
Master of Computer 
Application 

MCA-105/MCS-106 

/PGDCA-105 

Computer Organization 
 
  
 
 

Block-1 INTRODUCTION TO DIGITAL 
ELECTRONICS 3-94 

UNIT-1 Introduction to Number System 7 

UNIT-2 Boolean Algebra and Logic Gates 17 

UNIT-3 Reduction Techniques 31 

UNIT-4 Binary Arithmetic 51 

UNIT-5 Sequential Circuit 79 

Block-2 BASIC BUILDING 95-148 

UNIT-6 Building Blocks 99 

UNIT-7 Instruction  117 

UNIT-8 Addressing Techniques 139 

Block-3 MEMORY AND I/O 149-208 

UNIT-9 Memory 153 

UNIT-10 I/O System 171 

UNIT-11 Introduction to 8085 Microprocessor and Microcontrollers185 

 

 

 
 
 
 

Uttar Pradesh Rajarshi Tandon 
Open University 

 

MCA-105/1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MCA-105/2



Master of Computer 
Application 

MCA-105/MCS-106 

/PGDCA-105 

Computer Organization 
 
   
 

BLOCK 

1 
INTRODUCTION TO DIGITAL ELECTRONICS 

UNIT-1  

Introduction to Number System 

 

UNIT-2 

Boolean Algebra and Logic Gates 
 

UNIT-3  

Reduction Techniques 

 

UNIT-4  

Binary Arithmetic 

 

UNIT-5 

Sequential Circuit 
 
 
 

Uttar Pradesh Rajarshi Tandon 
Open University 

 

MCA-105/3



Course Design Committee 

Prof. Ashutosh Gupta Chairman 

Director (In-charge) 

School of Computer and Information Science, UPRTOU Allahabad 

Prof. Suneeta Agarwal Member 

Department of CSE 

MNNIT Allahabad, Prayagraj 

Dr. Upendra Nath Tripathi Member 

Associate Professor, Department of Computer Science 

Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 

Dr. Ashish Khare Member 

Associate Professor, Department of Computer Science 

University of Allahabad, Prayagraj 

Dr. Marisha Member 

Assistant Professor (Computer Science),   

School of Science, UPRTOU Allahabad 

Mr. Manoj Kumar Balwant Member 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad 

Course Preparation Committee 

Mr. Manoj Kumar Balwant  Author Block 1 (Unit 1,2,3,4,5) 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad. 

Dr. JitendraPande    AuthorBlock 2, 3 (Unit 6,7,8,9,10,11) 

Associate Professor 

School of Computer Sciences & Information Technology   

Haldwani, Uttarakhand 263139 

Prof. Ashutosh Gupta                            Editor Block 1 (Unit 1, 2, 3, 4, 5) 

Director (In-Charge)                  

School of Computer & Information Sciences, UPRTOU Allahabad 

Prof. Abhay Saxena            Editor Block 2, 3 (Unit 6, 7, 8, 9, 10, 11) 

Professor and Head, Department of Computer Science  

Dev SanskritiVishwavidyalya, Hardwar, Uttrakhand 

Mr. Manoj Kumar Balwant                                                    Coordinator 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad.  

 
 
 
 
 
 
 
 
 
 

 

 

©UPRTOU, Prayagraj - 2020 
ISBN :  
 

©All Rights are reserved. No part of this work may be reproduced in any form, by 
mimeograph or any other means, without permission in writing from the Uttar Pradesh 
Rajarshi Tondon Open University, Prayagraj. 
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh Rajarshi 
Tandon Open University, 2020.  

Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road, Prayagraj. MCA-105/4



BLOCK INTRODUCTION 

 

In a digital system, discrete elements of information are represented by signals. The 
signals in the digital systems have only two discrete values 0 and 1 (also called 
binary signal) because these binary signals are more reliable than multi-valued 
signals. The first unit presents you binary, octal and hexadecimal numbers which 
are commonly used for understanding and designing digital systems such as 
computers and electronic calculator. The second unit introduces you various 
identities essential for understanding Boolean algebra. It illustrates the relationship 
between a Boolean function and its logic circuit consisting of basic logic gates. It 
briefly explains you the basic building blocks of integrated circuits. The third unit 
presents Karnaugh Map which is a powerful technique for simplification of any 
Boolean function. A minimized Boolean function requires minimum number of 
gates for its implementation which is more reliable and also decreases 
manufacturing cost. The fourth unit explains some frequently used logic functions 
in combinational circuits and their circuit implementations. It includes adder, 
substractor, encoder, decoder and multiplexer which are most common in ICs. This 
unit also presents a technique to implement any Boolean functions using a universal 
gate NAND or NOR. The last unit describes basic concept of a sequential circuit 
and flip flops which are basic building block of memory element to stores a binary 
information. It explains some basic sequential circuit components such as Register, 
shift registers and counters upon which a complex digital system is based.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 MCA-105/5



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MCA-105/6



UNIT-1 INTRODUCTION TO NUMBER 
SYSTEM 

Structure 

1.1 Introduction 

2.1 Objectives 

3.1 Binary Number System 

4.1 Octal Number System 

5.1 Hexadecimal Number System 

6.1 Inter conversion to different Number System 

7.1 Signed Binary Numbers 

8.1 Summary  

9.1 Terminal Questions 

1.1 INTRODUCTION  

We all use mathematical digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 in our daily life 
to represent any number for counting and measuring. This is decimal number 
system which is most common for every day usage. Since, this number system uses 
10 distinct digits, the base of this number system is 10. But in digital systems (such 
as computers and electronic calculators) there are other number systems such as 
binary, octal and hexadecimal are commonly used for understanding and designing 
digital systems. For example a computer uses binary number system to represent 
any data and manipulate them. It performs arithmetic operations where each 
operand is represented in binary number system. Data and information are stored 
in the computer in binary numbers and data processing is carried out with binary 
numbers. In this unit, we will discuss commonly used number system in digital 
systems. 

1.2 OBJECTIVES 

After the study of this unit, you should able to 
 Understand binary, octal and hexadecimal numbers. 
 Convert a number in one number system to different number systems. 
 Know how negative numbers are represented in a computer. 

1.3 BINARY NUMBER SYSTEM 

A binary number system expresses any number using only two symbols: 0 
and 1. So, the base or radix of this number system is 2. Each binary symbol is called MCA-105/7



a bit (Binary Digit). A group of 8 bits is called as one byte and a group of 4 bits is 
called as nibble. A binary number is written with subscript 2 after the number. 
Otherwise, the number is considered as decimal number. For example, (101101)2 
is a binary number. The counting in binary number system is illustrated in Table 
1.1 along with their corresponding decimal numbers for comparison. The leftmost 
digit in any binary number is called MSB (most significant bit), while the rightmost 
digit is called as LSB (least significant bit). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1- Numbers with different bases. 

1.4 OCTAL NUMBER SYSTEM 

A octal number system represents any number using 8 symbols: 
0,1,2,3,4,5,6,7. So, the base or radix of this number system is 8.  The relationship 
between some octal numbers and their equivalent decimal and binary numbers are 
shown in Table 1.1.Each digit in an octal number requires 3 bits (23=8) to represent 
in binary number. The smallest 2 digit number in octal is (10)8 whose decimal 
equivalent number is 8. Any number in this number system is written with subscript 
8 after parentheses otherwise, the number is considered as a decimal number. 

1.5 HEXADECIMAL NUMBER SYSTEM 

The hexadecimal number system expresses any number by using 16 distinct 
symbols. These symbols include numeric digits 1-9 and alphabets A-F (for numbers 
10 to 15). So, the base or radix of this number system is 16. This number system is 
also called as alphanumeric number system because it uses both numeric digits and 
alphabets. For example, (D5CF)16is a hexadecimal number. Table 1.1 shows 
similarities of this number system with decimal and binary number system. Since, MCA-105/8



this number system has 16 different symbols, it requires 4 bits (2
4
=16) to represent 

each digit of any hexadecimal number to equivalent binary number. Any 
hexadecimal number is represented with the superscript 16 after the number. 

1.6 INTERCONVERSION TO DIFFERENT NUMBER 
SYSTEM 

 

1.6.1 BINARY,OCTAL AND HEXADECIMAL NUMBER TO 
DECIMAL NUMBER 

A number ana(n-1)...a1a0.a-1a-2 … a-m written in base r number system can be 
converted into corresponding decimal number by summing each digit multiplied to 
their powers of base r as shown below. 

an.rn+a(n-1).r(n-1)+...+a1.r1+a0.r0+a-1.r-1+a-2.r-2+ ... +a-m.r-m. 

For example, the decimal equivalent of a Binary number (1011.01)2:  

= 1*2^3+0*2^2+1*2^1+1*2^0+0*2^-1+1*2^-2 

=8+0+2+1+0+0.25 

= (11.25)10 

Similarly, an Octal Number (365)8is equivalent to decimal number: 

= (3 * 8^2) + (6 * 8^1) + (5 * 8^0)  

= (3 * 64) + (6 * 8) + (5 * 1)  

= (245)10 

Check Your Progress 

1. Find the decimal equivalent of a Binary number (101.1)2 

2. Find the decimal equivalent of a octal number (535)8. 

1.6.2 DECIMAL TO BINARY, OCTAL, HEXADECIMAL 
NUMBER 

For Integer Part : Any integer in decimal number system can be converted into 
any other number system with base r (including binary or octal or hexadecimal 
number) by repeated division of  the number by base r to get quotient and remainder 
each time until the final quotient becomes 0. This conversion procedure can be 
more precisely explained with following steps. 

1. Divide the integer in decimal number by base r. Consider the division as an 
integer division.   

MCA-105/9



2. Write down the quotient and remainder. The remainder value should be 
between 0 to r-1. 

3. Perform integer division of the quotient by base r.   

4. Repeat step 2 and 3 until the final quotient becomes 0. 

5. The number in base r number system is the sequence of the remainder 
starting from the last remainder to first. 

For example, the number 256 in DECIMAL can be converted to HEXADECIMAL 
number as follow: 

We know that base of Hexadecimal Number system is 16, so perform division by 
16. 

DIVISION QUOTIENT REMAINDER (in HEX) 

256 / 16 16                 0 

16 / 16              1                    0 

1 / 16              0                 1 

Equivalent hexadecimal number = (100)16 

Illustrative Example : A decimal number (35)10 can be converted into binary 
number by first dividing 35 with base 2 to give quotient 17 and a remainder 1. The 
quotient 17 is again divided by 2 to give quotient 8 and remainder 1. This process 
is repeated till the quotient becomes 0.  

DIVISION QUOTIENT REMAINDER (in HEX) 

35 / 2                17                 1 

17 / 2               8                    1 

8 / 2               4                 0 

4 / 2                  2                         0 

2 / 2                  1                         0 

1 / 2                  0                         1 

Answer= (100011)2                         

For Fractional Part : Any fractional number in decimal number system can be 
converted to base r number system by multiplying the decimal fractional part with 
the base r and take its integer part. Again multiply the remaining decimal fractional 
part by base r and take out the integer part. Repeat this process until it became 0. 
The integer part of the results of every step is the equivalent fraction number in 
base r number system. This procedure can be performed by following these steps:  

1. Multiple the decimal fractional part by base r. MCA-105/10



2. Take the integer part of the result in an array. Note that, the integer part of 
the result will be between 0 to r-1. 

3. Multiply the remaining decimal fractional part by base r. 

4. Repeat steps 2 and 3 until the number became zero. 

5. The number in base r is the sequence of the integer part taken each time 
starting from first to last. 

For example, fractional number (0.06640625)10 can be converted into the 
equivalent hexadecimal number by above procedure:  

Multiplication                    Resultant integer part 

0.06640625 * 16=1.0625     1 

0.0625 * 16 =1.0                 1 

0 * 16=0.0                             0 

Equivalent hexadecimal fractional number is (0.110)16. 

Illustrative Example: Convert the decimal number (0.513)10into octal number. 

Multiplication                    Resultant integer part 

0.513*8= 4.104                           4 

0.104*8= 0.832                            0 

0.832*8=6.656                             6 

6.656*8=5.248                             5 

5.248*8=1.984                             1 

1.984*8=7.872                             7 

Equivalent octal fractional number is (0.406517)8. 

 

Check Your Progress 

1. Find the octal equivalent of the decimal number (0.83)10. 

2. Convert the decimal number (512)10 to octal number. 

 

MCA-105/11



1.6.3 BINARY NUMBER TO OCTAL, HEXADECIMAL 
NUMBER AND VICE-VERSA 

Binary to octal and hexadecimal conversion : 

In octal number system, there are only 8 digits (0-7) while the hexadecimal number 
system has 16 digits (0-9, A-F). We can represent any octal digit by using only 3 
binary bits because 2^3 is equal to 8. While, any hexadecimal digit can be 
represented by only 4 bits (2^4=16). So, we can convert any binary number to 
equivalent hexadecimal number by grouping every 4 binary bits starting from left 
to right for integer part and every 4 bits of the fractional part is grouped starting 
from right to left. Each group of 4 bits is then assigned corresponding octal digit. 
This procedure can be summarized with the following steps : 

1. Take binary number and starting from the binary point, groups every 4 bits 
while moving both ends. The groups formation take place starting from 
right to left for integer part and from left for fraction part. 

2. Additional zeros can be added to the leftmost and rightmost bit, if requires 
in groups formation. 

3. Convert each group of 4 bits to corresponding hexadecimal digit. 

 The conversion from binary to octal number is same as above procedure except the 
binary bits are divided into groups of 3 bits. 

Illustrative Example : Convert the following binary numbers to octal and 
hexadecimal numbers.  

i) Binary to octal number 

2
110 011 001 110 101.(110011001.110101) .6 3 1 6 5

  

         = (631.65)8 

Binary to hexadecimal number 

2
0001 1001 1001 1101 0100.(110011001.110101) .1 9 9 D 4

  

          =(199.D4)16 

ii) Binary to octal number 

2
010 011 001 110 110.(10011001.11011) .2 3 1 6 6

  

 = (231.66)8 

Binary to hexadecimal number 
MCA-105/12



2
1001 1001 1101 1000.(10011001.11011) .9 9 D 8

  

         = (99.D8)16 

Octal and hexadecimal to Binary conversion: An octal number can be converted 
into equivalent binary number by converting each octal digit to corresponding 3 
bits binary number. In case of hexadecimal to binary number conversion, each 
hexadecimal digit is replaced with its 4 bits binary number. 

This conversion procedure is illustrated with the following examples. 

Example 1 : Convert the following octal numbers to binary number. 

8
6 3 5 7(6357)

110 011 101 111
  

=(110011101111)2 

Example 2: Convert the following hexadecimal numbers to binary number. 

16
2 D F 5(2DF5)

010 1101 1111 0101
  

=(10110111110101)2 

Check Your Progress 

1. Convert the hexadecimal number (8BF5)16 to binary number. 

2. Express the binary number (10011001.11011)2in its equivalent octal 
number. 

1.7 SIGNED BINARY NUMBERS  

1's Complement : In a binary number, if 0 is replaced with 1 and 1 is replaced with 
0, then the number thus formed is the 1's complement of a given binary number. 
Both, the binary number and the number formed by 1's complement are 
complement of each other i.e. if one number is positive, the other number is 
negative with the same magnitude. For example, (0101)2 represents +5, while its 1's 
component (1010)2 represents -5.  

2's Complement : In the 1's complement of a binary number, if 1 is added then the 
resulting number thus formed is 2's complement of the given binary number. For 
example, 2's complement of a binary number (0101)2 is (1011)2. Here, (0101)2 
represents +5 and (1011)2 represent -5 in 2's complement. 

Signed Binary Number : Generally, positive or negative integers are represented 
and written with plus sign (+) or minus (-) sign before the number. Positive integers 
including zero can be represented in binary form as unsigned binary numbers. But, 
due to the limitations of computer, it has only two digits 0 and 1 to represent any 
positive or negative number. So, a signed bit is placed at the leftmost position of a MCA-105/13



binary number to indicate whether the number is positive or negative. The 
convention is to place sign bit 0 for positive number and sign bit 1 for negative 
number. In a signed binary number, the leftmost bit represents sign of the number 
and the rest bits represent the number. For example, 10111 is the signed binary 
number representation of -7, while it represents 23 in unsigned binary number. This 
representation of positive and negative numbersis known as signed magnitude 
system. 

Signed Complement System : The signed magnitude number representation is 
generally used for general arithmetic operations. When these arithmetic operations 
are implemented in computers, a different system is used for representing positive 
and negative integers called as signed complement representation. In this system, a 
negative number written in signed magnitude system is represented by its 
complement. There is only one way to represent any positive integer. For example, 
+7 can be represented with 8 bits in signed magnitude system by a signed bit 0 
followed by the binary equivalent of 7 i.e. 00000111. However, there are three 
different ways to represent -7 : 

1. In signed magnitude representation: 10000111. 

2. In signed 1's complement representation:11111000     (1’s complement of 
signed magnitude representation of +7 i.e 00000111). 

3. In signed 2's complement representation: 11111001         (2’s complement 
of signed magnitude representation of +7 i.e 00000111). 

Table 1.2 shows signed magnitude, 1's complement and 2's complement 
representation of different integer using 4 bits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2 – Signed Binary Number Representation. MCA-105/14



1.8 SUMMARY 

In summary, you understand 

 A binary number system expresses any number using only two symbols: 0 
and 1.  

 The octal number system represents any number using 8 only symbols: 
0,1,2,3,4,5,6,7. 

 The hexadecimal number system expresses any number by using 16 distinct 
symbols. These symbols include numeric digits 1-9 and alphabets A-F (for 
numbers 10 to 15). 

 Any number in one number system can be converted to its equivalent 
number in another number system. 

 In a digital system, any positive integer is represented in only one way 
which is signed magnitude system. 

 In digital systems, a negative number can be represented in three different 
ways: signed magnitude, 1's complement and 2's complement 
representation. 

1.9 TERMINAL QUESTIONS  

1. Convert the following binary numbers to octal and hexadecimal numbers. 

a. 10111011 

b. 010110.10101 

c. 110010.011 

d. 100011.101 

2. Convert the following decimal numbers to indicated number system: 

a. 175.175 to binary 

b. 98.25 to hexadecimal 

c. 0.6875 to octal 

3. Find the 1's and 2's complement of following 8 bits binary numbers: 

a. 10111001 

b. 00111010 

MCA-105/15



c. 01011011 

d. 11011110 

4. Find the equivalent decimal number of the following numbers:  

a. (647.12)8 

b. (365.75)8 

c. (4B.2C)16 

d. (57D.23F)16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCA-105/16



UNIT-2 BOOLEAN ALGEBRA AND 
LOGIC GATES 

Structure 

2.1 Introduction 

2.2 Objectives 

2.3 Boolean Algebra 

2.4 Logic Gates 

2.5 Implementing Circuit from Boolean Function 

2.6 Positive and Negative logic 

2.7 Summary  

2.8 Terminal Questions 

2.1 INTRODUCTION 

We all are familiar with digital systems such as computers, calculators and 
smart watches which have become an important part of our daily life. These devices 
works on the principle of digital electronics. In a digital system, inputs given to it 
are converted into digital signals which has two discrete values: High and Low. The 
circuits present inside the calculator which process these signals are known as 
digital circuit. The introduction of microprocessor by Intel Corporation gives 
tremendous power to digital devices which results in significant progress in digital 
electronics theory. Now, the digital electronic theory has become a significant part 
of modern digital systems whether it is computers, cars, scientific and medical 
instruments, domestic or defence equipments. Some of the important reasons for 
the widespread applications of digital electronic theory are:  

 It requires Boolean algebra which is easy to understand. 

