real
line into k intervals I, . . ., I,. under H,,

p;(8) = [ f(x,0)dx,

and the result stated above applies. We illustrate these ideas through an example.

Example 9: A random sample of 200 families, each with four children has the
following frequency distribution of the number of girls.

. Number of girls* : 0 1 2 3 4
Number of families  : 5 32 65 75 . 23

We wish to test if the data comes from a binomial distribution.

&
Let X denote the number of girls in any family of four children. We wish to test the
composite null hypothesis

HO:P[X-x]-(:)px(l—p)"-x,x-0,1,..,,n 7)

.. Sample output to test PDF Combine only



Elements of Statisticai against all alternatives. In this example n = 4. Since p is unknown, we compute the
Inference maximum likelihood estimate of p. We have

p = 0.5987

In order to apply the test, we need
p; () = (‘j‘)ﬁ"(l—ﬁ)“"',j - 0,.
We have
Po (p) = 02594, p, (p) = .15476, p, (p) = .34634

ps (p) = 34448, p, (p) = .12848

We now compare the observed and expected frequencies as follows :

j : 0 1 2 3 4
Observed g 5 32 65 75 23
Expected : 5 31 69 69 26
Thus, we get
oG - 3 LB
1 np; (p)
= 1.132

The number of degrees of freedom on the conservative side is 3. Since the value of
xg_ 0.0s- is 7.81, there is not much evidence to reject Hy. We therefore infer that the
data could have come from a binomial distribution.

18.5 SUMMARY

In this unit we have

1. demonstrated the use of Neyman-Pearson Lemma and likelihood ratio test for
testing hypothesis about parameters of normal populations,

2. obtained confidence intervals for parameters of some standard distributions,

described the use of chi-square test for testing the goodness of fit prbb]ems.

18.6 SOLUTIONS AND ANSWERS
E1) We have

Q, = {(u,oz),-oo‘<u<00,02 = Qg}
and

Q= {(p.,oz),—oo<'u<oo,02>0}‘
Now

1 1 ¢ 2
Su LO[X) = Su —_— - -
P ®1x) P o) €xp 20: Z(XI 1y

u..o-o ( 00)

'

The maximum likelihood estimate of p is
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A —
us=1/n 2 Xi = X ‘ Confldence Intervals
1

Thus

1 1 v T\2
Sup L(O]|X) = ——— ex ————EX--—X
Qég, (_,_) (21!:03)“/2 P[ 20; : X; )

" Also

u,a

1 - 1 <
Sup L(8]X) = sup Wexp{-;;:zm—u)z

The maximum likelihood estimates of p. and o 2 are respectively ﬁ = X and
n

o%=1/m E (x; - x)*.
1

Thus
02

2 exp(~-n/2)

Sup L(8]X) = -
8eQ - Z(X.—)_()z
1

The likelihood ratio test is
Sup L(8]X)
€Q

AX) = 2
Sup L(8]X)
eeq

n/2

/0y (X-X) . .
- og | exp[—l/Z[—-ol—g—E(Xi—)—(')z—n]]

-Under the null hypothesis

D (%-XY
1
Um ————
% 1
Thus
i ' n2
A(X) = (E) exp [ 1/2(u n)}
It therefore follows that M (x) <cisequivalenttou < €, or u>c,. Since
under Hy, u has a y 2 o1 distribution, ¢, can c, can be selected. It is usual to take
P{u 2 ¢) = a/2 and Plu=x c,} -1-0/2
In other words c, is the upper a/2 probability point of xa 1 and ¢, is the lower
1 - /2 probability point of xn - -

E2) We have
Q - {(upuz,Of,oi,p):—éo<ui<°°,q-2>0, i=12p= 0}
And

Q = {1y 1y 05,05 p) i —w <y <e0,0750, i L2|pl<1]
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Also we shall write 8 = (®,, W, O f, oi, p)
and
1.
n
[ [2no,0,(1- p)? ]