 Devices used in a digital circuit operate on a digital signal which has only 
two values: High and Low.  

 There are a number of ICs available for performing various operations. 
These ICs are fast, reliable and small in size. 

 Digital circuits have the capability of memory which makes it suitable for 
digital systems such as calculators and watches. 

2.2 OBJECTIVES  

After studying this unit: 

1. You familiar with Boolean algebra is related to designing computer logic. MCA-105/17



2. You understand basic logic gates. 

2.3 BOOLEAN ALGEBRA 

A digital system operates on signalswith two discrete values Low and High 
which are also represented by the binary digits 0 and 1 respectively. A binary digit 
0 or 1 is called as bit. The binary number system is used for design and analysis of 
digital systems. George Boole introduced the concept of binary number system and 
developed an algebra for it which is known as Boolean algebra. The logic concepts 
described in Boolean algebra are used in design of digital systems. Any digital 
system requires only a few basic operations which includes NOT, AND, OR and 
FLIP FLOP. These operations are performed a number of times based on the 
complexity of the digital system.  

A Boolean Algebra is defined on a set of two elements, B={0,1} which 
support two binary operators and one unary operator:  + (OR) , . (AND) ,'(NOT). 
A binary variable is represented with an alphabet symbol such as 
A,B,X,Y,a,b,c…..and it can take either 0 or 1 value. The operations on binary 
variables with these operators are shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

Figure 2.1- Boolean Operators 

These operators are exactly same aslogical OR, AND and NOT which can be 
describe as: 

AND: It produces output 1 if all inputs are 1 otherwise 0. 

OR: It produces output 1 if any input is 1 otherwise 0. 

NOT: It gives inverse of a variable. 

2.3.1 BASIC THEOREM AND PROPERTIES OF BOOLEAN 
ALGEBRA 

Duality : The principle of duality is an important property inBoolean algebra which 
state that any Boolean identity will remain valid even if we interchange operators 
OR and AND and replace 0 by 1 and 1 by 0. Table 2.1 shows various identities of MCA-105/18



Boolean algebra in pairs as (a) and (b). Each part of a pair can be obtained from 
other by using duality principle i.e. interchanging OR with AND, AND with OR, 0 
with 1 and 1 with 0.  

Basic Theorems : There are 10 basic identities which governs Boolean algebra. 
These basic identities are shown in Table 2.1.You should remember these identities 
as soon as possible in order to understand Boolean algebra.  

 

1.    A + 0 = A   A · 1 = A identity 

2.    A + A' = 1   A ·A' = 0 complement 

3.    A + A = A   A · A = A  

4.    A + 1 = 1   A · 0 = 0  

5.  (A')'= A  involution 

6.    (A + B) ' = A' · B'   (A· B) ' = A' + B' de Morgan's 
theorem 

7.    A + (A · B) = A   A · ( A + B) = A absorption 

8.    A + B = B + A   A · B = B · A commutative 
law 

9.    A + (B + C) = (A + B) + C   A · (B · C) = (A · B) · C associative 
law 

10.    A + (B · C) = (A + B) · (A + C)   A · (B + C) = (A · B) + (A · C) distributive 
law 

Table 2.1- Postulates and theorems of Boolean algebra. 

 

2.3.2 BOOLEAN FUNCTIONS 

We have already seen that a Boolean variable can take either 0 or 1 value. 
A Boolean function is an algebraic expression which is formed by binary variables 
(such as x,y and z), operators (NOT, AND, OR) and parentheses. For example, 
consider the following algebraic expression: 

F1= x'yz 

The output of this algebraic function will be 1 if the values of Boolean variables 
x'=1,y=1,z=1 otherwise, its output will be zero.  MCA-105/19



The output of an algebraic function can also be represented witha truth table as 
shown in Table 2.2. Consider another Boolean functions F1=xyz' and F2=x+y'z. 

 

 

 

 

 

 

 

 

 

 

Table 2.2- Truth tables for F1=xyz', F2=x+y'z. 

To represent these Boolean functions with truth table, we need to list all possible 
combinations of the Boolean variables involved in the expression. Each Boolean 
function involves three Boolean variables which gives 2^3=8 different 
combinations of 0 and 1. These combinations are listed in columns of x,y and z. In 
general, any Boolean function which involves n Boolean variables gives 2^n 
different combinations of 0 and 1. For each combination of Boolean variables x,y,z 
the column F1 can take either 0 or 1 value. This way, the truth table helps in 
analysing output of a Boolean function for each possible input values of the 
Boolean variables.  

2.3.3 OPERATOR PRECEDENCE 

Any Boolean function or expression expressed in terms of Boolean variables 
and operators can be simplified with following operator precedence. 

1. Parentheses 

2. NOT  

3. AND 

4. OR 

This means that for any Boolean expression, an expression inside parentheses must 
be evaluated first. Then we follow complement operator and after that AND 
operator is evaluated. Finally, the OR operator is evaluated in the end.  

2.3.4 COMPLEMENT OF A BOOLEAN FUNCTION 

The complement of a Boolean function can be obtained by using 
DeMorgan's theorem which we have seen in previous section in Table 1.1. The pair MCA-105/20



of identities of DeMogans listed in Table 1.1 are for only two variables. We can 
extend these identities for more than two Boolean variables and can find 
complement of any Boolean function. For example, consider a Boolean function 
(A+B+C)' as given below. 

(A+B+C)'  

= (A+X)' assume X= B+C 

= A'.X' by using DeMorgan's theorem 5a 

= A'.(B+C)' substitute the value of X = B+C 

= A'.B'.C' by using DeMorgan's theorem 5a 

Similarly, we can show  

(A.B.C)'=A' + B '+C'  

In general, DeMorgan's theorem states that the complement of any Boolean 
expression can be obtained by interchanging + with .and .with + and 
complementing each Boolean variables. 

2.3.5 OTHER LOGIC OPERATIONS 

We have seen that, a Boolean function which involves only two Boolean 
variables has 2n=22=4 different combinations of inputs. This results in 24=16 
different functions with two binary variables which are shown in Table 2.3. 

 

 

 

 

 

 

Table 2.3 - Truth table for 16 different functions possible with two Boolean 
variables. 

The Boolean expression for each of the 16 functions are shown in table 2.4 in 
columns F0,F1,F2,..........F15. There are 16 different functions with Boolean two 
variables because we can form 16 different combinations with 4 different input 
combinations. These 16 functions can be divided into three categories as follows: 

1. Two functions which produce either all 0 (null operation) or all 1 (identity 
operation).  

MCA-105/21



2. Four functions with unary operations: two complement (x' and y') and two 
transfer operations (x and y). 

3. Ten functions with binary operations which are AND, OR, NAND, NOR, 
exclusive-AND, exclusive-OR, 2 inhibition and 2 implications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4 - Boolean expressions for 16 different Boolean functions 

 

Check Your Progress 

1. Find complement of following Boolean functions. 

i) (b'+d')ac+e             ii) (x'y+z)u+v' 

2. Simplify the following Boolean expression to a minimum number 
of variables: 

a) xy + xy′  

b) (x + y)(x + y′)  

c) xyz + x′y + xyz′ 

 MCA-105/22



2.4 LOGIC GATES 

Electronic digital circuits are also known as switching circuits because they 
behave like switch with the active element such as transistor either conducting or 
not conducting. An electronic digital circuits use binary signals to control 
conduction and non-conduction of an active element. Throughout a digital system, 
electrical signals such as voltages and currents exist in two voltage levels. For 
example, a voltage operated circuit responds to either of two different voltage 
levels: logic 0 for 0 volt (with allowable tolerance of -0.5 to 0.5) and logic 1 for 3 
volts (with allowable tolerance of 2 to 4 volts). The input terminals of a digital 
circuit accept binary signals with allowable tolerance and produce binary signal as 
output at the output terminals with the specified tolerances. An electronic digital 
circuits are also called as logic circuits because any desired computation can be 
performed by passing binary signals through different combinations of logic 
circuits. For example, multiple combinations of logic circuits can be used to 
perform storage of binary number (storage circuit) or manipulation (computing 
circuit). Each signal represents a Boolean variable which carries 1 bit information. 
Logic circuits which perform logical AND, OR and NOT along with some other 
operations are shown in Figure 2.3.These circuits are also called as logic gates or 
digital circuits or switching circuits. These logic gates are blocks of hardware which 
produce 0 or 1 binary signal based upon their input logic signals. For two input 
logic gates, their input signals x and y at any time can have one of the four 
combinations: 00,01,10,11. For example, Figure 2.2 shows input signals x,y and 
output response of AND, OR, NOT logic gates for different combinations of input 
at various times. 

 

 

Figure 2.2 – Input/output signals for AND, OR and NOT gates. 

These logic gates are used to implement Boolean functions in digital systems. Out 
of 16 Boolean functions, only 8 functions are used as standard logic gates for digital 
circuit design. This is because 2 functions are constant and 4 functions are repeated 
twice. Now, out of 10 functions, two functions (implication and in habilation) are 
impractical for circuit design because these two functions do not follow either 
commutative or associative property. So, we are now left with only 8 functions 
suitable for logic gates which are: AND, OR, NAND, NOR, exclusive-AND, 
exclusive-OR, Complement and Transfer. 

MCA-105/23



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3- Various logic gates along with their truth tables. 

The various logic gates along with their truth tables are shown in Figure 2.3. Each 
logic gate has one or two input variable and produce one binary output x.  

2.5 IMPLEMENTING CIRCUIT FROM BOOLEAN 
FUNCTION 

A Boolean function may be implemented with logic gates such as AND,OR and 
NOT. For example, consider four Boolean functions: 

F2=x+y'z 

F3=x'y'z+x'yz + xy' 

F4= xy' + x'z MCA-105/24



The implementation of these four functions F2, F3 and F4 with logic gates are 
shown in Figure 2.4.  

 For every variable which appear in complement form, a NOT gate is used. 
For example, 

 

 For each product term in function, an AND gate is used. For example, 

 

 To combine two or more terms an OR gate is used. For example, 

 

 

 

 

Figure 2.4 –Implementation of Boolean functions F2, F3 and F4 with logic 
gates. 

MCA-105/25



Check Your Progress 

1. Implement the following Boolean functions to circuit using logic 
gates. 

i) (a+b)' 

ii) abc+abc'+a'b'c 

 

2.6 INTEGRATED CIRCUIT 

A Digital circuit is made with Integrated Circuit which is abbreviated IC. 
An integrated circuit is a small semiconductor crystal called as chip which contains 
electronic components for logic gates. The logic gates inside the chip are 
interconnected to form required circuit. The chip is mounted on plastic or ceramic 
platform and its connections are welded to external pins to form the integrated 
circuit.  

 

 

 MCA-105/26



The number of pins vary from 14 pins in small IC package to 64 or even more in 
large IC package. The size of IC packages are very small. For example, four AND 
gates can be embedded inside 14 pins IC package with dimension of 20*8*3 
millimeters. An entire microprocessor can be embedded inside 64 pins IC package 
with dimension 50*15*4 millimeters. Some SSI ICs are shown in Figure 2.5. The 
gates in each IC are embedded within 14 or 16 pins package. A small cut on the left 
side of each IC package is used to reference pin numbers. The pin numbering starts 
from the cut mark and proceeds further in anticlockwise direction. The inputs and 
outputs of gates are directly connected to package pins as shown in Figure 2.5.  

 

Figure 2.5 Integrated Circuits with 14 or 16 pins. MCA-105/27



Integrated Circuits are commonly classified on the basis of their circuit complexity 
which is measured by number of logic gates enclosed in a chip. 

Small Scale Integration (SSI) : It contains several independent gates in a single 
package as a chip. The inputs and outputs of gates are directly connected to pins in 
the package. The SSI contains number of gates fewer than 10. The number of gates 
are limited by the number of pins available in the IC.  

Medium Scale Integration (MSI) : It contains 10 to 100 gates within a single 
package. It is basically used for performing elementary digital operations such as 
adder, decoder and multiplier.  

Large Scale Integration (LSI) : It contains 100 to a few thousand gates inside a 
single package. It is used for processors, memory chips etc. 

Very Large Scams Integration (VLSI) : It contains thousands of gates in a single 
package. It is used for complex microprocessor chips and large memory arrays.  

2.7 POSITIVE AND NEGATIVE LOGIC 

Positive and Negative logic: A binary signal at input and output of a logic 
gate can be either logic 0 or logic 1. These two signal values are also represented 
by two signal levels: H for higher signal level and L for lower signal level. When 
we use higher signal level H to represent logic 1, then it is called positive logic 
system. On other hand, when we use lower signal level to represent logic 1, it is 
called as negative logic system. These two logic systems are shown in Figure 2.6. 

 

Figure 2.6 – Assignment of positive and negative logic system. 

The conversion from positive logic system to negative logic system and vice-versa, 
can be done by changing 0 to 1 and 1 to 0 in both inputs and output of a logic gate. 
This operation results in dual of a function. So, the AND operation is converted to 
OR operation and the OR operation is converted to AND operation. For example, 
let us see how a logic gate behave in positive logic system and negative logic 
system. Consider a logic gate which produce high signal level only if all its inputs 
are high signal levels, otherwise it produces low signal level. The truth table the 
gate in positive logic system is shown below in Figure 2.7 : 

MCA-105/28



 

Figure 2.7-Illustration of positive and negative logic system. 

From the truth table, it is clear that the gate behaves as AND gate in positive logic 
system. Now, let us see the truth table of the gate in negative logic system which is 
shown in Figure 2.7. The truth table clearly illustrates that the gate behaves as OR 
gate in negative logic system. 

2.8 SUMMARY 

 We discussed Boolean algebra which supports operations + (OR), . (AND),  
' (NOT) on Boolean variables with either 0 or 1 as their value. 

 We have seen the principle of duality where any Boolean identity remains 
valid even if we interchange operators OR and AND and replace 0 by 1 and 
1 by 0. 

 We get familiar with various basic theorems to analyse and manipulate any 
algebraic expression.  

 We learned about Boolean functions and demonstrate how to construct truth 
table from any Boolean function. 

 We discussed various logic gates which implement different types of 
operations on Boolean variables. 

 We illustrated how to implement circuit from any Boolean function. 

 We saw that a positive logic system uses higher signal level H to represent 
logic 1 and a negative logic system uses lower signal level L to represent 
logic 1.  

2.9 TERMINAL QUESTIONS 

1. What are various applications of digital electron theory? 

2. Explain different functions possible with two binary variables. 

3. Describe how you implement Boolean functions. 

4. How do you find complement of a Boolean function? 

5. Define Boolean function with a suitable example. 
MCA-105/29



6. What do you mean by positive and negative logic system? 

7. Implement the following Boolean functions to circuit using logic gates. 

i) ab+ab' 

ii) (a+b).(a+b') 

8. Find dual of following expressions. 

i) x+0=x 

ii) x+x'=1 

iii) x+x=x 

iv) x+1=1 

9. Find complement of following Boolean functions. 

i) b'd'+bd 

ii) (c+b'd)(c+b+d')(c'b'+d) 

10. Write the truth tables of following logic gates. 

i) AND  

ii) NAND 

iii) EX-OR 

iv) NOR 

v) Ex-NOR 

11. Draw the truth table of the following functions: 

 a) (xy + z′)  

b) (A′B′C) 

 

 

 

 

 

 

 

 

 

 
MCA-105/30



UNIT-3 REDUCTION TECHNIQUES 

Structure 

3.1 Introduction 

3.2 Objectives 

3.3 Minterms and Maxterms 

3.4 Standard Form of a Boolean function 

3.5 Other uses of standard forms 

3.6 K-Map 

3.7 Don't Care Conditions 

3.8 Product of Sum Simplification 

3.9 Summary  

3.10 Terminal Questions 

3.1 INTRODUCTION 

The complexity of a digital logic circuit is directly dependent on the 
complexity of the Boolean function which implements it. A minimized Boolean 
function requires minimum number of gates, decreases the cost for its 
implementation into logic circuits and is more reliable. Boolean functions can be 
simplified algebraically using Boolean identities as discussed in previous unit. But, 
this process is lengthy and error prone when the number of Boolean variables 
increases. Also, this process does not give consistent result always. In this unit, we 
will discuss a simple and powerful technique for simplification of any Boolean 
function which is called as Karnaugh Map or simply K-map. It is a graphical way 
of minimizing a Boolean function which represent its truth table in 2 dimension. 

3.2 OBJECTIVES 

After studying this unit you should able to 

 Understand minterms and maxterms and express any function in standard 
form: SOP and POS form. 

 Find complement of any function expressed in SOP or POS form and 
interconversion between SOP and POS form of a function. 

 Simplify any Boolean function expressed in SOP or POS form using k-map. 

MCA-105/31



3.3 MINTERMS AND MAXTERMS 

A function expressed in a standard form can be minimized by K-Map. We 
can directly apply the procedure of K- Map on the standard form of a function. A 
standard form of a function contains either minterms or maxterms.   

Minterms : Any Boolean variable can be in two forms: normal form (x) and 
complement form (x'). Consider, two Boolean variables x and y which are 
combined by an AND gate. Since each Boolean variable may appear as normal 
form and complement form, there are four combinations possible with these two 
Boolean variables: x'y',x'y,xy' and xy. Each of these combinations formed with 
AND operation is called a minterm. In general, with n Boolean variables, there are 
2n different combinations possible which results in 2nminterms. The process for 
obtaining these 2nminterms is illustrated in Table 2.3. The columns of Boolean 
variables x,y,z correspond to all possible inputs with three Boolean variables which 
can be seen as binary equivalents of decimal numbers from 0 to 23-1. Each minterm 
in the column term can be obtained by combining the inputs x,y,z such that each 
Boolean variable appears in complement form if its value is zero otherwise it 
appears in normal form if its value is 1. Each minterm is denoted with symbol mj, 
where j corresponds to the decimal equivalent of the binary number formed from 
inputs x,y,z.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 - Minterms and maxterms for three binary variables. 

Maxterms : Similarly, n Boolean variables can be combined with OR operation 
with each variable may appear in complement or normal form and this will result 
in 2n maxterms. Each maxterm can be obtained by combining the input Boolean 
variables x,y,z with OR operation such that each variable appears in complement 
form if its value is 1 otherwise it appears in normal form if its value is 0. For MCA-105/32



example, Table 3.1 shows 8 maxterms possible with 3 Boolean variables x,y,z in 
column Term. Thesymbolic representation ofeach maxterm is shownwith Mj 
(where j is decimal equivalent of binary numberformed from x,y,z) in Designation 
column. From the Table 3.1, we can notice that, each minterm is complement of its 
corresponding maxterm and vice-versa. 

mj'=Mj 

3.4 STANDARD FORM OF A BOOLEAN FUNCTION 

Any Boolean function can be expressed in a standard form. The standard 
form of a function contains either all minterms or all maxterms. There are two 
standard forms for representation of a Boolean function: Sum of Product and 
Product of Sum. 

Sum of Products (or Sum of minterms) : Any Boolean function can be expressed 
using minterms by combining each minterms with OR operation which corresponds 
to output logic 1 of the function. This way of a function representation is called 
Sum of Product (or SOP). For example, consider two Boolean functions f1 and f2 
whose truth table is shown in Table 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2 : Functions of three variables. 

The function f1 shown in Table 3.2 can be expressed with sum of minterms 
x'y'z,xy'z' and xyz because each of these minterms corresponds to output logic 1. 
This can be written as follow: 

f1=x'y'z + xy'z' + xyz= m1+ m4 + m7 

=∑(1,4,7) 

Similarly, the function f2 shown in Table 3.2, can be expressed as: 
MCA-105/33



f2= x'yz + xy'z + xyz= m3+m5+m6+m7 

=∑(3,5,6,7) 

Product of Sums (or Sum of  maxterms) : The product of sum representation of 
a Boolean function is a combination of each maxterm which corresponds to output 
logic 0 with AND operation. For example, the function f1 shown in Table 3.2 can 
be expressed in POS form as follows.  

f1=(x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')(x'+y'+z) 

=M0.M2.M3.M5.M6 

   =∏(0,2,3,5,6) 

Similarly, the POS expression for the function f2 is: 

f2=(x+y+z)(x+y+z')(x+y'+z)(x'+y+z) 

=M0.M1.M2.M4 

   =∏(0,1,2,4) 

3.5 OTHER USES OF STANDARD FORMS 

Complement of a function : If a Boolean function is expressed as Sum of Products 
(SOP) form, then the complement of this function in SOP form is sum of all 
minterms missing in the original function. In other words, complement of the 
function contains all the missing minterms in its original uncomplemented function. 
Similarly, if a function is expressed in POS form, then complement of the function 
in POS form is sum of all missing maxterms in its original uncomplemented 
function.For example, consider the function Fshown in Table 3.3.  

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Truth table for F=A+B'C 

It can be expressed in POS form as: MCA-105/34



F(A,B,C)=∑(1,4,5,6,7) 

Then, complement of the function F can be written in POS form as: 

F'(A,B,C)= ∑(0,2,3) 

Conversion between SOP and POS : In the previous example, we have seen that: 

F(A,B,C)=∑(1,4,5,6,7) 

F'(A,B,C)=∑(0,2,3)=m0+m2+m3 

Now, if we again take complement of F', we will get back the original function F 
in a different form:  

F= (F')'=(m0+m2+m3)' 

=m'0.m'2.m'3(using DeMorgan's law) 

=M0.M2.M3  (each minterm is complement of its corresponding maxterm and vice-
versa i.e. mj'=Mj) 

   =∏ (0,2,3)  

A general conversion procedure is interchange symbol ∑ and ∏ and write only 
those numbers that are missing in the original form. Please note that, while writing 
missing numbers, if there are n input Boolean variables, we should consider all 
2nminterms or maxterms. For example, if a function is expressed in SOP form as: 

f(x,y,z)=∑(1,4,6) 

Then, its POS form can be written as: 

F(x,y,z)=∏(0,2,3,5,7)  (since the function contains three input variables x,y,x, there 
are 23=8 minterms or maxterms possible.) 

Conversion to standard forms : A Boolean function expressed in a standard form 
i.e. SOP or POS has many uses such as for circuit simplification using k-map. But, 
if a Boolean function is expressed in non-standard form, it must be converted into 
standard form by using Boolean identities. For example, a Boolean function f5 as 
shown below is neither SOP nor POS.  

f5=(AB+CD) (A'B'+C'D') 

It can be converted into SOP form by removing parentheses using distributive law. 

f5=A'B'CD+ABC'D' 
 

Check Your Progress 

1. Express the Boolean function F(x,y,z) = ∏ (0,5,7)in SOP form. 

2. Convert the Boolean function F(a,b,c) = ∑ (2,3, 6, 5)to POS form. 

3. Find Complement of following Boolean functions: 

i. F=∏ (1, 4, 5, 6, 7) 

ii. F=∑ (1, 4, 5, 6, 7,15) 

 

MCA-105/35



3.6 K-MAP 

K- Map is a straight-forward method of minimization of a function by a 
special arrangement of truth table. For example, the similarity between truth table 
and k-map for a general case of a function with two Boolean variables is shown 
below :  

 

 

 

 

 

 

 

 

 

 

Each square (or cell) corresponds to one of the 2^2 outputs in the truth table. Each 
output which is written in the square corresponds to variable values when seen in 
its respective row and column in four grids. For example, the square with value 0 
at the top right hand corner with column, A=1 and row, B=0 corresponds to third 
row of the truth table. 

Two Variable Maps:A two variable k-map consists of 22 =4 minterms and each 
minterm corresponds to one square in k-map. Figure 3.1 (a) and (b) show the 
relationship between each square and its minterm.  

 

 

 

 

 

 

 

 

a)                  b)   

Figure 3.1- A two variable k-map 

MCA-105/36



If a function is expressed in sum of products (SOP) form, then its k-map contains 
1 marked in squares which corresponds to its minterms. For example, the function 
f= XY is represented by the k-map (as shown in Figure 3.2-a) with the square which 
belong to mintermxy is marked with 1. As another example, f=AB' + AB is 
represented by the k-map (shown in Figure 3.2-b) where the squares corresponding 
to minterms AB' and AB are marked with 1. 

 

 

 

 

 

 

 

(a)  (b) 

 

Figure 3.2- (a) K-Map for f=XY     (b) K-Map for f=AB' + AB 

 

Three Variable k-maps : Since, three variables consist of 23=8 minterms, its k-
map consists of 8 squares. Figure 3.3 (a) and (b) show relationship between each 
square and its minterm. For example, the square which is assigned minterm m6 
corresponds to the row marked x and column marked yz'. When these two terms 
are concatenated, they give minterm m6 = xyz' for the square.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 – (a) A three variable k-map with minterms notations (b) A three 
variable k-map containing minterms expression with variables. MCA-105/37



Four variable k-map : A four variables k map consists 24 =16 minterms. Figure 
3.4(a) and (b) show 4 variables k map and relationship of each minterm to its cell. 
For example, the cell which is assigned m10corresponds to its row marked AB' and 
column marked CD'. When these two terms are concatenated, they give minterm 
m10 =AB'CD'.  

 

 

 

 

 

 

 

 

 

  (a)                                                                (b) 

 

Figure 3.4 - (a) A four variable k-map with minterms notations (b) A three 
variable k-map containing minterms expression with variables. 

Simplification using k-map : 

Now, we will see how k-map can be used for minimization of any Boolean function. 
Any Boolean function expressed in SOP form can be minimized by using k-map as 
follows: 

1. Choose a k-map according to number of variables in the Boolean function. 

 

 

 

 

 

 

 

 

 

 

 MCA-105/38



1-variable k-map2-variable k-map3-variable k-map4-variable k-map. 

2. Identify minterms from SOP form of the function and put 1 in cells 
correspond to each minterm.  

For example: 

F(A,B)=AB'+AB 

 

 

 

 

 

 

3. Form Groups in power of two i.e 2n squares or cells such as 1, 2, 4 and 8.  

 

 

 

 

 

 

 

 

 

 

Groups formation should take place from larger groups first till each cell 
containing 1 belongs to some group. In other words, we should first try to 
make large groups and if it is not possible then look for small groups as 
shown below.  

 

 

 

 

 

 

 MCA-105/39



 

 

 

 
 

A group must be either horizontal or vertical. A square with 1 may belong 
to more than one group as shown below. 

 

 

 

 

 

 

A Group may form from leftmost cells with right most cells containing 1s. 
A group may also be formed from top cell in a column with the bottom cell 
in the same column. 

 

 

 
 

 

 

 

4. For each group, find the common variables (that do not changes) along the 
cells rows and along the cells columns and then concatenate the common 
variables to form products terms. The product terms thus obtained for each 
group are summed together to get minimized function in SOP form.  

For example, consider the k-map below.  

 

 

 

 

 

 
MCA-105/40



In this k map, two groups are formed one with cells 0 and 2, while other 
with cells 5 and 7. For the group with cells 0 and 2, if we see along its row 
with heading C', there is only C' which is common and does not change. If 
we look at these cells along their columns headings A'B' and AB', we find 
that B' is common in them. So, the product term for this group is B'C'. Now, 
consider the second group formed with cells 5 and 7. These cells correspond 
to only one row with heading C. Obviously, it is common which does not 
change. The cells 5 and 7 correspond to two columns with heading A'B and 
AB. Here, B is common in them which does not change. So the product 
term for this group is BC. The final minimized function for this k map is: 
B'C'+BC. 

Illustrative example 1: Identify the valid k-map in the following pairs of k- maps: 

a.  

 

 

 

 

 

 

Groups should contain number of cells equal to power of 2. (e.g. 1, 2, 4, 8, 
16) 

b.  

 

 

 

 

 

 

Each group should contain cells containing 1s only - i.e. no cells without 1s 

c.  

 

 

 

 

 
MCA-105/41



Each cell of 1 must be covered in some group 

 

d.  

 

 

 

 

 

A Group can be overlapped to form larger group if possible.  

e.  

 

 

 

 

 

 

A Group can be formed with corner cells of 4 variable k-map. This 
wrapping around gives us a large group. 

f.  

 

 

 

 

 

 

Groups must be formed by covering cells of 1s in horizontal or vertical 
direction. Groups cannot be made from diagonal cells of 1s. 

g.  

 

 

 

 MCA-105/42



We should always first look to form large groups and if it is not possible 
then consider other alternatives.  

Illustrative example : Simplify the Boolean function expressed in SOP form 

F(x,y,z)= ∑(0,2,4,5,6). 

Solution:  

1. Since the above Boolean function contains 3 variables, draw a k-map with 
these three variables.  

 

 

 

 

 

 

 

2. The minterms of the function are 0,2,4,5 and 6. Put 1 in cells corresponds 
to each minterm.  

3. The first group can be formed with four cells:0,2,4,6. In this group, no 
variable is common in its rows x and x'. But, z' is common along its columns 
y'z' and yz'. So the product term for this group is z'. 

4. The second group is formed with two cells: 4,5. In this group, x is common 
along its only row x, and y' is common along its columns y'z' and y'z. The 
product term for this group is xy'. 

The POS expression for the simplified function is z'+xy'. 

Illustrative example : Minimize the sum of product expression for the following 
Boolean function: 

f(A,B,C)=A'C+B'C+BC+A'BC' 

Solution: The Boolean function consists of 3 variables, draw a k-map of 3 variables 
as given below.  

 

 

 

 

 

 

 MCA-105/43



We are given the function in SOP form with variable instead of individual minterms 
as in previous example. For each term in the SOP expression, identify the cells in 
the k map that are covered by it and put 1 in corresponding cells. For example, the 
term A'B covers the cells which corresponds to row A' and all columns containing 
C i.e. cells 1, 3, 5, 7, so put 1 in these positions. Similarly, the term B'C covers all 
cells under column name B'C i.e. 1, 5, so put 1 in these positions. And so on, the 
A'BC' term covers cells corresponding to row A' and column BC' which gives a cell 
2, so put 1 in this cell.  

1. The first group forms with four cells: 1,3,5,7. Here, no variable is common 
along this group's row headings A', A and C is common along its columns 
headings B'C and BC. So the product term for this group is C. 

2. The second group is formed with cells 2 and 3. Here, A' is common along 
its only row A' correspond to this group and B is common along the columns 
BC and BC' corresponds to this group. So the product term for this group is 
A'B. 

The SOP expression of minimized function is sum of all product terms: C+A'B 

Illustrative example: Simplify the following function given in sum of products 
(SOP) form. 

f(A,B,C,D)=A'BCD + ABC' + ABC + AB'D + AB'C 

Solution: The above Boolean function consists of 4 variables, so draw a k-map of 
4 variables as given below.  

 

 

 

 

 

 

 

 

The function is given in SOP form with variables instead of individual minterms. 
For each term in the SOP expression, identify the cells in the k map that are covered 
by it and put 1 in corresponding cells. The term A'BCD covers all cells which 
corresponds to row A'B and column CD i.e. cell 7 so put 1 in this position. 
Similarly, the term ABC' covers all cells under row AB and columns contains C' 
i.e. 12 and 13, so put 1 in these positions. The term ABC covers all cells 
corresponding to row AB and columns containing C which are 14,15, so put 1 in MCA-105/44



all these positions. And so on, the AB'C term covers cells corresponding to row AB' 
and columns containing C which gives cells 10, 11, so put 1 in these cells.  

1. The first group can be formed with four cells: 12,13,14,15. In this group, 
AB is common along this group's row heading AB and no variable is 
common along its columns headings C'D',C'D,CD and CD'. So the product 
term for this group is AB. 

2. The second group can be formed with cells 9,11, 13, 15. Here, A is common 
along the rows AB, AB' and D is common along the columns C'D and CD. 
So the product term for this group is AD. 

3. The third group can be formed with cells 10,11,14,15. In this group, A is 
common along its rows AB,AB', and C is common along its columns 
CD,CD'. So the product term for this group is AC. 

4. The last group can be formed with cells: 7 and 15. In this group, B is 
common along its rows A'B, AB and CD is common along its only column 
CD. So the product term for this group is BCD. 

The SOP expression for minimized function is sum of all product terms: 
AB+AD+AC+BCD. 

 

Check Your Progress 

1. Simplify the following Boolean function expressed in SOP 
form: f(w,x,y,z)=∑(1,3,7,11,15). 

2. Simplify the following Boolean function expressed in SOP 
form:f(A,B,C)=∑ (0,2,3,4,5). 

 

3.7 DON'T CARE CONDITIONS 

The minterms in the SOP form of a Boolean function specify the conditions 
which make the function value 1 or 0. In other words, a minterm specifies a 
combination of input Boolean variables which make the function either 0 or 1. This 
means all combinations of input variables of a function are valid. But for some 
applications, we don't want the function outputs for certain combinations of input 
variables. The function with unspecified outputs for some combinations of input 
variables is called as incompletely specified function and the unspecified 
combinations of variables or minterms are called as don't care conditions. In a k 
map, a don't care condition is specified with × sign which means we do not care 
whether the output of a function is 0 or 1 for this minterm or combination of inputs. 
In the k map, the don't care values provide opportunity for further simplification of 

MCA-105/45



a Boolean function. The don't care values can be treated as either 0 or 1, whichever 
results in formation of larger groups.  

For example, Figure 3.5 shows valid combination of don't care values × with 1 to 
form larger groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Valid combinations of don't care values × with 1 to form larger 
groups. 

 

Check Your Progress 

1. Simplify the following Boolean function expressed in SOP 
form: f(A,B,C,D)=∑(0,2,4, 6,8,10,11,12,13,14,15). 

2. Simplify the following Boolean function expressed in SOP 
form: f(A,B,C,D)=∑(3,7,11,12,13,14,15). 

MCA-105/46



 

3.8 PRODUCT OF SUM SIMPLIFICATION 

Generally, we use k map with SOP form of a function to obtain minimized 
function in SOP form. The k map can also be used with POS form of a function to 
obtain minimized function in POS form. This requires the same rules as discussed 
earlier for SOP simplification. But, here we put 0s in respective cells correspond to 
maxterms in k map. For each group, the common variables obtained along the row 
and column are complemented individually and then summed to get sum terms. 
Finally, the sum terms of each group are combined with AND operation to obtain 
minimized POS function. 

For example, consider a Boolean function expressed in POS form as.  

F(A,B,C,D)=∏(4,5,7,13,14,15) 

 

 

 

 

 

 

 

 

 

 

1. First form quad group with cells 5,7,13 and 15. Here, X is not changing 
along its rows headings and Z is not changing along its columns heading. 
So, the sum term for this group after complementing common variables 
individually is X’+Z’. 

2. Form second group pair with cells 4 and 5. Here, W' and X is common along 
its row heading and Y' is common along its columns heading. So the sum 
term for this group after complementing common variables individually is 
(W+X’+Y).  

3. Form the last group which is a pair with cells 14 and 15. In this group, W 
and X is common along its row and Y is common along its columns. This 
group forms the sum term after complementing common variables 
individually (W’+X’+Y’).  

The POS expression for minimized function product of all sum terms: (W+X’+Y) 
(W’+X’+Y’) (X’+Z’). 

MCA-105/47



Check your progress 

1. Simplify the following Boolean function expressed in POS 
form: f(X,Y,Z)=∏(0,1,2,4) 

 

3.9 SUMMARY 

 We understand how to write minterms and maxterms of a function. 

 We learned the standard form of a Boolean function and demonstrated to 
express any function in SOP and POS form. 

 We discussed how to find complement of any function expressed in SOP or 
POS form. 

 We learned about interconversion between SOP and POS form of a 
function. 

 We illustrated how to minimize any boolean function with the help of K-
Map. 

 We understand the need of don't care conditions X, where we don't want the 
function outputs for certain combinations of input variables. This 
unspecified combinations of variables or minterms are called as don't care 
conditions.  

 We demonstrated the process of a function simplification with Product of 
Sum form using k-map. 

3.10 TERMINAL QUESTIONS 

1. What do you mean by minterms and maxterms? 

2. Explain Sum of Product (SOP) and Product of Sum (POS) representation of 
a Boolean function with suitable example. 

3. What do you mean by complement of a Boolean variable? 

4. What is standard form? 

5. How many input combinations are possible for a function with 5 input 
Boolean variables? 

6. Simplify the following Boolean functions with k maps. 

i) F(A,B,C)=∑(1,3,6,7) 
MCA-105/48



ii) F(P,Q,R,S)=∑(0,2,5,7,8,10,13,15) 

7. Express the Boolean function F = xy + x’z in product of sums form. 

8. Express the Boolean function F = A + B’C in standard sum of products 
form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCA-105/49



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCA-105/50



UNIT-4 COMBINATIONAL CIRCUITS 

Structure 

4.1 Introduction 

4.2 Objectives 

4.3 Design Procedure 

4.4 Adder 

4.5 Substractor 

4.6 Code Conversions 

4.7 Decoder 

4.8 Demultiplxer 

4.9 Encoders 

4.10 Multiplexer 

4.11 Magnitude Comparators 

4.12 NAND and NOR Implementation 

4.13 Summary  

4.14 Terminal Questions 

4.1 INTRODUCTION 

A combinational circuit consists of logic gates which accept signals from n 
input variables to produce m output variables. Figure 4.1 shows block diagram of a 
general combination circuit. It consists of n inputs which results in 2^n different 
input combinations and each input combination corresponds to one of 2^m outputs. 
In other words, a combinational circuit implement m Boolean functions and each 
Boolean function corresponds to one m output variables. The inputs to each 
Boolean function comes from n input variables.   