£(X,Y,0) =

2 , 2
o (X - X, — Y- Y; -
exp | - 1 - E ! ~2p i~HW ) Yi—Up +f = )
- 2(1-p) 9 9 % % %
Under Q,, p = 0, and the maximum likelihood estimates of p,, u,, © f, og are
given respectively by

~<

1

=R

1

n n
A — A 1 —
5o 1SR 61 1 S - ¥
1 1
Thus

——Al 7 exp (—n)

Sup L(8|X,Y) =
eeq, 0,0,

under €, the maximum likelihood estimates of w,, i, O} and o2 are the same *

as under 2, whereas the maximum likelihood estimate of p is

i (X,~X) (Y,-Y)
1

A

p=1= ,
\/2 X, -%" 3 (v,- 77
1 i
3 X -%) (Y,-Y)
1
) ng, o,
Thus

1 .
v N A n 2
(2noy0,)" (1-17)
The likelihood ratio test rejects H, if

Sup L(8|X,Y) =

0EQ,

=7z exp (-n)

sup L(8|X,Y)

8eq,

sup LB|X,Y)
een

"AMX,Y) =

= (1~ rz)"/2 <c
or equivalently, if
Ir]>C,
where C, is chosen that

gSeuclsz(_,[lr|>C’1] = a




The distribution of r under H, can be determined. It is known that Common Tests and
) . onfidence Intervais

under null hypothesis has a students’ t distribution with n — 2 degrees of
freedom. Using this fact the value of ¢, can be computed for a given «.

E3) There is another possible procedure of obtaining confidence intervals. This
method has universal applicability and can be used for large or small samples.
But this procedure usually yields confidence intervals that are much too large.
The method uses the well known Chebychev’s inequality

P{IX—E(X)]<£VVarEX) )>1—-1—2, for e>0
€

. LetX = i' Exi. We know that E (X) = p and Var (X) = p(1-p)/n.
1

It follows that
P“f-p|<e\/pil—p5/n }>1—-13
€

Since p (1 - p) s 1/4, we have

P{l)_(—e/Z\/rT<p<i+ <e/2\/xT‘}>1—l2
€

One can now choose ¢ and n . Otherwise if n is fixed one can choose ¢ to get
the desired level confidence interval. ’

s
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e e £ e g s e

8

30

-2

,.
L
~3 K

(‘L_’
o

9.3
-0.2
-01
G0

wable Vabies of the Standard Normal Distribution Fuaction
- u2/1
¢ du = P(ZSZ)
0 i 2 3 4 5 6 7 8§ + 9
060137 0001C 65007 0.0005 0.0003 00002 0.000 0.000L 0.0001  0.0000
0001y 0018 00017 €O0I7 00016 00016 00015 00015 00014 0.0014
00026 00325 00024 00023 00023 00022 00021 00021 00020 0.0019
0.0035 00034 00033 00032 00031 00030 00029 00028 0.0026 0.0026
V0047 0U045  G.0044  0.0043 00041 0.0040 00039 0.0038 00037 00036
C.00h2 306U 00059 0.0057 0.0055 0.0054 00052 00051 00049 0.0084
00082 00080 ©.5078  0.0075 0.0073 0.0071 00069 0.0068 00066 0.0064
0.0107 00164 00102 06.0099, 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
00139 00136 00i32 00129 00126 00122 00119 00116 00113 00119
GOITY LUl L0070 00166 00162 00158 00154 0.0150 00146 0.0143
0226 002 0027 00212 00207 00202 00197 0.0192 3
COIET O UUZBL 00274 00268 00262 0.0256 00250 0.0244 ;
0.035%  Cas52 0.0344 00336 0.0329 00322 00314 00307 O, 0300 "0 0294
0048 G436 G426 0.0418 0.0409 0.0401 00392 00384 00375 0.0367
0545 01337 50526 00516 0.0505  0.0495 0.0085 0.0475 0.0465° 0.0455
COESS GO355 00643 0.0630 00618 0.0606 00594 00582 00570 0.0559 |
GOS8 00763 0078 00764 00749 00735 00722 00708 0.0694 0. 06811
0.0968 2.0951 00934 00918 00901 00885 00869 00853 0.0838 00823 .
01151 24131 G012 01093 0.1075 01056 0.1038 0.1020 0.1003 0 0985“
01357 015335 w314 0.1292 0.1271 0.1251 0.1230 0.1210 0*1190 01170
01587 0.1552 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 ““¢.1379
01841 01814 ©.1788 01762 0.1736 0.01711 0.1685 0.4660 _0.1635 0.1611
02119 02509 02061 02033 02266 0.1977 0.1949 . 01922 01894 0.1857
02420 02339 02358 02327 02297 02005 02236 02206 ' 02177 02142
02743 02709 02676 02643 02611 02578 02546 0 294 62483 02451
03085 03050 03015 02981 02946 02912 02877 ™. 28£ sro~ 0. 2276 -
03446 3409 3372 03336 03300 03264 03228 0. 3,19! 03156 03121
03281 03783 03745 03707 03669 03632 03594 03557. 03520 0. 3483
04207 04165 04129 04090 04052 04013 03974 039367 03897 . .
04602 04562 04522 04483 04443 04404 04364 04325 04286 o‘
35000 049606 0.4920 04830 04840 04801 04761. 0. 21 o 4681 e ind
8 W. Lindgren, Statistical Theory, The Macmillan Company, 1960 ) ({:r,,
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Appendix: Statistical Table