 

 

 

 

 

Figure 4.1 – A block Diagram of Combinational Circuit MCA-105/51



In unit 1, we discussed about binary numbers which are used to represent and 
manipulate binary signals in digital systems. In the second unit, we learned Boolean 
algebra to represent Boolean functions. The Boolean functions are ultimately used 
to implement logic circuits. The third unit illustrated how to minimize a Boolean 
function so that it gives minimum numbers of gates. This achieves economically 
feasible implementation of logic circuits. The purpose of this unit is to demonstrate 
the knowledge acquired in all previous unit in designing and analysing combination 
circuits. This will give us some picture of how computers work.  

4.2 OBJECTIVES 

After studying this unit you should able to: 

 Design combinational circuit for various circuits such as half adder, full 
adder, half Substractor and full Substractor. 

 Understand working of 4 bits magnitude comparator, demultiplexer, 
encoder, decoder and multiplexer. 

 Design binary to grey code convertor using combinational circuit. 

 Design any combinational circuit with multiplexer or decoder. 

 Implement any Boolean function with NAND and NOR gates which are 
considered as universal gates.  

4.3 DESIGN PROCEDURE 

The design procedure for any combinational circuit can be described by following 
steps: 

1. An outline of the problem is stated. 

2. The number of input variables and output variables are determined. 

3. The truth table is derived to show the required relationships between input 
and output variables.  

4. Each Boolean function that represent each output of the truth table is 
simplified by the k-map.  

5. The logic diagram is drawn for simplified Boolean functions.  

The truth table for a combination circuit consists of input columns and output 
columns. The input columns represents 2^n input combination possible with n input 
variables. The output values 0s or 1s for each input combinations are determined 
from the stated problem. However, if the problem specification indicates some 
input combinations do not occur. The don't care conditions are assigned to outputs 
of these input combinations. Since the output functions are derived from the truth 
table, the problem specifications must be interpreted correctly into the truth table. 
Any wrong interpretation results in incorrect combinational circuit. The output 
functions may be simplified by either k-map or algebric manipulation. Some 
practical design goals of a combinational circuit are: 

MCA-105/52



1. Minimum number of gates. 

2. Minimum number of inputs to gate. 

3. Minimum propagation time of signal through the circuit. 

4. Minimum number of interconnections. 

4.4 ADDER 

Modern Computers perform a variety of tasks. Some of the basic tasks 
include arithmetic operations. Addition of binary digits is one of the arithmetic 
operations. In this section, we will design a combinational circuit called as half 
adder which will perform addition of two 1 bit numbers. The combinational circuit 
which performs addition of 3 one bit numbers is known as full adder.  

4.4.1 HALF ADDER 

A half adder takes two binary numbers each of 1 bit and produce a binary 
number of 2 bit. In other words, it requires two 1 bit numbers and produces 2 bit 
numbers i.e. 0+0=00, 0+1=01,1+0=01, and 1+1= 10. The truth table for the half 
adder is shown in Figure 4.2. 

 

 

 

 

 

 

 

 

Figure 4.2 - Truth table of half adder. 

The truth table shows all possible inputs in addition of two 1 bit numbers in columns 
x and y. Since the addition produces a binary number with 2 digits, there are two 
output variables S (sum) and C (carry) in the truth table. The Boolean functions for 
S and C can be obtained from the truth table in sum of products (SOP). Remember, 
the SOP form includes minterms that correspond to output logic 1. Each minterm 
can be obtained by combining the inputs x,y,z such that each Boolean variable 
appears in complement form if it is 0 otherwise it appears in normal form if it is 1.  

 

S=xy’ + x’y 

= x⊕y 

C=xy MCA-105/53



 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 4.3 – Various implementation of a half adder. 

The Figure 4.3-(a) shows implementation of half adder in SOP form. While, Figure 
4.3(b) shows its implementation in POS form.  Since the expression for S in SOP 
form in equivalent to Ex-OR gate, so the half adder can also be implemented with 
Ex-OR andAND gate as shown in Figure 4.3(c). 

4.4.2 FULL ADDER 

A full adder is a combinational logic circuit that performs arithmetic sum of 3 one 
bit numbers. It takes two 1 bit numbers and one 1 bit number as carry and produces 
2 output bits. Two bits output is necessary because the arithmetic sum of 3 input 
bits produces sum which ranges from 0 to 3 and 2 bits are necessary to represent 2 
and 3.  Truth table for the full adder is shown in Figure 4.4. 

 

 

 

 

 

 

 

 

Figure 4.4 - Truth table for the full adder MCA-105/54



In the truth table, the two inputs x and y of the full adder represent two significant 
bits to be added and the third bit z is considered as carry from previous lower 
significant position. The least significant bit of the sum is given by S and higher 
significant bit of the sum by C which is considered as output carry.  

The Boolean functions of S and C are expressed in SOP form which are minimized 
through k-map (as shown in Figure 4.4).  

S=x'y'z+x'yz'+xy'z'+xyz 

C=xy+xz+yz 

 

 

 

 

 

 

 

 

Figure 4.4 - k-map simplification of full adder. 

The logic circuit for above simplified functions is shown in Figure 4.5.The 
implementation of full adder for POS form requires same number of gates but 
number of AND and OR gates are replaced.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5- Full adder implementation with simplified SOP form. 

A full adder can also be implemented with EX-OR,AND and OR gates. This 
requires algebraic manipulation of Boolean functions S and C as follows: MCA-105/55



S=x'y'z+x'yz'+xy'z'+xyz 

=x'y'z+z'(x'y+xy')+xyz 

=z(x'y'+xy)+z'(x'y+xy') 

=z(x'y+xy')'+z'(x'y+xy') 

=z⊕(x'y+xy') 

= z⊕(x⊕y) 

C=xy'z+x'yz+xyz+xyz'                                 (minterms of SOP form) 

=z(xy'+x'y)+xy(z+z') 

=z(x⊕y)+xy 

The manipulated Boolean functions S and C can now be implemented using EX-
OR,AND and OR gates as shown in Figure 4.6. 

 

 

 

 

 

 

 

 

Figure 4.6 – Implementation of full- adder with EX-OR, AND and OR gates. 

This implementation of full adder can be thought as two half after cascaded side by 
side. In a computer, to add two 8 bits numbers, we require 8 full adder which are 
cascaded together such that each full adder allows addition of two 1 bit numbers 
and one bit carry from previous lower significant position and sends one bit carry 
to next higher significant position. 

4.5 SUBSTRACTOR 
 

4.5.1 HALF SUBTRACTOR 

A half subtractor is a combinational circuit which performs arithmetic 
subtraction of two 1 bits numbers. To perform subtraction of two binary bits 
represented with variables x and y, we need to check the relative magnitude of x MCA-105/56



and y. Consider x as minuend and y as substrahend. If x>= y, it results in three 
possibilities: 1-0=0,1-1=0 and 0-0=0. The result of the operations are called as 
difference bit. But if x<y i.e. 0-1, this requires borrow from next higher significant 
bit. In decimal number system a borrow adds 10 to the minuend digit. Similarly, in 
the case of binary number system, a borrow adds 2 to the minuend bit. Now the 
difference 0-1 becomes 2-1 which gives 1. This subtraction generates two outputs, 
one is the difference D=1 and other is borrow B= 1. The borrow B in case of x>y 
is 0. The truth table for the half subtractor which shows the input-output 
relationships is shown in Figure 4.6.  

 

 

 

 

 

 

 

Figure 4.6- Truth table of half substractor. 

The Boolean functions for two outputs D and B can be expressed in POS form as 
follows: 

D = x'y + xy' 

= x ⊕ y 

B =x'y 

The combinational circuit for above functions which represents half substractor is 
shown in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7- Combinational circuit of half substractor. MCA-105/57



4.5.2 FULL SUBSTRACTOR 

A full substractor is a combinational circuit which performs arithmetic 
substaction of two 1 bit numbers by considering that 1 may be borrowed by 
previous lower significant bit. For example, consider three 1 bits numbers x,y and 
z as minuend, subtrahend and previous borrow respectively. The full subtraction 
can be treated as x-y-z. If the previous borrow, z=0 then the subtraction of x and y 
is the same as the half adder. But, when the previous borrow, z=1, x=0 and y=0, we 
need to borrow 1 from next higher significant bit which makes borrow B= 1. This 
results in addition of 2 to x and now subtraction of x-y-z becomes 2-0-1. This gives 
D=1. For x=0,y=1 and z=1, again there is a need to borrow 1 from higher significant 
bit which adds 2 to x and makes borrow B=1. This results in 2-1-1=0 which outputs 
D=0. Similarly, when x=1,y=1 and z=1, we need to borrow 1 which makes B=1 
and x= 3. Now the subtraction becomes 3-1-1=1, so the output D= 1. The truth table 
for the full subtractor shown in Figure 4.8 shows all these results.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8- Truth table of full substractor. 

The Boolean functions for outputs D and B of the above truth table can be expressed 
in SOP form as follows: 

D = x'y'z + x'yz' + xy'z' + xyz   

B =x'y'z + x'yz' + x'yz + xyz 

The above Boolean functions D and B can be simplified using algebraic 
manipulation as follows: 

D = x'y'z + x'yz' + xy'z' + xyz 

=x'y'z + xyz  +x'yz' + xy'z' MCA-105/58



    = z(x'y' + xy) + z'( x'y + xy') 

    = z (x ⊙ y) + z' (x ⊕ y) 

    = z (x ⊕y)' + z' (x ⊕ y) 

    = z ⊕ (x ⊕ y)  

B =x'y'z + x'yz'+ x'yz + xyz 

=x'y'z + xyz  +x'yz' + x'yz 

= z(x'y' + xy) + x'y(z' + z) 

= z (x ⊙ y) + x'y                                                                                                          

 (z' + z)=1 

= z (x ⊕y)' + x'y 

The combinational circuit for simplified functions D and B is shown in Figure 4.9. 

 

 

 

 

 

 

 

 

Figure 4.9 - Combinational circuit of full substractor. 

4.6 CODE CONVERSIONS 

There are a large variety of code available to represent the same information 
by different digital systems. For example, there are different types of binary code 
such as BCD, grey and excess 3 code. Sometimes, we need output of one system 
as input to another system. The two system may use different coding scheme, so 
there is a need of conversion circuit that makes both system compactable to each 
other. The conversion circuit is a combinational circuit that convert one type of 
binary code to another type of binary code. In this section, we will discuss the 
design procedure for Binary to Graycode conversion circuit. 

Binary to Gray: A Binary coded digits b3b2b1b0 can be converted to its equivalent 
Gray Code with following procedure: 

 MCA-105/59



 

From the above procedure, each digit of the corresponding grey code thus obtained 
are as follows:  

g3 = b3 

g2 = b3 XOR b2 

g1= b2 XOR b1 

g0 = b1 XOR b0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1- Binary to Gray Code Converter Table 

The bit combinations of BCD code and their equivalent grey codes are shown in 
truth table in Table 4.1. Each BCD code requires 4 bits for its representation and its 
corresponding grey code also requires 4 bits. So, there are 4 input binary variable 
with symbols: b3,b2,b1,b0 and 4 output variables: g3,g2,g1,g0 in the truth table. 

MCA-105/60



The output variables g3,g2, g1 and g0 are Boolean functions which can be 
simplified with k-maps as shown in Figure 4.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g3=b3g2=b3b2' + b3'b2 

 

 

 

 

 

 

 

 

 

 

 MCA-105/61



 

 

 

 

 

 

 
 

 

g1=b1b2' + b1'b2 g0=b0b1' + b0'b1 

Figure 4.10 - k maps of Binary to Gray Code simplification 

Each of the four k - maps represents minimization process of each of 4 output 
variables. The 1s marked in squares is obtained from the minterms of its output 
variables which corresponds to 1 in truth table. The expressions obtained from the 
Figure 4.10 can be manipulated further to obtain more compact representation using 
Ex-OR gates.  

g3=b3 

g2=b3b2' + b3'b2=b3 ⊕ b2 

g1=b1b2' + b1'b2= b1 ⊕ b2 

g0=b0b1' + b0'b1= b0 ⊕ b1 

After the manipulation of each Boolean function which represents one output 
variable, the logic diagram with these functions is shown in Figure 4.11 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 – Logic circuit for Binary to Gray Code. MCA-105/62



Check Your Progress 

Find the grey code of following BCD code. 

a) 0101 

b) 1101 

 

4.7 DECODER 

In a digital system, the discrete quantities of information are represented 
with binary codes. An n bits binary code is capable of representing 2^n discrete 
quantities of information. A decoder is a combinational circuit which converts an n 
bits binary information coming from n input lines to one of 2^n outputs. A decoder 
is represented with n to m line decoder such that m<=n. Each output of the decoder 
corresponds to one of the 2^n minterms of n variables. For example Figure 4.12 
shows a 3*8 decoder.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 - A 3*8 decoder. 

The above decoder takes a binary code of 3 bits and converts one of the 8 outputs. 
The operation of the decoder canfurther be illustrated with its truth table (as shown 
in Table 4.2) which shows relationships the inputs and corresponding outputs.  

 

 

 MCA-105/63



 

 

 

 

 

 

 

 

 

 

Table 4.2 - Truth table of a 3*8 decoder. 

Implementation of any combination circuit with decoder: We know that any 
Boolean function can be expressed as Sum of Products (SOP) form. Since a decoder 
generates all 2^n minterms containing n variables. We can generate any 
combination circuit containing n inputs and m outputs with the help of n to 2^n 
decoder and m OR gates. Please note that, the implementation of any combination 
circuit using decoder requires its Boolean function to be expressed in SOP form. 
We can obtain SOP form of a combinational circuit from its truth table or from 
algebraic manipulation if the function is directly given. For example, implement 
full adder with help of a decoder requires two OR gates. From the truth table of the 
full adder (as shown in Table 4.4), we can express the outputs S,C in SOP form as 
given below: 

S(x,y,z)=∑(1,2,4,7) 

C(x,y,z)=∑(3,5,6,7) 

As there are 3 input variables which results in 2^3= 8 minterms, we need a 3 to 8 
decoder as shown in Figure 4.13. 

 

 

 

 

 

 

 

 

Figure-4.13- A full adder implementation with decoder and OR gate. 
MCA-105/64



The decoder generates 8 minterms contains three variables x,y,z. The output S is 
obtained from the OR gate whose inputs are minterms: 1,2,4,7. The output C is 
obtained from the OR gate whose inputs are: 3,5,6,7.  

 

Check your progress 

1. Implement the following boolean functions with decoder. 

            f(x,y,z)=(y' + x)z 

4.8 DEMULTIPLEXER 

A decoder with enable input works as demultiplexer. In the demultiplexer 
the input lines of the decoder functions as selection lines and contains one enable 
line as input. The process of getting information on an input line and send this 
information to one of the multiple output lines is called as demultiplexing. A 
demultiplxer is a combinational circuit that performs such operation. The 
demultiplexer is also called as data distributor because it transfers the data present 
at input line to one of destinations as shown in Figure 4.14.  

 

 

 

 

 
 

 

Figure 4.14 - Demultiplexer as a data distributor. 

There are selection lines which select specific output line for data transfer. A 1 to 
n demultiplexer consists of 1 input line, n output lines and m selection lines. The m 
selection lines are used to select one of 2^m=n output lines. For example, a 1 to 4 
demultiplexer consists of 2 selection lines (because 2^2=4) as shown in Figure 4.15. 

 

 

 

 

 

 
Figure 4.15- A 1 to 4 demultiplexer. MCA-105/65



1 to 8 Demultiplexer: A 1 to 8 demultiplexer (as shown in Figure 4.16) consists of 
one input line D whose data is transmitted to one of the 8 output lines (Y0 to 
Y7) depending on the values of selection lines S0,S1,S2.  

 

 

 

 

 

 

 

 

 

 

Figure 4.16- A block diagram of 1 to 8 demultiplexer. 

The truth table for the demultiplexer is shown in Figure 4.17. It shows the relation 
between the values of selection lines S0,S1,S2 and output lines Y0 to Y7 for 
transmission of the input data D. 

 

 

 

 

 

 

 

 

 

 

Figure 4.17- Truth table of 1 to 8 de multiplexer. 

4.9 ENCODERS 

An encoder is a combination circuit that performs the inverse operation of 
a decoder. The encoder consists of 2n input lines and n output lines. The output lines 
generate the binary code of the input value. For example an octal to binary encoder 
(as shown in Figure 4.18) consists of 8 input lines, one for each octal digit and 3 
output lines which generate corresponding binary number.  MCA-105/66



 

 

 

 

 

 

 

Figure 4.18- An octal to binary encoder. 

The truth table for the octal to binary encoder is shown in Figure 4.19. 

 

 

 

 

 

 

 

 

 

 

Figure 4.19-Truth table of an octal to binary encoder. 

4.10 MULTIPLEXER 

A multiplexer is also called as data selector because it selects binary 
information from one of several inputs and sends to one output line as shown in 
Figure 4.20. A particular input line is selected by the selection lines. A multiplexer 
is often abbreviated as MUX. 

 

 

 

 

 

 

Figure 4.20 - Multiplexer as a data selector. MCA-105/67



The multiplexer is a Combinational circuit which consists of 2^n input lines from 
which one input line is selected and directed to the output line with the help of m 
(2^m=n) selection lines. For example, a 4 to 1 multiplexer is shown in Figure 4.21 
which has 4 input lines I0, I1,I2,I3 and selection of one of the input lines as output 
Y is controlled by selection lines S0,S1. 

 

 

 

 

 

 

 

 

 

Figure 4.21- Block diagram of a 4 to 1 multiplexer. 

Implementation of any Boolean function with multiplexer : Any Boolean 
function of n variables can be implemented with a 2(n-1) to 1 multiplexer. The n-1 
variables of the Boolean function are used for selection lines and the remaining 1 
variable is used for input lines of the multiplexer. If A is the remaining variable, 
then each input to the multiplexer is either A or A' or 0 or 1. With suitable choice 
of these four values as inputs of the multiplexer, any Boolean function can be 
implemented. For example, consider the following Boolean function to illustrate 
this procedure. 

F(A,B,C)= ∑(1,3,5,6) 

The truth table for above function is shown in Figure 4.22. 

 

 

 

 

 

 

 

 

 

Figure 4.22- Truth table for the function. 
MCA-105/68



Procedure- 

1. Express the given Boolean function in sum of products form (SOP). 

2. Since there are 3 variables, we require 4 to 1 multiplexer (2(3-1)=4).  

3. Consider the minterms of the function with ordered sequence of variables 
ABC where A is the most significant bit (MSB) and C is the least significant 
bit (LSB). Connect the n-1 variables to selection lines such that B connected 
to higher order selection line S1 and C connected to the next higher order 
selection line S0 and so on till the last variable. This is shown in Figure 4.23 

 

 

 

 

 

 

 

 

 

Figure 4.23- Function implementation with 4 to 1 multiplexer. 

4. The remaining variable A is in MSB position and left most variable in the 
truth table. This variable is 0 for the first half of the truth table and 1 for the 
remaining half. Consider the table shown in Table 4.4. The variable A will 
appear in complement form as A' for minterms 0 to 3 (because A is 0 for 
these minterms) and it will appear in uncomplemented form as A for 
minterms 4 to 7 (because A is 1 for these minterms).  

 

 

 

 

 

 

 

 

 

 

Table 4.4- Implementation table. MCA-105/69



5. Write the inputs of the multiplexer I0,I1,I2,I3 in columns and list the 
minterms of the function in two rows such that the first row contains all 
minterms where A is in complemented form and the second row contains 
all the minterms where A is in uncomplemented form. This is shown in 
Table 4.4. 

6. Circle all the minterms of the functions.  

7. While looking the table 4.4: 

a) If a column contains both mintermsuncircled, apply 0 to the 
multiplexer input corresponding to the column heading. 

b) If the column contains both minterms circled, apply 1 to the 
multiplexer input corresponding to the column heading. 

c) If only one minterm is circled, look at its row and column heading and 
apply row heading as input to the column heading of the multiplexer. 

Illustrative example: Implement following Boolean function with multiplexer. 

F(A,B,C,D)= ∑(0,1,3,4,8,9,15) 

The truth table can be drawn as: 

A B C D minterms F 

0 0 0 0 0 1 

0 0 0 1 1 1 

0 0 1 0 2 0 

0 0 1 1 3 1 

0 1 0 0 4 1 

0 1 0 1 5 0 

0 1 1 0 6 0 

0 1 1 1 7 0 

1 0 0 0 8 1 

1 0 0 1 9 1 

MCA-105/70



1 0 1 0 10 0 

1 0 1 1 11 0 

1 1 0 0 12 0 

1 1 0 1 13 0 

1 1 1 0 14 0 

1 1 1 1 15 1 

 

 

This is a 4 variable function, so it requires 8 to 1 multiplexer (2(4-1)=8). The n-1 
variables i.e. BCD after leaving the MSB bit are connected to selection lines of the 
8 to 1 multiplexer starting from higher order to lower order of selection lines.  

 

 

 

 

 

 

 

 

 

 
Figure 4.24- Function implementation with 8 to 1 multiplexer. 

The first half of the minterms have variable A as 0s (as shown in truth table) and 
so A will appear in complement form (as shown in Figure 4.24)for theseminterms. 
The second half of the minterms have variable A as 1s (as shown in truth table) and 
so it will appear in uncomplemented form (as shown in Figure 4.24) for these 
minterms. The implementation table is shown in Figure 4.24. The minterms of the 
functions are circled and the values for the multiplexer inputs are obtained as 
follows: 

The I0 and I1 column have both minterms circled, so input 1 will be applied to I0 
and I1. The I2 column has none of its minterms circled, so input 0 will be applied MCA-105/71



to I2. The column I3 has only one minterm circled, so input A' will be applied to 
I3. Similarly we can find out input values for the rest of the columns. 

Comparison of multiplexer method with decoder method: We have seen that, 
both multiplexer and decoder can implement any Boolean function. The decoder 
method requires one OR gate for each Boolean function but the same decoder can 
be used to implement any number of Boolean functions. The multiplexer method 
requires one multiplexer for each Boolean function but it is smaller size unit. If 
there are small numbers of output functions, multiplexer method is a good choice 
for their implementation. But, if the number of output functions are large, the 
decoder method requires fewer ICs.  

 

Check your progress 

Implement the following functions with multiplexer. 

F(A,B,C)= ∑ (1,2,6,7) 

 

4.11 MAGNITUDE COMPARATORS 

A magnitude comparator is a combinational circuit that compares two binary 
numbers and determines whether one binary number is greater than (>) or equal to 
(=)  or less than (<) the second binary number. Consider two numbers each 
containing 4 digits as follows:  

A=A3A2A1A0 

B=B3B2B1B0 

The numbers are written with letter followed by subscript according to their 
significant positions.  

 Two binary numbers are equal if and only if each pair of significant bits is 
equal i.e. A3=B3, A2=B2, A1=B1, A0=B0. This equality relation between a 
pair of bits Xi can be shown with logical function as: 

Xi=AiBi+A'iB'i            where i = 0,1,2,3 

In the above function, Xi will be 1 only if both bits in position i are either 0 
or 1. For equality of two numbers each pair of variables at position Xi should 
be equal to 1. In other words, the AND operation of each Xipair should be 
equal to 1. This can be expressed with Boolean function (A=B) as: 

(A=B)=X3X2X1X0  

 A binary number A is greater than another binary number B in the following 
four cases: 

1. If A3 = 1 and B3 = 0i.e. the output of A3B3' should be 1.  MCA-105/72



2. If A3 = B3 and A2 = 1 and B2 = 0. This can be expressed this with 
Boolean expression X3A2B2' and its output should be 1. 

3. If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0. This can be expressed 
with Boolean expression X3X2A1B1' and its output should be 1. 

4. If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0. This can be 
written with Boolean expression X3X2X1A0B0' and its output should 
be 1. 

The above comparisons performed in steps 1,2,3,4 can be expressed 
with Boolean function (A>B) as: 

(A>B)=A3B3' + X3A2B2' +X3X2A1B1' + X3X2X1A0B0' 

 Similarly, the Boolean function (A<B) for a binary number A is less than 
another binary number B can be expressed as follows: 

(A<B)=A3'B3 + X3A2'B2 +X3X2A1'B1 + X3X2X1A0'B0 

The combinational circuit for 4 bit magnitude comparator can be implemented from 
these four Boolean functions: (A<B),(A>B) and (A=B) as shown in Figure 4.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25- 4 bit magnitude comparator. 

4.12 NAND AND NOR IMPLEMENTATION 

The NAND and NOR gates are very convenient to fabricate with electronic 
components and so they are mostly used in all IC logic families. This is why digital 
circuits are usually constructed with NAND and NOR gates. Any Boolean function MCA-105/73



implemented with AND,OR and NOT gates can be converted into another logic 
circuit which contains only NAND or NOR gates. To understand this conversion 
process, we need to familiar with alternate logic diagrams of NAND and NOR gates 
which are shown in Figure 4.26. 

 

 

 

 

 

Figure 4.26 – Alternate symbols for NAND and NOR gates using Demorgan’s 
theorem. 

The NAND logic diagram is equivalent to OR gate preceded by small circles in all 
its inputs. The circles at inputs represent complemented inputs. These alternate 
logic diagrams are obtained using DeMorgan's law. Similarly, the NOR gate is 
equivalent to AND gate with small circles in all its inputs. The NAND and NOR 
gates with only one input behave as NOT gate.  

NAND implementation : NAND gate is considered as universal gate because any 
digital circuit can be implemented with only NAND gates. The implementation of 
any function with NAND gates requires following steps: 

1. Implement the simplified function with AND and OR gate. For example, 
the circuit implementation of a function f=AB+CD with AND and OR gate 
is shown below: 

 

 

 

 

 

 

 

2. Introduce two bubbles (complements) at the outputs of each AND gate. The 
first bubble presents just after each AND gate and the other presents at input 
to the gate receiving the output of bubbled AND gate. This is illustrated 
below for previous circuit diagram: 

 
MCA-105/74



 

 

 

 

 

 

3. If any input of a gate is bubbled, make all its inputs bubbled by introducing 
two bubbles, one acts as input to gate and other makes its input variable as 
the complement. 

4. Replace any OR gate containing all bubbled inputs with NAND gate. 

5. Replace any complemented variable with single input NAND gate (it acts 
as NOT gate).  This is illustrated below for previous circuit diagram: 

 

 

 

 

 

 

 

 

NOR implementation:  The NOR gate is also considered as universal gate because 
any digital circuit can be implemented using only NOR gates. The implementation 
of any function with NOR gates requires following steps: 

1. Implement the function with AND and OR gates. For example, consider a 
function f=(AB+E)(C+D) which is implemented with AND and OR gates 
as shown below. 

 

 

 

 

 

 

 

 MCA-105/75



2. Introduce two bubbles (complements) at the outputs of each OR gate. The 
first bubble presents just after each OR gate and the other at input to the 
gates receiving the output of bubbled OR gate. For example, the bubbles are 
introduced in above circuit as given below. 

 

 

 

 

 

 

 

3. If any input of a gate is bubbled, make all its inputs bubbled by introducing 
two bubbles, one acts as input to gate and other makes its input variables as 
the complement. 

4. Replace any AND gate containing all bubbled inputs with NOR gate. For 
example, bubbled AND gates are replaced with NOR gates in the above 
circuit diagram as given below. 

 

 

 

 

 

 

 

 

5. Replace any complemented variable with single input NOR gate (it acts as 
NOT gate). 

4.13 SUMMARY 

 We understood about half adder, full adder, half Substractor, full 
Substractor and their circuit implementations. 

 We understood working of demultiplexer and encoder. 

 We learned to design binary to grey code convertor using combinational 
circuit. 

MCA-105/76



 We demonstrated that how multiplexer can be used to implement any 
boolean function. 

 We learned that a decoder along with OR gate can be used to implement 
any number of Boolean functions. 

 We saw how the 4 bits magnitude comparator is implemented to perform 
comparison of two 4 bits numbers. 

 We are illustrated to implement any Boolean function with NAND and 
NOR gates which are considered as universal gates.  

4.14 TERMINAL QUESTIONS  

1. Explain combination circuit with suitable block diagram. 

2. How Boolean functions of a combinational circuit are derived? 

3. What are the design goals of combination circuit? 

4. What are the differences between half and full adder? 

5. Design truth table and logic circuit of full adder. 

6. Design truth table and logic circuit of half adder. 

7. Find the grey code of following BCD code. 

1. 0101 

2. 1101 

3. 1001 

4. 1110 

8. What is conversion circuit? Design a Combinational circuit for BCD to 
Grey code conversion. 

9. What is decoder? Explain decoder with its block diagram. 

10. What is demultiplexer? How it is different from decoder? 

11. Explain 3 to 8 demultiplexer with its block diagram and its truth table. 

12. Implement the following Boolean expression with only NAND gates. 

i) (AB' + CD')E + BC(A + B) 

ii) w(x + y + z) + xy 

13. Implement the following boolean functions with decoder. 

i) half adder 

ii) full adder 

14. Implement the following functions with multiplexer. 
MCA-105/77



i) C=∑ (3,5,6,7) 

ii) F(p,q,r)= pq + pq's + q'r's' 

15. What is the use of magnitude comparator? Draw the combination circuit for 
4 bit binary comparator. 

16. How half Substractor is different from full Substractor? Explain with their 
circuit diagrams.  

17. Implement the following function with NAND gates only: 

i. A + (B' + C)(D' + BE ') 

ii. (CD + E)(A + B ') 

iii. AB' + A'B 

18. Implement the following functions with NOR gates only: 

i. (AB + E)(C +D) 

ii. AB+A'B' 

iii. AB' + A'B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCA-105/78



UNIT-5 SEQUENTIAL CIRCUIT 

Structure 

5.1 Introduction 

5.2 Objectives 

5.3 Flip Flop  

5.4 SR flip flop 

5.5 D flip flop 

5.6 JK flip flop 

5.7 Master-slave or edge-triggered 

5.8 T flip flop 

5.9 Register 

5.10 Counter 

5.11 Summary  

5.12 Terminal Questions 

5.1 INTRODUCTION 

Digital circuits that we have seen so far are combinational circuits in which 
their outputs are entirely dependent on their current inputs at any time. However, 
most of the digital circuits also include sequential circuits in which their outputs 
depend on their current inputs as well as previous inputs. A sequential circuit is a 
kind of combinational circuit which consists of a memory element to store previous 
inputs. Figure 5.1 illustrates a sequential circuit which consists of a combinational 
circuit and a memory element. Itshows a combinational circuit which is connected 
to a memory element and the memory element is connected back to the 
combinational circuit as other input. 

 

 

 

 

 

 

Figure 5.1- A block diagram of sequential circuit. MCA-105/79



The memory element stores binary information which represents the state of the 
memory element. The sequential circuit uses the state of the memory element along 
with otherinputs to produce output. This way, the output of a sequential circuit is 
determined not only by its external inputs but also by the current state of the 
memory element.  

5.2 OBJECTIVES 

After studying this unit, you should able to 

 Describe how sequential circuits differ from combinations circuits. 

 Explain the various types of flip flops with their truth tables. 

 Understand key differences among flip flops, registers and counters. 

5.3 FLIP FLOP 

The memory element which we have seen in a sequential circuit are flip 
flops. A flip flop is a circuit made of logic gates and it is capable of storing 1 bit of 
information. It retains the binary information until it is directed through input 
signals to change its state. It is also called a bi-stable device because its output is in 
one of the two states 0 and 1. The output state remains indefinitely until some other 
inputs are applied to it. A flip flop circuit can be designed from either two NAND 
gates or two NOR gates. The flip flop construction using NAND gate is shown in 
Figure 5.2.  

 

 

 

 

 

 

 

 

 

Figure 5.2 - A basic flip flop with NAND gate. 

The circuit form cross connections such that output of one gate connected to the 
input of other gate. This forms a basic flip flop upon which different types of flip-
flops will be built later. The basic flip flop has two inputs set and reset and two 
outputs Q and Q'. The working of the basic flip flop (as shown in Figure 5.2) can 
be explained as follows:  

MCA-105/80



1. When the input R = 0 and input S = 1, the NAND gate 2 has one of its inputs 
at logic 0, so its output Q' becomes 1. The output Q' is fed as input to gate 
1. This makes both inputs of NAND gate 1 to 1 and therefore it produces 
output Q = 0. 

2. Consider, the input R changes to 1, while input S remains at 1. The NAND 
gate 2 still gives its output Q'=1 because one of its input coming from Q is 
0. Therefore in this case the state of the flip-flop circuit remains unchanged 
with Q = “0” and Q' = “1”.  

3. Now, assume the input R remains 1, while input S changes to 0. The NAND 
gate 2 now gives the output Q'=0 because one of its input coming from Q is 
now 1. Therefore in this case the state of the flip-flop circuit changed with 
Q = “1” and Q' = “0”. 

4. Now consider the input S remains at 0 and input R changes to 0, the output 
Q now becomes 1 because one of the inputs of the NAND gate 1 is 0. On 
the other hand, the NAND gate 2 also produces output Q' as 1 because one 
of its input R=0. This input combination S = “0” and R = “0” must be 
avoided because this causes both outputs Q and Q' to be 1. But, we actually 
want Q' to be the inverse of Q.  

The relationship between inputs and corresponding outputs as discussed above in 
shown with the truth table in Figure 5.2 (b).  

5.4 SR FLIP FLOP 

The basic flip flop can be modified by adding two additional NAND gates 
and a clock pulse as shown in Figure 5.3. 

 

 

 

 

 

 

 

 

Figure 5.3- Logic circuit for SR flip flop 

This provides controlled inputs to basic flip flop and this flip flop is known as SR 
flip flop. The truth table for the SRflip flop is shown in Figure 5.4. In the truth table, 
Q(t) is present state of the flip flop before applying clock pulse. The columns S and 
R contain possible combinations of inputs that can be applied to flip flop. The 
Q(t+1) refers to the next state of the flip flop.  

MCA-105/81



 

 

 

 

 

 

 

 

 

 

Figure 5.4- Truth Table for SR flip flop. 

SR flip flop changes state from present state Q(t) to next state Q(t+1) when inputs 
S and R is applied to SR flip flop along with single clock pulse. When S=0 and 
R=1, the flip flop is in 0 state or reset state. The flip flop goes to 1 state or set state 
on inputs S=1, and R=0. When inputs S=0 and R=0, the flip flop remains at its 
present state Q(t). The inputs S=1 and R= 1 is indeterminate condition because the 
state of the flip flop is not defined for this input combination. Figure 5.6 shows the 
block diagram of SR flip flop which is generally used in sequential circuits for 
design and analysis.  

 

 

 

 

 

 

 

 

 

 

Figure 5.5- A block diagram of SR flip flop. 

5.5 D FLIP FLOP 

The D flip flop is a modified version of SR flip flop which eliminates the 
undesirable condition where flop flop state is not defined. This can be achieved by 
short circuiting inputs S and R of SR flip flop and introducing not gate between 
them as shown in Figure 5.6 (a). The block diagram of the D flip flop is shown in 

S R Q(t+1) 

0 0 Q(t) (No change) 

0 1 0 (reset) 

1 0 1 (set) 

1 1 Undefined 

MCA-105/82



Figure 5.6 (b)which is mostly used for design and analysis of sequential circuits. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                           (b) 

Figure 5.6- Logic circuit and block diagram of D flip flop. 

This makes SR flip flop to receive only two input combinations S=0,R=1 and 
S=1,R=0. The truth table of D flip flop contains only one input D as shown in Figure 
5.7. If input D=0, the flip flop goes to 0 state or reset state. But when input D=1, 
the flip flop goes to 1 state or set state.  

D Q(t+1) 

0 0 

1 1 

Figure 5.7- Truth table for D flip flop 

5.6 JK FLIP FLOP 

The SR flip flop discussed earlier suffers from the undesirable condition 
(when both S=1 and R=1) which causes undefined state. A J-K flip flop is a 
refinement of SR flip flop which defines state transition for even invalid inputs S=1 
and R=1. This can be achieved by replacing previous inputs S and R with J and K 
respectively and introducing one more input to each NAND gate from outputs Q 
and Q'. The logic circuit and the block diagram of JK flip flop is shown in Figure 
5.10 (a) and (b) respectively. 

MCA-105/83



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                               (b) 

Figure 5.10- logic circuit and block diagram of JK flip flop. 

The operation of JK flip flop are defined for all 4 possible input combinations. The 
operation of JK flip flop is same as SR flip flop with the addition of a new transition 
of state for inputs J=1, and K=1. The operation of JK flip flop is shown with truth 
table in Figure 5.11. 

 

 

 

 

 

 

 

 

 

Figure 5.11- Truth table of JK flip flop. 
MCA-105/84



An important thing to note that when the inputs J=1 and K=1, during the duration 
of active clock pulse, the flip-flop keep on producing output as complement of 
present state until the clock pulse goes back to 0. So the flip flop changes its state 
multiple times in a single clock pulse. For this reason, this version of JK flip flop 
never used in real time. This problem can be eliminated by a modified version of 
JK flip flop known as master slave flip flop which will be discussed next. 

5.7 MASTER-SLAVE OR EDGE-TRIGGERED 

The J K flip flop is a clocked flip-flop which is triggered by pulses. A pulse 
is the entire duration starting from an initial value of 0 and suddenly goes to 1, and 
after a short time, it returns back to its initial value of 0.  A positive transition i.e. 
transition from 0 to 1 is called as positive edge and the negative transition from 1 
to 0 is called as negative edge. A positive pulse (as shown in Figure 5.13) is the 
duration from positive edge to negative edge of a clock pulse. On the other hand, a 
negative pulse (as shown in Figure 5.13) is the duration from negative edge to 
positive edge of a clock pulse. 

 

 

 

 

 

 

 

 

 

Figure 5.13- A pulse is duration between positive and negative edge of a clock 
pulse. 