Table (Contd,)

2
-u
! .

d(z) =fz o /zdu =~.P(Zsz)

2 0 1 2 3 4 5 6 7 8 9
00 05000 05040 05080 05120 05160 05135 05333 05279 05319 05359
01 5398 05433 05478 05517 05557 0.5506 05636 05675 05714 05753
02 05793 05832 05871 055910 0.5948 05087 06026 0.6064 0.6103 0.6141
03 06179 06217 0625 06293 06331 06363 06406 06443 06430 06517
04 06554 06591 06628 06664 06700 0.6736  0.6772 06808 0.6844 06879
05 . 06915 06950 06985 07019 0.705¢ 07088 07125 0.7157 07190 07224
06wy 07257 07291 07324 07357 07389 07422 07454 0.7486  0.7517 0.7549
07 07580 07611 07642 07673 0.7703 07734 07764 07794 07823 07859
0.8 0.7881 0.7910 0.7939  0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
09 08150 08186 08212 08238 08264 0.8280 0.8315 08340 08365 08389
10 08413 08438 046 08485 08508 08531 08554 08577 08599 0621
ol 08643 08665 08686 08708 08729 08749 08770 08790 0.8810 0.8830

Z 08849 08369 08888 08907 08925 08944 '0.8962 08980 0.8997 0.9055
11309032 09049 09066 09032 09099 0955 09131 09147 09162 09177

409192 09207 09222 09236 09251 09265 09278 09292 09306 0.9
1509332 09345 09357 09370 09382 09394 09406 09418 09430 0.944
160945209463 09474 09434 09495 09505 09515 09525 09535 09545

T 09SS4 09564 09573 09582 09591 09500 0.9608 09616 09625 09633
9.9641 ‘j'o.ggqs 09656 09664 09671 0.9678 0.9686 09693 09700 0.9706
, 09713 "05%9 09726 09732 09738 09744 09750 09756 09762 0.9767

03e- 0778 ~0.9783 0.97sg 09793 09798 09803 09808 09812 0.93;7

9821 OAB36 09830 09834 09838 09842 09846 09850 09854 0.9857
9861 09864 09363 09871 09874 09878 0.988) 0.9984  0.9887 0.9390