Assume that a clock pulse is applied to the J K flip flop and both its inputs are at 
logic 1. At the positive edge of the clock pulse, it changes its state. Since, the inputs 
are at logic 1 for the entire duration of positive pulse, the output of the flip flop 
continue to change from 0 to 1 and vice versa. This continuous toggling of JK flip 
flop when both its inputs are at logic 1 is called as race around condition. But, we 
want the JK flip flop to change its state only once throughout the clock pulse. If we 
can design the JK flip flop in such a way that, the flip flop responds to its inputs 
only at either positive edge or negative edge, then this race around condition can be 
eliminated. A master slave JK flip flop is such a design which works on this 
principle.  

A master slave JK flip flop consists of two SR flip flops which are cascaded in such 
a way that the outputs of the second flip flop are connected back to inputs of first 
flip flop. The circuit for master slave flip flop is shown in Figure 5.14.  

MCA-105/85



 

 

 

 

 

 

 
 

Figure 5.14- Master slave JK flip flop. 

The first flip flop is called as master flip flop which works when a clock pulse 
CP=1. The second flip flop is called as slave flip flop which works when the clock 
pulse CP=0. Due to the presence of NOT gate, at any time either master or slave 
flip flop will be active. When a clock pulse CP=1, at the positive edge of clock 
pulse, the J and K inputs are passed to the master flip flop and are held there till the 
negative edge of the clock pulse. During this clock pulse the slave flip flop is 
disabled because the clock pulse CP=1. When the clock pulse CP becomes 0, at the 
negative edge of the clock pulse, the slave flip flop is active and the output of master 
flip flop is passed to inputs of the slave flip flop. The slave flip flop is simply SR 
flip flop which passes the outputs of the master flip flop so that outputs Q=y and 
Q'=y'. The outputs Q and Q' are available as feedback inputs to the master flip flop 
which is currently disabled because the clock pulse CP=0. When the clock pulse 
CP again becomes 1, at the positive edge, the master flip flop becomes active and 
the slave flip flop outputs are available as the inputs to master flip flop. This way, 
forJ and K inputs, the output of the master flip flop appears at Q and Q' always at 
the negative edge of the clock pulse CP=1. This makes the JK flip flop to change 
its state only once for entire clock pulse CP=1.  

5.8 T FLIP FLOP 

A T flip flop is a modified version of JK flip flop with single input. The T 
flip flop can be obtained from the JK flip flop when both of its inputs J and K are 
combined together to get a single input as shown in Figure 5.15.  

 

 

 

 

 

 

 

Figure 5.15- logic circuit of T flip flop. MCA-105/86



The operation of the T flip flop is shown with truth table in Figure 5.16. The T flip 
flop remains in the same state as previous output state when input T=0. But when 
the input T=1, the flip flop complements or toggles its previous output state. 

 

 

 

 

 

Figure 5.16 - Truth table of T flip flop. 

5.9 REGISTER 

In previous section, we have seen that a flip flop holds 1 bit of binary 
information. A register is a group of flip flops connected in a certain manner. An n-
bit register consists of n flip flops which is capable of storing n bits of binary 
information. Beside flip flops, a register may also contains logic gates which 
control the flow of binary information into the register. There are various types of 
registers on MSI circuits. A simple register consists of only flip flops without any 
logic gates. For example, Figure 5.17 shows the simplest possible register with D 
flip flops only.  

 

 

 

 

 

 

 

Figure 5.17 - 4 bit register using D flip flops. 

When a clock pulse CP is applied to the register, it enables all 4 flip flops 
simultaneously. The binary information present at all four D inputs of flip flops 
transfer and appear at output Q of each flip flop. When the clock pulse CP goes to 
0, the binary information retained at Q outputs of flip flops. Since flop flops are 
sensitive to clock pulse duration, the register thus obtained works as long as the 
CP=1. A register which is sensitive to pulse duration is also called as gated latch. 
They are suitable for temporary storage of data. In the subsequent discussion, we 
discuss registers which consist of groups of flop flops sensitive to clock pulse 
transitions or edge triggered.  

Shift Register : If a register is capable of shifting its bits either right or left side, it 
is called as shift register. An n bits shift register contains n flip flops connected in 
a series with a common clock pulse such that the output of one flip flop becomes MCA-105/87



input to next flip flop. An n bits shift register is capable of storing n bits of 
information. For example, Figure 5.18 shows a 4 bits shift register with 4 D flip 
flops connected in series with a common clock pulse.  

 

 

 

 

 

 
 

Figure 5.18- 4 bits shift register 

If a shift register shifts its bits to left, it is called left shift register. If a shift register 
shifts its bits to right, it is called right shift register. In each clock pulse the content 
of the right shift register shifts one bit to the right. The data bits are fed through 
serial input from leftmost register and they are collected from rightmost register 
through serial output. Shift registers are commonly used in calculators and 
computers for data storage and movement. For example, the two binary numbers 
are stored in registers before applying addition operation.  A data bits in a shift 
register can be fed in and out of the register serially one bit at a time or all together 
parallel at the same time. Based on the basic movement of data through the register, 
they are classified into 4 categories.  

i. Serial-in to Serial-out (SISO): It is a shift register which stores input data 
serially with one bit after the other bit through a single data line and 
produces a serial output with one bit at a time through a single output line. 
An n bit data requires n clock pulses to store the input data and (n-1) clock 
pulse to shift the inputs out of the n bit Serial-in-Serial-out-shift-register. It 
requires total n-1+n =2n-1 clock pulse for storing input data and taking out 
the stored input from the SISO register. 

For example, a 3 bits serial-in serial-out shift register is shown in Figure 
5.19. It consists of 3 D flip-flops connected in series with a common clock. 

 

 

 

 

 

 

Figure 5.19 - A 3 bits serial-in serial-out shift register 

The above circuit is a right shift register which takes serial data input from 
the left side of the flip flop. MCA-105/88



ii. Serial-in to Parallel-out (SIPO): The shift register which stores input data 
with one bit at a time through a single data line and the stored data is taken 
out of the register in parallel all at a time through multiple output lines is 
called Serial-in to Parallel-out shift register. An n bit data requires n clock 
pulses to store the input data and 0 clock pulse to take the stored data out of 
the n bit Serial-in-Parallel-out shift register. It requires total n+0=nclock 
pulse for storing input data and taking out stored input from the SIPO 
register. For example, a 3 bits serial-in parallel-out shift register is shown 
in Figure 5.20. It consists of 3 D flip-flops connected in series with a 
common clock. 

 

 

 

 

 

 

 

Figure 5.20 - A 3 bits serial-in parallel-out shift register. 

The above circuit is a right shift register which takes data input serially from 
the leftmost flip flop and stored input are available parallel all at once at 
each flip flop output. 

iii. Parallel-in to Serial-out (PISO): The shift register which stores input data 
parallel all at once from each flip flop input and the stored data taken out of 
the register serially with 1 bit at a time is known as Parallel-In Serial-Out 
shift register. An n bit data requires 1 clock pulse to store the input data into 
the register and n-1 clock pulse to take the stored data out of the n bit 
Parallel-in-serial-out shift register. It requires total 1+n-1=n clock pulses for 
storing and taking out the stored input from the PISO register. For example, 
a 4 bits Parallel-in to Serial-out shift register is shown in Figure 5.21. It 
consists of 4 D flip-flops connected in series with a common clock. 

 

 

 

 

 

 

 
Figure 5.21- 4 bits Parallel-in to Serial-out shift register MCA-105/89



In the above circuit, the input data is directly connected with each flip-flop 
through multiplexer to stored data parallel. The output is obtained from 
single output line from the rightmost flip flop. 

iv. Parallel-in to Parallel-out (PIPO) : The shift register which stores input 
data parallel all at once and the stored data also taken out of the register 
parallel with all bits simultaneously at once is known as Parallel-In Parallel-
Out shift register. An n bit data requires 1 clock pulses to store the input 
data into the register and 0 clock pulse to take the stored data out of the n 
bit Parallel-in-Parallel-out shift register. It requires total 0+1=1 clock pulse 
for giving input data and taking out stored input from the PIPO register. For 
example, a 4 bits Parallel-in to Parallel-out shift register is shown in Figure 
5.22. It consists of 4 D flip-flops connected in series with a common clock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22- A 4 bits Parallel-in to Parallel-out shift register 

In the above circuit, there are no interconnections between the individual flip-flops. 
Input data is given separately with each flip flop and the outputs are also collected 
individually from each flip flop. 

The shift register which can perform all the above four operations is called as 
Universal shift register. 

5.10 COUNTER 

A counter is a special type of register which goes through a sequence of 
states when clock pulses are applied. For example, Figure 5.23 shows state 
transitions of a 3-bit binary counter. The binary states are indicated inside the 
circles, the counter repeats the binary count sequence as shown in Figure 5.23. 

 MCA-105/90



 

 

 

 

 

 

 

 

Figure 5.23- State diagram of 3 bit binary counter. 

A counter may contain local gates which are connected in a certain way to produce 
the required sequence of states. A counter is basically used to count the number of 
clock pulses applied to it. For any counter, we are more interested in the total 
number of possible states because it tells us two things: mod value of the counter 
and the number of clock pulses it can count. Broadly, the counters present in MSI 
circuits are divided into three categories: ring counter, ripple counters and 
synchronous counters. The ripple counters are also called asynchronous counters.  

Ring counter :  

1. Ordinary Ring Counter : A k bits ring counter consists of k flip flops 
cascaded together such that the output of one flip flop acts as input to its 
next flip flop and the uncomplemented output of the last flip flop is given 
as feedback input to the first flip flop. All the flip flops are driven by a 
common clock pulse. The number of possible states in an ordinary ring 
counter is given by the number of flip flops used in it. 

n number of flip flops              n possible states 

                                                          n clock pulse it can count 

For example a 4 bit ordinary ring counter is shown in Figure 5.24. It consists 
of 4 flip flops, so there are 4 possible states in it. Therefore it is mod 4 
counter which can count 4 clock pluses.  

 

 

 

 

 

 

 

Figure 5.24- 4 bit ordinary ring counter. MCA-105/91



2. Johnson or twisted ring counter : We have seen that a k bits ordinary ring 
counter provides k distinguishable states. The number of states can be 
doubled in an ordinary ring counter if the feedback input to first flip flop is 
given from the complemented output of last flip flop. The counter thus 
obtained is called as Johnson counter or twisted ring counter.  

n number of flip flops------> 2n possible states 

                              ------>2n clock pulse it can count 

For example a 4 bit Johnson counter consists of 4 flip flops as shown in 
Figure 5.25. It can provides 2*4 distinguishable states and so it can count 8 
clock pulses.  

 

 

 

 

 

 

 

 

Figure 5.25- A 4 bit Johnson counter 

Ripple counter : In a ripple counter or asynchronous counter, the output of one 
flip flop serves as a source of triggering the other flip flops in the counter. This is 
shown in Figure 5.26. In this counter, the clock pulse input of all flip flops are not 
a common clock pulse, rather each flip flop is triggered based on the output of its 
previous flip flop in the counter.   

 

 

 

 

 

 

 

 

Figure 5.26- A ripple counter. 

When there are no logic gates present, a ripple counter with n flip flops results in 
2^n states.  

MCA-105/92



n number of flip flops------> 2n possible states 

                               ------>2n clock pulse it can count 

Synchronous counters : In a synchronous counter, all flip flops have a common 
clock pulse so that all flip flops are triggered simultaneously. The transition of a 
flip flop state in the synchronous counter is dependent on the present state of other 
flip flops. For example, Figure 5.17 shows 4 bit synchronous binary counter which 
gives 16 different states. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27- A 4 bit synchronous binary counter. 

When there are no logic gates present, a synchronous counter with n flip flops 
results in 2n different states.  

n number of flip flops------> 2n possible states 

                               ------>2n clock pulse it can count 

5.11 SUMMARY 

 We saw how sequential circuits differs from combinational circuits. 

 We discussed the working of various flip flops with their truth table. 

 We illustrated the race around condition in JK flip flop and seen that how 
this problem is overcame with master slave JK flip flop. 

 We saw the purpose of registers and counters.  

 We discussed various types of counters: ring counters, ripple counters and 
asynchronous counters.  

 We explained various types of shift registers:  Serial-in to Serial-out, Serial-
in to Parallel-out, Parallel-in to Serial-out, Parallel-in to Parallel-out. 

MCA-105/93



5.12 TERMINAL QUESTIONS  

1. How sequential circuits are different from combinational circuits? 

2. Explain sequential circuits with suitable block diagram. 

3. Discuss truth table of SR flip flop with its block diagram. 

4. Explain the working of JK flip flop with its truth table. 

5. What is race around condition? How it is avoided? 

6. How does the D flip flop different from SR flip flop? 

7. Discuss T flip flop with its truth table. 

8. What is register? 

9. What is counter? 

10. Differentiate between register and counter? 

11. Explain various types of shift registers with suitable example. 

12. What is universal shift register? 

REFERENCES 

1. Mano, M. Morris. Digital logic and computer design. Pearson Education 
India, 2017. 

2. Jain, Rajendra Prasad. Modern digital electronics. Tata McGraw-Hill 
Education, 2003. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 MCA-105/94



Master of Computer 
Application 

MCA-105/MCS-106 

/PGDCA-105 

Computer Organization 
 
  
  
BLOCK 

2 
BASIC BUILDING 

UNIT-6 

Building Blocks 

 

UNIT-7 

Instruction 
 

UNIT-8 

Addressing Techniques 

 

 
 
 

 

 
 
 
 
 
 
 
 
 
 

 

Uttar Pradesh Rajarshi Tandon 
Open University 

 

MCA-105/95



Course Design Committee 

Prof. Ashutosh Gupta Chairman 

Director (In-charge) 

School of Computer and Information Science, UPRTOU Allahabad 

Prof. Suneeta Agarwal Member 

Department of CSE 

MNNIT Allahabad, Prayagraj 

Dr. Upendra Nath Tripathi Member 

Associate Professor, Department of Computer Science 

Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 

Dr. Ashish Khare Member 

Associate Professor, Department of Computer Science 

University of Allahabad, Prayagraj 

Dr. Marisha Member 

Assistant Professor (Computer Science),   

School of Science, UPRTOU Allahabad 

Mr. Manoj Kumar Balwant Member 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad 

Course Preparation Committee 

Mr. Manoj Kumar Balwant  Author Block 1 (Unit 1,2,3,4,5) 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad. 

Dr. JitendraPande    AuthorBlock 2, 3 (Unit 6,7,8,9,10,11) 

Associate Professor 

School of Computer Sciences & Information Technology   

Haldwani, Uttarakhand 263139 

Prof. Ashutosh Gupta                            Editor Block 1 (Unit 1, 2, 3, 4, 5) 

Director (In-Charge)                  

School of Computer & Information Sciences, UPRTOU Allahabad 

Prof. Abhay Saxena            Editor Block 2, 3 (Unit 6, 7, 8, 9, 10, 11) 

Professor and Head, Department of Computer Science  

Dev SanskritiVishwavidyalya, Hardwar, Uttrakhand 

Mr. Manoj Kumar Balwant                                                    Coordinator 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad.  

 
 
 
 
 
 
 
 
 
 

 

 

©UPRTOU, Prayagraj - 2020 
ISBN :  
 

©All Rights are reserved. No part of this work may be reproduced in any form, by 
mimeograph or any other means, without permission in writing from the Uttar Pradesh 
Rajarshi Tondon Open University, Prayagraj. 
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh Rajarshi 
Tandon Open University, 2020.  
Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road, Prayagraj. MCA-105/96



BLOCK INTRODUCTION 

 
 

This block is designed to give learners a clear understanding of components of a 
computer system. Each major component is further described by decomposing 
into its subcomponents and describing their structure and function. The course 
comprises of three units which are as follows: 

Unit-6 deals with the basic components of the computer system. It also discusses 
how these components work together to perform the different functions a 
computer. It also discusses memory and its various types. 

Unit-7 This unit deals with Instruction Formats, Representation of Three Address 
Instructions, Two Address Instructions, One Address Instructions, Zero Address 
Instructions and RISC Instructions are described in this unit. In this unit various 
operations associated with Register Reference Instruction, Memory Reference 
Instructions and Input-Output Reference Instructions are discussed. 

Unit- 8 introduces you with some addressing modes like Implied Mode, 
Immediate Mode, Register Mode, Register Indirect Mode, Auto  increment  or Auto 
decrement Mode, Direct Address Mode, Indirect Address Mode, Relative 
addressing Mode, Indexed Addressing Mode, Base Addressing Mode and 
Processor Registers. 

MCA-105/97



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCA-105/98



UNIT-6 BASIC BUILDING BLOCKS OF A 
COMPUTER  

Structure 

6.1 Learning Objectives 

6.2 Introduction 

6.3 Basic Building Blocks of a Computer 

6.4 Input Unit 

6.5 Output Devices 

6.6 Central Processing Unit 

6.6.1 Arithmetic Logic Unit 

6.6.2 Control Unit 

6.6.3 Register Set 

6.7 Memory 

6.7.1 Random Access Memory (RAM) 

6.7.2 Read Only Memory (ROM) 

6.7.3 Units of Storage 

6.8 Secondary Storage Devices 

6.9 Summary 

6.10 Answers to Check Your Progress 

6.11 Terminal Questions 

6.1 LEARNING OBJECTIVES 

After reading this unit, you will be able to: 

 Understand the basic building blocks of a Computer. 

 Know the functional units of a computer. 

 Explain the functioning of a CPU. 

 Understand the functioning of Hardwired Control Unit. 

 Understand the functioning of Programmed Control Unit. 
MCA-105/99



 Understanding the functioning of various input and output devices. 

 Differentiate primary and secondary memories. 

6.2 INTRODUCTION 

Computer Technology is now part of our everyday life, and almost every task we 
encounter involves the use of computer technology. This unit presents a brief 
discussion on computer and their components and other basic concepts you need 
to familiarize yourself with before discussing the details of the internal architecture 
of the computer. 

6.2. BASIC BUILDING BLOCKS OF A COMPUTER 

 

Figure-1 : Basic Building Block of a Computer 

Dotted lines indicate the control signals issued by Control unit. 

Represent data or instructions. 

A computer is an electronic device that takes input such as numbers, text, sound, 
image, animations, video, etc., processes it, and converts it into meaningful 
information that could be understood, presenting the changed input (processed 
input) as output. All numbers, text, sound, images, animations, and video used as 
input are called data, and all numbers, text, sound, images, animations, and video 
returned as output are called information. Input is the raw data entered into the 
computer by using input devices. It is an electronic machine/device which can 
input data, process them according to the instruction given and then give out the 
meaningful information. 

 The data consists of numbers, text, sound, images, animations, and video. 

 The process converts numbers, text, sound, images, animations, and video 
(data) into usable data, which is called information. 

 The information consists of numbers, text, sound, images, animations, 
and video that has been converted by the process. 

MCA-105/100



 The data is inserted using an input device. 

 The central processing unit (CPU) converts data to information. 

 The information is put on an output device. 

A storage device is an apparatus for storing data and information. A basic 
computer consists of 4 components: an input device, a CPU, output devices, and 
memory. All the units of a digital computer are connected through a conducting 
path called Bus. 

The task of the digital computing unit is to accept the data to be processed via its 
input unit. The CPU of the computer process the data based on the issued to the 
computer by the user through program. After processing, the result may be stored 
in the memory of the computer or may be displayed to the user via output unit. 

The four functions are carried out by basic functional units namely: 

1. Input Unit. 

2. Output Unit. 

3. Central Processing Unit. 

4. Memory Unit. 

6.3 INPUT UNIT 

We use input devices to provide information to a computer, such as typing a letter 
or giving instructions to a computer to perform a task. Some examples of input 
devices are described in the following list. 

1. Mouse : A device that you use to interact with items displayed on the 
computer screen. A standard mouse has a left and a right button. 

 

 

 

Figure-1: Mouse 

2. Trackball: This is an alternative to the traditional mouse and is favoured 
by graphic designers. It gives a much finer control over the movement of 
items on the screen. Other screen pointing devices  are  pointing  stick, touch 
pad, joystick, light pen, digitizing table. 

MCA-105/101



 

 

Figure-2: Trackball 

3. Keyboard: A set of keys that resembles a typewriter keyboard. You use 
the keyboard to type text, such as letters or numbers into the computer. 

 

 

 

Figure 3 : Keyboard 

4. Scanner: A device that is similar to a photocopy machine. You can use 
this device to transfer an exact copy of a photograph or document into a 
computer. A scanner reads the page and translates it into a digital format, 
which a computer can read. For example, you can scan photographs of 
your family using a scanner. 

 

 

 

Figure 4: Scanner 

5. Barcode Readers: When used in a business barcodes provide a lot of 
information. Made up of columns of thick and thin lines, at the bottom of 
which a string of numbers is printed. MCA-105/102



 

 

Figure 5: Barcode reader 

6. Multimedia devices: This is the combination of sound and images with 
text and graphics. To capture sound and image data, special input devices 
are required. 

a. Microphone: Voice input, for instance, can be recorded via a 
microphone. A device that you can use to talk to people in different 
parts of the world. You can record sound into the computer by 
using a microphone. You can also use a microphone to record your 
speech and let the computer convert it into text. 

 

 

 

Figure 6: Microphone 

b. Webcam: A device that is similar to a video camera. It allows you 
to capture and send the live pictures to the other user. For example, a 
webcam allows your friends and family to see you when 
communicating with them. 

 

 

 

Figure 7 : Webcam MCA-105/103



c. Digital cameras: record photographs in the form of digital data that 
can be stored on a computer. These are often used to record 
photographs on identity cards. 

 

 

 

Figure 8 : Digital camera 

6.4 OUTPUT DEVICES 

Output devices in the computer system are the equipment whereby the result 
of a computer operation can be viewed, heard or printed. You use output devices 
to get feedback from a computer after it performs a task. 

1. Monitor : A device that is similar to a television. It is used to display 
information, such as text and graphics, on the computer. 

 

 

Figure 9: Monitor 

2. Printer: A device that you use to transfer text and images from a computer 
to a paper or to another medium, such as a transparency film. You can use 
a printer to create a paper copy of whatever you see on your monitor. 

a. Impact printers: Dot matrix printers are an example of impact printers. 
They form characters from patterns of dots. They are inexpensive, but 
the output can be difficult to read. 

 

Figure 10 : Impact printer 
MCA-105/104



b. Non impact printers: Inkjet printers work by shooting a jet of ink in 
the shape of the character required, they provide good, low-cost color 
printing. 

 

 

Figure 2 : Non-impact printer 

c. Laser printer: a laser beam is directed at an electro-statically charged 
surface, creating a template of the page to be printed. This template 
is then used to transfer the ink to the page. Toner sticks to the light 
images and is transferred to paper. 

 

 

 

Figure 3: Laser Printer 

3. Plotter: A plotter is an output device similar to a printer, but normally 
allows you to print larger images. It is used for printing house plans and 
maps. 

 

Figure 4: Plotter 
MCA-105/105



4. Multimedia Output Device: The most common multimedia output is 
sound, including music. The audio output device on a computer is a 
speaker. Headphones can also be used to receive audio output. 

 

 

 

Figure 5: Multimedia Output Device 

6.5 CENTRAL PROCESSING UNIT 

A central processing unit (CPU) is the electronic circuitry within a computer that 
carries out the instructions of a computer program by performing the basic 
arithmetic, logical, control and input/output (I/O) operations specified by the 
instructions. The term has been used in the computer industry at least since the 
early 1960s. Traditionally, the term “CPU” refers to a processor, more specifically 
to its processing unit and control unit (CU), distinguishing these core elements of 
a computer from external components such as main memory and I/O circuitry. 

 

 

Figure 6: Bottom side of an Intel 80486DX21 

The form, design and implementation of CPUs have changed over the course 
of their history, but their fundamental operation  remains  almost unchanged. 
Principal components of a CPU include the arithmetic  logic  unit (ALU) that 
performs arithmetic and logic operations, processor registers  that supply operands 
to the  ALU and store the results of ALU operations,  and  a control unit that fetches 
instructions from memory and “executes” them by directing the coordinated 
operations of the ALU, registers and other components. 

MCA-105/106



 

Figure 7: An Intel 80486DX2 CPU, as seen from above 

Central Processing Unit is the brain of the computer. Based on the input provided 
to the CPU via one of its input device, the CPU process the data and converts it 
into meaningful information. It is the place where all the computing takes place. 
The CPU mainly consists of three parts: 

 Arithmetic Logic Unit(ALU) 

 Control Unit (CU) 

 Register Set (Memory) 

6.5.1 ARITHMETIC LOGIC UNIT 

It is the part of a computer that performs all arithmetic computations, such as 
addition and multiplication, and all comparison operations. Typically, the ALU 
has direct input and output access to the processor controller, main memory 
(random access memory or RAM in a personal computer), and input/output 
devices. The data is transferred between the ALU and the Input/Output devices & 
memory through an electronic conducting path called bus. The input consists of 
an instruction word (sometimes called a machine instruction word) that contains 
an operation code (sometimes called an "op code"), one or more operands, and 
sometimes a format code. The operation code tells the ALU what operation to 
perform and the operands are used in the operation. (For example, two operands 
might be added together or compared logically.) The format may be combined 

with the op code and tells, for example, whether this is a fixed-point or a floating- 
point instruction. The output consists of a result that is placed in a storage register 
and settings that indicate whether the operation was performed successfully. (If it 
isn't, some sort of status will be stored in a permanent place that is sometimes 
called the machine status word.) 

In general, the ALU includes storage places for input operands, operands that are 
being added, the accumulated result (stored in an  accumulator),  and shifted 
results. The flow of bits and the operations performed on them in the subunits 
of the ALU is controlled by gated circuits. The gates in these circuits are controlled 
by a sequential logic unit that uses a particular algorithm or sequence for each 
operation code. In the arithmetic unit, multiplication and division are done by 
a series of adding or subtracting and shifting  operations 

 

1   Adopted from: https://courses.lumenlearning.com/zeliite115/chapter/reading-
the-central- processing-unit/ MCA-105/107



There are several ways to represent negative numbers. In the logic unit, one of 
16 possible logic operations can be performed - such as comparing two operands 
and identifying where bits don't match. 

6.5.2 CONTROL UNIT 

A control unit is a part of CPU which directs operations within the computer's 
processor by directing and controlling the input and output of a computer system.  

The processor then controls how the rest of the computer operates (giving 
directions to the other parts and systems). A control unit works by gathering 
input through a series of commands it receives from instructions in a running 
program and then outputs those commands into control signals that the computer 
and other hardware attached to the computer carry out. 

Control Unit perform various functions in a computer such as: it controls the 
movement of data between various units of a computer. It is responsible for the 
deciding the sequence in which the various instructions are to be executed. It is 
also responsible for handles multiple tasks, such as fetching, decoding, execution 
handling and storing results. 

CUs are designed in two ways : 

 Hardwired control: CU is made up of sequential and combinational 
circuits to generate the control signals The CU is made up of flip-flops, 
logic gates, digital circuits and encoder and decoder circuits that are wired 
in a specific and fixed way. When instruction set changes are required, 
wiring and circuit changes must be made. This is preferred in a reduced 
instruction set computing (RISC)  architecture, which only has a small 
number of instructions. 

 Microprogram control: Microprograms are stored in a special control 
memory and are based on flowcharts. The operation of all the hardware of 
the computer is control unit. It monitors and controls the input devices, 
output devices, memory and the ALU of the computer. In case of 
microprogrammed implementation of a control unit, it some 
addition/modification is required at the later stage of implementation, one 
need not to redesign the whole circuit, as in the case of hardwired unit, but 
control memory is updated with new microprogramme. 

6.5.3 REGISTER SET 

The operand (data on which the operation is to be performed) and the operation 
is supplied to the CPU via. memory. Now the CPU requires some location where 
the data on which the operation is to be performed can be manipulated. For this 
purpose, a very fast memory element, called registers, are used. These registers 
along with CU and ALU are the part of CPU.  These registers hold the data and 
directly attached to the electronic circuitry which is required to perform various 
operations. 

MCA-105/108



Check Your Progress 

1. A …………. device is an apparatus for storing data and information. 

2. Dot matrix printers are an example of ………….. printers. 

3. A ………….. is an output device similar to a printer, but normally allows 
you to print larger images. 

4. A ………….. is the electronic circuitry within a computer that carries out the 
instructions of a computer program by performing the basic arithmetic, 
logical, control and input/output (I/O) operations specified by the 
instructions. 

5. ………….. is the part of a computer that performs all arithmetic 
computations, such as addition and multiplication, and all comparison 
operations. 

6. The data is transferred between the ALU and the Input/Output devices & 
memory through an electronic conducting path called …………..  

7. Op-code stands for …………… 

8. A ………….. unit is a part of CPU which directs operations within the 
computer’s processor by directing and controlling the input and output of a 
computer system. 

 
 

6.6 MEMORY 

All computers need to store and retrieve data for processing. The CPU is 
constantly using memory from the time that it is switched on until the time you 
shut it down. There are two types of storage devices as illustrated in the flow chart 
below. 

 
 

Figure 8: Types of storage devices 

Primary Storage is also called main memory or immediate access store (IMAS). 
This is necessary since the processing unit can only act on data and instructions 
that are held in primary storage. Primary storage consists of two types of memory 
chips: 

MCA-105/109



 Random Access Memory (RAM) 

 Read Only Memory (ROM) 

6.6.1 RANDOM ACCESS MEMORY (RAM) 

Random Access Memory (RAM) is the main working memory. RAM is only 
filled after computer has been turned on and is given something to do. It holds 
data and instructions temporarily while processing takes place. RAM is volatile – 
this means that if the power is turned off or the computer reboots (start up again) 
all the information held in RAM will be lost. RAM is measured in MB 
(megabytes) and most entry level computers will have 1024 MBRAM but you 
also find some computers having up to 3 GB RAM. RAM chips are expensive and 
the price of a computer is determined by the amount of RAM space in the chip. 

 

 

Figure 9: RAM 

6.6.2 READ ONLY MEMORY (ROM) 

Read Only Memory (ROM) holds data and instructions necessary for starting up 
the computer when it is switched on. These instructions are hard-wired at the time 
of manufacture. ROM is permanent and cannot be deleted but can only be accessed 
or read, hence the name Read Only Memory. Data stored in ROM is non-
volatile – meaning that memory will not be lost when power is turned off. 

 

 

 

Figure 19: ROM 

6.6.3 UNITS OF STORAGE 

The memory of all digital computers is two-state (bi-stable) devices. Computers 
operate using a binary number system– and therefore use binary digits (bits). MCA-105/110



Bits have only two values by 0 and 1. A bit is the smallest unit of storage in a 
computer. The amount of data and instructions that can be stored in the memory 
of a computer or secondary storage is measured in bytes. 

A byte is made up of a combination of eight (8) bits and has the storage power 
to represent one character (a character is a letter or symbol or punctuation mark or 
blank space). 

 

Table 1: Unit of Storage 

 

 

6.7 SECONDARY STORAGE DEVICES 

PCs use a simple method of designating disk drives to store data. These drives are 
assigned letters of the alphabet. 

 

 

 

 

 

 

 

 
 

Data and information stored on a permanent basis for later use. Secondary storage 
is cheaper to purchase and access. Hard disks, Zip drives, Optical disks (CD’s and 
DVD’s)are all examples of secondary storage. 

1. Internal Hard Disks - are rigid inflexible disks made of highly polished 
metal. Data is stored magnetically. They can contain a single disk or two 
or disks stacked on a single spindle. They come in a variety of sizes but all 
have a very high storage capacity compared to floppy disks. An average 
computer has a hard disk of about 80 -250GB. It provides direct access to 
information. MCA-105/111



 

Figure 10: Internal hard disc 

2. External hard Disks/Drive - same features as the internal hard disks, but 
are external to the system unit and therefore can be carried around. 

 

 

 

 

 

Figure 11: External hard Disc 

3. USB flash drive consists of a flash memory data storage device integrated 
with a USB (Universal Serial Bus) interface. USB flash drives are 
typically removable and rewritable. They come in a variety of sizes to 
include 128MB, 256MB,512MB, 1G, 2G, 8G etc. 

 

 

 

 

 

Figure 12: USB flash drive 

4. Memory Card - Use mainly with digital cameras, cellular phones and music 
players (MP3, MP4andiPods). They offer high‐re‐record ability and fast 
and power‐free storage. Data can be access by linking the card to a 
computer using a USB cable or a memory card reader. 

 

 

 

 

 

Figure 13: Memory card 
MCA-105/112



5. Optical Disks are disks that are read by laser beams of lights. The three 
main types are CD-R, CD-RW and DVD. 

 

 

 

Figure 14: Optical disc 

a. CD-R or CD‐ROM (Compact Disk – Read Only Memory) are so 
called because you can only red the information on the CD‐ROM. 
They are particularly useful for storing multimedia (texts, graphics, 
sound and videos), application software packages. 

b. CD-R or Compact Disk Recordable allows you to write information 
onto the disk only once using a CD recordable burner. 

c. CD-RW or Compact Disk Rewriteable, allows you to write and 
erase information from the disk many times. They are used to store 
large volumes of information such as texts, graphics, sound and 
video. 

d. DVD disks or Digital Versatile Disks are specifically created to 
store movies. A typical DVD disk can hold between 4.7GB and 
17GBof information. 

 

Check Your Progress 

9. ……….. is the main working memory. 

10. ………….holds data and instructions necessary for starting up the 
computer when it is. 

11. A ………… compute is the smallest unit of storage. 

6.8 SUMMARY 

1. Since the 1940s when computer technology was used to support the 
creation of firing tables for the artillery and to the introduction of the 
World Wide Web network of computers in the 1980s computer 
technologies have become a large part of our everyday life. The use of 
computers is accelerating. They are now in our cars, our phones, our 
refrigerators. Almost every type of electronic device has a computer chip 
in it. Each chip relays on commands. Commands must be input using 
different devices. The next topic will examine some of these input and MCA-105/113



output devices. 

2. Computer hardware consists of input, output, process and storage devices. 

3. You use input devices such as keyboard, mouse, scanner and multimedia 
devices to provide information to a computer. 

4. Output devices are used to get feedback from a computer after it performs 
a task. 

5. Examples include monitor, printer and multimedia devices. 

6. CPU takes raw data and turns it into information. The CPU is made up of 
Control Unit, Arithmetic Logic Unit (ALU) and the main memory. 

7. Storage devices are divided in primary and secondary storage devices. 

8. Primary/main memory is subdivided into ROM and RAM. 

9. Random Access Memory (RAM) is the main memory and allows you to 
temporarily store commands and data. 

10. Read Only Memory (ROM) retains its contents even after the computer is 
turned off. 

11. A bit is the smallest unit of storage in a computer. 

12. The amount of data and instructions that can be stored in the memory of a 
computer or secondary storage is measured in bytes. A byte is made up of 
a combination of eight bits and has the storage power to represent one 
written character. 

13. Hard disks, CD-R, CD-RW and DVD are secondary storage devices. 

6.9 ANSWERS TO CHECK YOUR PROGRESS 

1. Storage 

2. Impact 

3. Plotter 

4. Central Processing Unit(CPU) 

5. ALU 

6. Bus 

7. Operation Code 

8. Control 

9. Random Access Memory (RAM 

10. Read Only Memory (ROM) 

11. Bit 

MCA-105/114



6.10 TERMINAL QUESTIONS 

1. What is the role of Control Unit of a CPU? 

2. What are the two possible configurations of a Control Unit? 

3. Draw and explain the basic building block of a computer. 

4. What is volatile memory? Give examples. 

5. Give examples of some screen pointing devices. 

6. What is an input device? Give some examples. 

7. What is an output device? Give some examples. 

8. What is a bus? 

9. What is the difference between RAM and ROM? 

MCA-105/115



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
MCA-105/116



UNIT-7 INSTRUCTION 

Structure 

7.1 Learning Objectives 

7.2 Introduction 

7.3 Three Address Instructions 

7.4 Two Address Instructions 

7.5 One Address Instructions 

7.6 Zero Address Instructions 

7.7 Risc Instructions 

7.8 Basic Computer Instructions 

7.9 Instruction Cycles and Subcycles 

7.9.1 Instruction Fetch from Memory 

7.9.2 Instruction Decode 

7.9.3 Instruction Execution 

8.9 Register Reference Instructions 

8.10 Memory Reference Instructions 

8.11 Input-Output Reference Instructions 

8.12 Summary 

8.13 Answers to Check Your Progress 

8.14 Terminal Questions 

7.1 LEARNING OBJECTIVES 

After reading this chapter, you will be able to: 

 Define an Instruction cycle. 

 Explain different steps involved in an instruction cycle. 

 Understand the execution of register reference instructions. 

 Understand the execution of memory reference instructions. 

 Understand the execution of Input/Output reference instructions. 
MCA-105/117



7.2 INTRODUCTION 

The instruction code format of a computer varies from platform to platform. A 
single computer can also have variety of instruction formats. The instructions 
are given to the computer via program. Once the program is executes, the 
instructions is decoded and the CPU generates all the necessary control signals to 
initiate the operation mentioned in the instruction. 

The format of an instruction is usually depicted in a rectangular box symbolizing 
the bits of the instruction as they appear in memory words or in a control 
register. The bits of the instruction are divided into groups called fields. The 
most common fields found in instruction formats are: 

1. An operation code field that specifies the operation to be performed. 

2. An address field that designates a memory address or a processor register. 

3. A mode field that specifies the way the operand or the effective address is 
determined. 

The Operands residing in processor registers are specified with a register 
address. Computers may have instructions of several different lengths containing 
varying number of addresses. The number of address fields in the instruction 
format of a computer depends on the internal organization of its registers. Most 
computers fall into one of three types of CPU organizations: 

1. Single accumulator organization. 

2. General register organization. 

3. Stack organization. 

7.3 THREE ADDRESS INSTRUCTIONS 

This address instruction has the following parts 

 Operation code 

 Address of two operands called Address 1 and Address 2 

 Address of the memory location where the result of the operation is to be 
stored i.e. Address of the destination. 

Operation Code Destination Source 1 Source 2 

 

  Address 1    Address 2    Address 3  

Figure 15 : Three Address Instruction Format 

Computers with three-address instruction formats can use each address field to 
specify either a processor register or a memory operand. The program in assembly 
language that evaluates X = (A + B)* (C + D) is shown below, together with MCA-105/118



comments that explain the register transfer operation of eachinstruction. 