9893 89896 09898 09901 0.9904 0.9906 09909 09911 09913 09916
"9918 09920 09922 09925 09927 (.9929 0.9931 09932 09934 09936
V9938 0.9940 09941 ' 0.9943 09945 0.9946 " 0.9045 09949 0.9951 0.9952
09953 09955 09956 09956 (0.9950 0.990 0991 09962 0993 09964
09965 Q9966 0.9967 0998 09960 09970 09971 09972 09973 0.9974
19974 69975 09976 09977 09977 09978 09979 09979 09980 0.998;
C 0uSTI* OResy 29982 09983 09984 09984 0.9985 09985 0.9986 0.9986
© 199375 09990 09993 09995 09997 0.9998 09998 0.9999 0.9999 1.0000
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Table of x2 Distribution
If X has a ;(2 dist:ination with # degrees of freedom, this table gives the value of x such that

PriXsx]=p.

n p 065 .Ci 025 .05 .10 .20 25 .30 40
1 0000 0002 .00i0 .0039 0158 .0642 1015 1484 2750
2 0100 .0201 .0506 1026 2107 4463 5754 7133 1.022
3 0717 1148 2158 .3518 5844 1.005 1.213 1.424 1.869
4 2070 297i 4844 7107 1.064 1.649 1923 2195 2753
5 4117 5543 8312 1.145 1610 2343 2675 3.000 3.655
6 6757 8721 137 1.635 2204 3070  3.455 3.828 4.570
7 0893 1239 Lov) 2167 2.833 3.822 4255 4671 5.493
8 1.344 1.647 2,180 2732 3499 4594 5071 5.527 6.423.
9 1735 2.088 2700 3.325 4.168 5380 5.809 6.393 7357
10 | 2.156 2.588 3.247 3940 4865 6.179 6.737 7.267  8.295
11 2.603 3.053 3816 4.575 5.578 6989  7.584 8.148 9237
12 3.074 3571 4404 5226 6304 7807 8.438 9.034 10.18
13 2.565 4107 - 50090 5892  7.042 8634 9299 9926 11.13
14 4.075 4.660 5629 6.571 7790 9.467 10.17 10.82 12.08 .
15 4.601 5.229 67262 7.261 8.547 103] 11.04 11.72  13.03°
16 5142 38i2 5908 1962 9312 11.15 1191 1262 1398
17 5697 6408  7.564 8672 10.09 12.00 12.79 1353 1494
18 6.265  7.015 8.231 9.390 10.86 12.86 1368 14.43 “15:89
19 ; 6.344 7.633 8907 10.12 11.65 13.72 1456 15.35 16,85
20 i 7434  8.260 4591 1085 12.44 14.58 15.45 16.27 17.81
21 : 8034 8897 1028 11.59 13.24 15.44 16.34 17.18 18.77;
22 8.643 9.546  10.98 12.34 14.04 16.31 17.24 1810 1973
23 9260  10.20 11.69 13.09 14.85 17.19 18.14 '19.02 . 20,69
24 | 0.88¢ 10.86 12.40 1385 15.66 18.06 19.04 19.94.. 2165 -
25 f10.52 11.52 13.12 14.61 16.47 18.94 19.94 20.87 .. 2262
30 13.79 14.95 16.79 1849 2060 2336 2448 2551 2744
40 20.71 22.16 24.43 26.51 29.05 3234 3366 3487  36.10°
50 2799 2971 3236 3476 3769 4145 4294 44.3] 46.86,:
60 3553 3748  40.48 43.19 4646  50.64 52.29 53.81 56.62
70 4327 4544  48.76 5174 5533 5990 61.70 6335 = .66:40
80 SL17T 5354 5715 60.39 6428 9.2} 71.14 -.72.92 76.19.~
90 5920 6L75  65.65 69.13 73.29 78.56 80.62 8251 8559
100 67.33 70.06 7422 7793 8286 87.95 90.13 92.13 958}

Adapted with permission from Biomretrika Tables for Statisticians, Vol. 1 3rd ed, Canrbiza
University Press, 1966, edited by E. S. Pearson and H.O. Hartley: and from "A new table o
percentage point of the chi-square distribution," Biometrika, Vol. 51(1964), pp. 231 - 239, l,i H.L.
Harter, Aerospace Research Laboratories. : ¥




Table of x2 Distribution (Continucd)

.50 .60 .70 75 .80 .90 .95 975 99 995

4549 7083 1.074 1.323 1.642 2706 3841 5.024 6.635  7.879
1.386 1833 2408 2773 3219 4.605 5991 7378 9310 10.60
2.366 2946 3665 4108  4.642 6.251  7.815 9348 1]1.34 12.84
3.357 4.045 4878 5385 5989 7779 9488 [1.14 1328 14.86

4351 5.132 6.064 6.626 7.289 9.236 11.07 12.83 15.09 16.75
5.348 6.211 7.231 7.841 8.558 1064 12.59 14.45 16.8] 18.55
6.346 7.283 8.383 9.037 9.803 12.02 14.07 16.01 1848 20.28
7.344 8.351 9.524 1022 11.03 13.36 15.51 17.53  20.09 21.95
i 8.343 9.414 10.66 11.39 12.24 14.68 16.92 19.02 2167 23.59

9.342 1047 1178 1255 13.44 15.99 18.31 2048 2321 25.19

10.34 11.53 12.90 13.70 14.63 17.27 1968 2.92 2472 2676
1134 12.58 14.01 14.85 15.81 1855  21.03 2334 2622 28.30
12.34 13.64 15.12 15.98 16.98 19.81 2236 2474 2769 29.82
13.34 14.69 16.22 17.12 18.15 2106 2368 26.12 29.14 3132
14.34 15.73 17.32 18.25 19.3] 2231 2500 2749 3058 3280

1534 16.78 18.42 19.37 20.47 23.54 26.30 28.85 32.00 34.27
16.34 17.82 19.51 20.49 21.61 24.77 27.59 30.19 33.41 35.72
1734 18.87 20.60 21.60 22.76 25.99 28.87 3:.53 3484 37.16
1224 1991 21.69 22.72 23.90 27.20  30.14 3285 36.19 38.58
19.34 20.95 22.77 23.83 25.04 28.41 31.41 34.17 37.57 40.00

20.34 2199 2386 2493 2617 2042 3267 3548 3893  41.40
. 21,34 23.03 2494 2604 2730 3081 3392 3678 4029 428
2234 24.07  26.02  27.14 2843 3201 3517 3808 41.64 44.18
23.34 2511 2710 2824 2955 3390 3642 3936 4298  45.56
. 2434 26.14 2817 2934 3068 343g 3765 4065 4431  46.93

’ + 29.34 3132 3353 3480 3625 4026 4377 4698 5089 53.67
3934 4162 4410 45.62 4727 5181 557 5934 6369 6677
74933 15189 5472 56.33 58.16  63.17 6751 7142 76.15  79.49
5933 | 6213 6523 66.98 6897 7440 79,08 8330 8838 9195
69.33 17236 7569 77.58 7971 8553  40.s3 95.02' 1004  104.2
79.33 8257 8612 8813 9(4] 96.58 1019 1066 1123 116.3
. 89.33 92.76° 9652 9865 oLt 1076 1131 1181 1244 128.3
19933 1029 1069 109 IIL7 1185 1243 1296 '1358 1402
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Table of the ¢ distribution
If X has a ¢ distribution with n degrees of freedom, the table gives the value of x such that P(X s x)

=p,

n p=S5 60 65 70 75 80 8 90 95 975 99 995

1 158 .325 510 .727 1000 1.376 1963 3.078 6.314 127706 31.821

2 142 289 445 617 816 1.061 1.3%6 1.886 2920 4.303 6.965

3 137 277 424 584 765 978 1250 1.638 2353 3.182 4.541

4 34 271 414 569 741 941 1.190 1.533 2.132 2.776 3.474

5 132 267 .408 559 727 920 .1.156 1.476 2015 2.571 3.365

6 31 265 404 553 718 906 1.134 1.440 1.943 2.447 3.143

7 300 .263 402 549 - 711 896 1119 1.415 1.895 2.365 2.998

8 JA30 262 399 546 706 889 1.108 1.397 1.860 2306 2.896

9 129 261 398 543 703 883 1.100 1.383 1.833 2262 2821

10 29 260 397 542 700 .879 1.093 1.372 1812 2228 2.764

11 129 260 396 .540 697 876 1.088 1.363 1.796 2.201 2.718

12 128 259 395 539 695 873 1.083 1.356 1.782 2.179 2.681,

13 28, 2590 394 538 694 870 1.079 1.350 1771 2.160 2.650

14 128 258 393 537 692, .868 1.076 1345 1.761 2.145 2.624. 2.

15 128 258 393 536 .691 .866 1.074 1341 1753 2.131 2602 2

16 128 258 392 535 . .690 .865 1.071 1337 1.746 2.120 2.583

17 128 257 392 534 689 863 1.069 1.333 1.740 2.110 2.567

18 127 257 392 534 .688 .862 1.067 1.330 1734 2.101 2.552

19 127 257 391 533 688 861 1066 1328 1729 2.093 2.539

20 127 257 391 533 .687 860 1.064 1325 1725 2.086 2.528

21 127 257 391 532 686 .859 1.063 1.323 1721 2.080 2.518

22 127 256 390 532 686 .858 1.061 1.321 1.717 2074 2.508 2819

23 127 256 390 532 685 858 1.060 1319 1.714 2.069 2.500 2.807

24 127 256 390 531 685 .857 1.059 1318 L1711 2.064 2.492° 2747
25 127 256 390 531 .684 .856 1.058 1.316 .1.708 2.060 2.485 2.787 ..
26 127 256 390 .531 684 856 1.058 1.315 1706 2.056 2.479 2.77°

27 127 256 389 531 .684 855 1.057 1314 1703 2.052 2473 2771
28 127 256 389 530 .683 .855 1.056 1313 1701 2.048 2467 2363
29 127 256 389 530 .683 .854 1.055 1311 1.699 2.045 2.462 2794

30 127 256 389 530 .683 .854 1.055 1310 1.697 2.04Z 2:457. 2.7

40 126 255 388 529 .681° .851 1.050 1303 1.684 2.021 - 2423 2704

60 . .126 254 387 527 679 .848 1.046 1.296 1.671 2.000 2.390 2.660

120 126 254 .38 .526  .677 845 1.041 1289 1.658 1.980 2.358 2.617

© 126 253 385 524 674 842 1036 1282 1645 1.960

2326 25

This table is taken from Table 11 of Fisher & Yates
and Medical Research, published by Longman Group Lid. London (previously published bv
and Boyd Ltd., Edinburgh) and by.permission of the authors and publishers. ’

: Statistical Tables for Biological, Agricult



Appendix: Statistical Tables

Table of the 0.95 Quantile of the F Distribution
1€ X has an F distribution with nl and n degrees of freedom the table gives the value of v such that P, (N =x)=0975.

"&1 1 2 3 4 5 6 7 8 9 10~ 15 20 30 40 60 120 ]

1 1614 1995 2157 224.6 230.2° 234.0 236.8 2389 240.5 241.9 2459 248.0 250.1 251.1 2522 2533 2543
? 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 1945 19.46 19.47 19.48 19.49 19.50
4 10.13 955 928 912 901 894 889 885 88l 879 870 866 862 859 857 855 853
4 771 694 659 639 626 616 6.09 604 600 59 58 580 575 572 569 566 563
5 661 569 541 519 505 495 488 482 477 474 462 456 450 446 443 440 436
6 599 514 476 453 439 428 421 415 410 406 394 387 381 377 374 370 . 3.67
7 559 474 435 412 397 387 379 373 368 364 351 344 338 334 330 327 323
8 532 446 407 384 369 358 350 344 339 335 322 315 308 304 301 297 293
9 502 426 386 363 348 337 329 323 318 3.4 301 294 286 283 279 275 2.71
10 496 410 371 348 333 322 314 307 302 298 285 277 270 266 262 258 2.54
15 454 368 329 306 290 279 271 264 259 254 240 233 225 220 216 211 207
20 435 349 310 287 271 260 251 245 239 235 220 212 204 199 195 190 1.84
30 417 332 292 269 253 242 233 226 221 216 201 193 184 179 174 1.68 1.62
| 40 408 323 284 261 245 234 225 218 212 208 192 1.84 174 169 1.64 158 1.51
i 60 400 3.5 276 253 236 225 217 210 204 149 (L84 175 165 159 153 147 139
120 392 307 268 245 229 217 209 202 19 191 175 166 155 1.50 143 135 125
® 3.84 300 260 236 221 210 201 194 18 183 167 157 146 139 132 122 1.00

Adapled with permission from Biometrika Tables for Statisticians, Vol 1, 3rd ed., Cambridge University Press, 1966, edited by
E.S. Pearson and H.O. Hartley

If X has an F distribution with m and n degrees of freedom, the table gives the value of x such that P, (X = x) =0.975

#mi 2 3 4 s s 71 8 9 10 15 20 a0 0 60 120

64‘:\ -799.5 864.2 899.6 921.8 937.1 948.2 956.7 963.3 968.6 9849 993.1 100! 1006 1010 1014 1018

393 39.00 39.17 39.25 39.30 39.33 3936 39.37 39.30 3040 3943 3945 3046 39.47 '39.48 39.49 3950
.44 16.04 1544 1510 1488 14.73 14.62 14.54 14.47 .14.42. .14.25 14.17 14.08 14.04 1399 1395 13.90
12.22 10.65 9.98 9.60 - 936 9.20 9.07 898 890 884 866 856 846 841 836 831 8.26
Q0L 043 776739 715 698 685 676 6.68 662 643 633 623 618 612 607 602
8l 12877660 623 599 582 570 560 652 546 527 517 507 S0L 496 490 485
T s 589 552 529 502 499 490 482 476 45T 447 436 431 425 420 414
451 606 542 505 4#£82 465 453 443 436 430 410 400 389 384 378 373 367
291 571 508 472 448 432 420 4.10 4.03 396 3.77 368 356 351 345 339 333
% 546 483 447 424 407 395 385 378 372 352 342 331 326 320 314 3.08
"FA77 415 3.80 358 341 329 320 312 306 28 276 264 259 252 2246 2.40

. 46‘ 386 351 329 313 301 291 284 277 257 246 235 229 222 216 209

.18 ) 3.59 325 303 287 275 265 257 251 231 220 207 201 194 187 1.79

e 346 313 290 274 262 253 245 239 213 207 194 188 180 172 164

383 334 301 279 263 251 241 233 227 206 194 182 174 167 158 1.48

380 323 289 267 252 239 230 222 216 194 {82 169 161 153 143 131

""3.69 © 312 279 257 241 229 219 211 205 1.83 .71 1.57 1.48 139 127  1.00

2 permission from Biometrika Tables for Statisticians, Vol 1, 3rd ed., Carhbridée University Press, 1966, edited by
w1 and H.O. Hartley.

g

Sample output to test PDF Combine only



ERRATA

MTE-11, Block 1)

Page Mo, iine No. Shouid be

15 7 .... similarly the value 5.3
s 8 ' ..béween 5.25 and 5.35. Thus, .... as 4.6—5.3 in
5 9 ....and ends at 5.35 ...... |
34 2 1Y) show that I == n- ¥/, (fori2k-1)
51 last fine s? = e = 133490.18
61 2 {(fiom below) deleted
a2 6 {from below) X = A+cvy, ... .
56 14 (from below) sk? = Tg_

m;
75 2 {fvom below) last column gives the ......
&4 6 {from below) and Y; = Xf,jy; @

i

50 Fig. 6 The top most should be Group 1, and the lowest

group should be Group 3 Co

Q’l/
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