ADD Rl, A, B R1←M[A]+M[B] ADD R2, C, D R2←M[C]+M[D] MUL X, Rl, R2 
M[X]←R1*R2 

We will assume that the operands are in memory addresses A, B, C, and D, and 
the result must be stored in memory at address X. It is assumed that the computer 
has two processor registers, Rl and R2. The symbol M[A] denotes the operand at 
memory address symbolized by A. The advantage of the three-address format is 
that it results in short programs when evaluating arithmetic expressions. The 
disadvantage is that the binary coded instructions require too many bits to specify 
three addresses. 

An example of a commercial computer that uses three-address instructions is the 
Cyber 170. The instruction formats in the Cyber computer are restricted to either 
three register address fields or two register address fields and one memory address 
field. 

7.4 TWO ADDRESS INSTRUCTIONS 

Two-address instructions are the most common in commercial computers. 

 

 

Address 1Address 2   

Figure 16: Two Address Instruction Format 

Here again each address field can specify either a processor register or a memory 
word. The program to evaluate 

X = (A + B) * (C + D) is as follows: 

MOV Rl, A R1←M[A] ADD Rl, B Rl←Rl + M[B] MOV R2, C R2←M[C] 

ADD R2,D R2←R2 + M[D] MUL Rl ,R2 R1←R1*R2 MOV X, R1 M[X]←R1 

7.5 ONE ADDRESS INSTRUCTIONS 

One-address instructions use an implied accumulator (AC) register for all data 
manipulation. 

 

 
Figure 17 : One Address Instruction Format 

For multiplication and division there is a need for a second register. However, 
here we will neglect the second register and assume that the AC contains the 
result of all operations. The program to evaluate 

Operation Destination Source 

Op-code Address 1 

MCA-105/119



X = (A + B)*(C + D) 

is as follows: 

LOAD A AC ←M[A] 

ADD B AC ←AC+M[B] 

STORE T M[T] ← AC 

LOAD C AC← M[C] 

ADD D AC ←AC + M[D] 

MUL T AC ←AC+M[T] 

STORE X M[X] ←AC 

7.6 ZERO ADDRESS INSTRUCTIONS 

A stack-organized computer does not use an address held for the instructions 
ADD and MUL. The PUSH and POP instructions, however, need an address held 
to specify the operand that communicates with the stack. The following program 
shows how X = (A + B) * (C + D) will be written for a stackorganized 
computer. (TOS stands for top of stack.) 

PUSH A TOS←A 

PUSH B TOS←B 

ADD  TOS←(A+B) 

PUSH C TOS←C 

PUSH D TOS←D 

ADD  TIS←(C+D) 

MUL  TOS←(C+D)*(A+B) 

POP X M[X] ←TOS 

7.7 RISC INSTRUCTIONS 

The instruction set of a typical RISC processor is restricted to the use of load 
and store instructions when communicating between memory and CPU. All other 
instructions are executed within the registers of the CPU without referring to MCA-105/120



memory. The following is a program to evaluate 

X = (A + B)*(C + D) 

LOAD R1,A R1←M[A] 

LOAD R2,B R2←M[B] 

LOAD R3,C R3←M[C] 

LOAD R4,D R4←M[D] 

ADD R1,R1,R2 R1←R1+R2 

ADD R3,R3,R4 R3←R3+R4 

MUL R1,R1,R3 R1←R1*R3 

STORE X,R1 M[X] ←R1 

 

Check  Your Progress 

1. The Operands residing in processor registers are specified with a 

 address. 

2. TOS stands for. 

3. In case of, Zero-address instruction method the operands are stored in 

7.8 BASIC COMPUTER INSTRUCTIONS 

The basic instruction code has three fields, as shown in Figure 18. 

 

Figure 18 : Basic Computer Instruction Format MCA-105/121



The most significant bit, i.e. bit 15, is marked as I, which is a mode selection 
bit. If it is set, it is indirect addressing mode else direct addressing mode. This bit 
has a direct effect on the address part (bit 0-11) of the instruction code and it is 
used in conjunction with other three opcode bits (bit 12-14) to specify one of the 
various addressing modes. In direct addressing mode, the address part of the 
instruction code gives the address of the operand in the main memory. In indirect 
mode, the address part of the instruction code specifies that address of the main 
memory, which contains the address of the operand in the main memory. There 
are some situations, when the operand is stored in one of the CPU registers or the 
operand is specified by the Input/Output devices itself. In these cases, no memory 
reference is required. Hence, the address part of the instruction code is no longer 
required to specify the address of the operand in the main memory. Therefore, the 
other 12 bits(0-11) can be used to specify test or other conditions. The above 
situation can be summarized as follows: 

 When I=0 and bit 12-14 are all 1’s(0111),i.e. the hexadecimal equivalent 
of the digit 7, it is register mode. In register mode, the other 12 bits of the 
address part of the instruction code are used to specify one of the various 
register mode instruction (please refer to table 6). The 16 bits of the 
instruction code is equivalent to four hexadecimal bits, with the first most 
significant bit of the hexadecimal equal to four most significant bits (12-
15) of the instruction code. In register mode, the most significant 
hexadecimal bit is always 7. Rest of the 12 bits are used to  specify different 
register related operation. For eg. 7800, which is equivalent to 0111 
1000 0000 0000 in binary, specifies Clear AC (clear accumulator) 
operation. 

 When I=1 and bit 12-14 are also all 1’s (1111), i.e. the hexadecimal 
equivalent of digit F, it specifies Input/Output mode. In this case also the 
other 12 bits are used to specify one of the various Input/Output 
operations. For eg. F800 is an Input/Output operation which is used to 
transfer input characters to AC. 

 When I=0 and bit(12-14) have any combinations except all 1’s. i.e. 
hexadecimal equivalent values of 0-6, it is a direct addressing mode. In 
this case the other 12 bits are used to specify the address of the operand in 
the main memory. For eg. 1xxx( i.e. binary equivalent 0001 xxxx xxxx 
xxxx xxxx( x’s denotes don’t care conditions) specifies ADD which 
performs addition operation on the operand and the content of AC. 

 When I=1 and bit (12-14) have any combinations except all 1’s, i.e. 
hexadecimal equivalent values of 8-E, it is a indirect addressing mode. In 
this case the other 12 bits are used to specify the address of that location in 
the memory, which contains the address of the operand in main memory. 
If you see 

 Table 2 you will observe that all the operation of direct and indirect 
memory mode are same, the only difference is number of main memory 
access to fetch operand to the CPU registers. For eg. 1xxx and 9xxx, both 
are used to add memory word to AC, but in case of 1xxx it is direct mode, MCA-105/122



where only one memory reference is required to fetch the operand. In case 
of 9xxx, two memory references are required. 

 A computer should have a set of instructions so that the user can  construct 
machine language programs to evaluate any function that is known to be 
computable. The instruction set of a computer is said to be complete if it 
contains the following category of instructions to manipulate the data. 

 Functional Instructions 

 Arithmetic, logic, and shift instructions 

 ADD, CMA, INC, CIR, CIL, AND, CLA 

 Transfer Instructions 

 Data  transfers  between  the  main  memory  and  the  processor 
registers. 

 LDA, STA 

Table 2 : Computer Instructions 

 

 

 Control Instructions 

 Program sequencing and control MCA-105/123



 BUN, BSA, ISZ 

 Input/Output Instructions  

 Input and output 

 INP, OUT 

The basic instruction set disused above and summarized in table 2 consists of all 
the instructions required by a basic computer. Hence, we can claim that the 
instruction set is complete. 

 

Check  Your Progress 

1.   The sequence of instructions is known is ………… . 

2. The CPU reads the next instruction from memory. It is placed in an……. 
. 

3. When ………… an   operand   is   found,   using   either   direct   or   indirect 
addressing, it is placed in the. 

 

7.9 INSTRUCTION CYCLES AND SUBCYCLES 

Before looking at how a computer does what it does, let us look at what it can do. 
The definition of a computer outlines its capabilities; a computer is an electronic 
device that can store, retrieve, and process data. Therefore, all of the instructions 
that we give to the computer relate to storing, retrieving, and processing data. 

The underlying principle of the von Neumann machine is that data and 
instructions are stored in memory and treated alike. This means that instructions 
and data are both addressable. Instructions are stored in contiguous memory 
locations; data to be manipulated are stored together in a different part of memory. 

In this unit, we will discuss the phases involved in the execution of an 
instruction by the CPU. We ill also discuss how a register reference, memory 
reference and input/output reference instructions are executed by CPU. 

A program residing in the memory unit of the computer consists of a sequence of 
instructions. The program is executed in the computer by going through a cycle for 
each instruction. Each instruction cycle in turn is subdivided into a sequence of 
sub cycle. Each instruction cycle consists of 

1. Instruction Fetch from Memory MCA-105/124



2. Instruction Decode 

3. Read Effective Address(if indirect addressing mode) 

4. Instruction Execution 

5. Go to step 1) : Next Instruction[PC + 1] 

After execution, the control goes back to step number 1 to again fetch the new 
instruction. This cycle goes on till the end of the program and stops as soon as a 
HALT instruction is encountered. Now let us discuss each of the above steps in 
detail. 

7.8.1 INSTRUCTION FETCH FROM MEMORY 

In register transfer language, the instruction fetch can be represented as follows: 

T0  : AR PC 

T1 : IR M [ AR], PC PC +1 

This could be explained as follows: At T0 = 1 

The content of PC are placed onto the bus by making the bus selection inputs 
S2S1S0=010 and these contents of the common bus are transferred to AR by 
enabling the LD input of AR. This is denoted by the following register transfer 
statement: 

T0 : ARPC 

When T1 = 1 

The READ signal line of the main memory is enabled to facilitate the memory 
read operation. This is followed by placing the content of the desired location of 
the main memory to the common bus by making S2S1S0= 111. The choice of the 
location of memory is specified by the AR. This is followed by transfer of the 
content of the common bus to the Instruction Register (IR) by enabling the LD 
input of IR. Now the instruction fetch is complete. At the end  the  Program Counter 
(PC) is incremented by enabling the INR input of PC. This  can  be denoted by the 
following register transfer statement: 

1],[:1  PCPCARMIRT  

7.8.2 INSTRUCTION DECODE 

In this sub-phase, the instruction which is fetched from the main memory and now 
residing in the Instruction Register (IR) is decoded. 

At T2=1 MCA-105/125



The opcode  bits are  decoded to enable one of the eight outputs i.e. D0 –D7. 
Simultaneously, the address of the operand, i.e. bit (0-11) of the  instruction 
register are transferred to Address Register. To check whether it is a direct 
addressing mode or an indirect addressing mode, value of bit(15) of Instruction 
Resister(IR) is transferred to I. This can be denoted by the following register 
transfer statement: 

)15(),110(),1412(,....,: 702 IRIIRARIRDecodeDDT   

7.8.3 INSTRUCTION EXECUTION 

In this sub-phase, the value of I is tested to decide between register, input/output, 
direct memory or indirect memory mode. 

At T3=1 

To make this decision, the value of D7 is tested. The bit D7 is set when bit(12-14) 
are all 1’s. If D7 is 1, then it means that it is either a register mode or input/output 
mode. To resolve this, the status of I is checked. If I=0, then it is register mode i.e. 
when D7=1 ; Register(I=0) then register  mode.  In  this  case  no  memory reference 
is required. Hence the instruction is executed. This can be denoted by the 
following register transfer statement: 

D7I’T3(Execute) 

If I=1, then it is input/output mode i.e. when D7=1 ;  Register(I=1)  then 
input/output mode. i.e., when D7=1 and Register (I=1) then input/output mode. In 
this case also, no memory reference is required. Hence, the instruction is 
executed. This can be denoted by the following register transfer statement: 

D7IT3  (Execute) At T4=1, 

In case, D7 is 0, it means that it is a memory reference instruction. Now to select 
between direct and indirect memory instruction, again the status of I is checked. 

If I=0, then it is direct memory instruction. In this case, the operand is fetch from 
memory and transferred to Data Register for processing. 

][ ARMDR   

After this, the instruction is executed. Only one access to the main memory is 
required in case of direct memory mode. 

If I=1, then this is an indirect memory instruction. In the first step, the address is 
fetched i.e. 

T5=1 

][ ARMAR   
MCA-105/126



T6=1 

][ ARMDR   

After this, the instruction is executed. Two accesses to the main memory is required 
in case of indirect memory mode. The above process could be summarized 
with the help of a flowchart as shown in Figure. 

 
 

Figure 29: Instruction Cycle 

Check  Your Progress 

1. A   residing  in  the  memory  unit  of  the  computer consists of a 
sequence of instructions. 

2. The increments  one  by  one  to  point  to  the  next instruction to be 
executed, 

 
 MCA-105/127



7.9 REGISTER REFERENCE INSTRUCTIONS 

As discussed in the above section, we can recognize register reference instructions 
when: D7=1 and the mode selection bit I=0 

 

 

Figure 19 : Register Reference Instruction 

In register reference instructions, memory reference is not required since the 
operand is present in the register. Hence, the 12 bits of the address part of the 
instruction code can be used to specify one of the various register operations. 
Various register reference instructions are shown in the Table 3 below. 

r = D7 IT3    => Register Reference Instruction 

For convenience, D7 IT3 is represented as r. It represent that register reference 

instruction occurs when D7 is 1, I is 0 during clock transition T3. B donotes ith 

bit of address part of the instruction code. For instance, 

B0 represents 0000 0000 0001 

 

B1 represents 0000 0000 0010 

. 

. 

. 

B11 represents 1000 0000 0000 

The first element in the table 9 is rB11, which can be represented in binary as 
rB11 

=>D7 IT3B11   =>  T3: D7 IB11      => 0111 1000 0000 0000 => CLA 

CLA is clear accumulator, which clears all the bits of the accumulator to 0. 
Likewise there is different register reference instructions operation explained in 
Table 3 below. 

 MCA-105/128



Table 3 : Register Reference Instructions 

 

Symbol Operational 
Decoder 

Symbolic Instruction 

 r: SC←0 

CLA rB11: AC←0 

CLE rB10: E←0 

CMA rB9: AC←AC’ 

CME rB8: E←E 

CIR rB7: AC←shr AC, AC(15) ←E, 
E←AC(0) 

CIL rB6: AC←shr AC, AC(0) ←E, 
E←AC(15) 

INC rB5: AC←AC+1 

SPA rB4: If(AC(15)=0) then 
(PC←PC+1) 

SNA rB3: If(AC(15)=1) then 
(PC←PC+1) 

SZA rB2: If(AC = 0) then (PC←PC+1) 

SZE rB1: If( E = 0) then (PC←PC+1) 

HLT rB0: S←0(S is a start-stop flip-flop) 

 

7.10 MEMORY REFERENCE INSTRUCTIONS 

Memory Reference Instruction can be recognized by either of D0 to D6=1. If I=0 
then direct memory reference and if I=1 then indirect memory instruction. Various 
memory reference instructions can be selected by varying the values of opcode 
bits, which ultimately set one of seven outputs from D0 to D6 equal to1. This 
could be summarized by Table 4 below: 

 
MCA-105/129



Table 4 : Memory Reference Instructions 

 

Symbol Operational Decoder Symbolic Instruction 

AND D0 AC←AC^M[AR] 

ADD D1 AC←AC+M[AR]. E←Cout 

LDA D2 AC←M[AR] 

STA D3 M[AR] ←AC 

BUN D4 PC←AR 

BSA D5 M[AR] ←PC, PC←AR+1 

ISZ D6 M[AR]  ←M[AR]+1,  if  M[AR]+1=0  then
PC←PC+1 

The effective address of the instruction is in AR and was placed there during 
timing signal T2 when I = 0, or during timing signal T3 when I = 1. The 
execution of memory reference instruction starts with T4. 

Now let us discuss the various memory reference instructions one by one. 

(i) AND to AC 

 D0T4:   DR  M[AR] Read operand D0T5:   
AC AC DR, SC  0 AND with AC 

 During T4, when D0 is set, the content of main memory, located at the 
address specified by Address Register (AR) are transferred to Data 
Register(DR). Now at T5, the content of DR and ANDED with content 
of AC and the final result is stored in AC. Once the operation is 
complete, SC is cleared so as to generate T0 again, which will fetch next 
instruction to CPU for processing. 

(ii) ADD to AC 

 D1T4:   DR M[AR] Read operand 

 D1T5:   AC AC + DR, E Cout, SC 0 Add to AC and store carry 
in E 

 During T4, when D1 is set, the content of main memory, located at the 
address specified by Address Register (AR) are transferred to Data MCA-105/130



Register(DR). Now at T5, the content of DR and added with content of 
AC and the final result is stored in AC. If a carry is generated, E is set. 
Once the operation is complete, SC is cleared so as to generate T0 again, 
which will fetch next instruction to CPU for processing. 

(iii) LDA: Load to AC D2T4:   DR M[AR] D2T5:   AC DR, SC 0 

 In the previous operations, the operand is added to the content of the 
accumulator. One may think how the accumulator is loaded with data. 
The above instruction LDA is used to load the accumulator. During T4, 
when D2 is set, the content of main memory, located at the address 
specified by Address Register(AR) are transferred to Data Register(DR). 
Now at T5, the content of DR are transferred to Accumulator(AC) and the 
SC is cleared. 

(iv) STA: Store AC 

 D3T4:   M[AR] AC, SC 0 

 When a new operand is to be loaded in the accumulator and AC already 
contains some data, which can be further required. This data is stored in 
the memory for future use. During T4, when D3 is set, the content of 
AC are transferred to main memory at the address specified by Address 
Register(AR Once the operation is complete, SC is cleared so as to 
generate T0 again, which will fetch next instruction to CPU for processing. 

(v) BUN: Branch Unconditionally D4T4:   PC AR, SC 0 

 During execution of an instruction, if a branching instruction is 
encountered, the program sequence branch to the address specified by the 
address register. Since it is an unconditional branching, therefore no 
condition is to be checked before branching. During T4, when D4 is set, 
the content of AR are transferred to PC and SC is cleared so as to generate 
T0 again, which will fetch next instruction to CPU for processing from 
the address that is specified by PC i.e. the branching address that was 
loaded to PC from AR. 

(vi) BSA: Branch and Save Return Address 

 There are often situations in programming when a subroutine is called.  The 
process of calling a subroutine is as follows: As soon as subroutine is 
called, the address of the starting location of the subroutine is written into 
the PC. But after the subroutine is called and executed, the control needs 
to be transferred to the location where the subroutine was called. 
Therefore the address of the location where a subroutine was called need 
to be remembered. To facilitate this, the first location of the subroutine is 
always kept empty so that the returning address can be saved at that 
location. This can be explained with the help of a register transfer 
statement: MCA-105/131



D5T4: M[AR] PC, PC AR + 1 

At T5, when D5 is active, the content of the Program Counter(PC), which holds 
the returning address, are saved in the memory location specified by AR( it is the 
starting address of the subroutine which is always kept empty). Simultaneously, 
The PC is updated with the starting address of the subroutine( remember, the 
starting address of the subroutine is specified by AR. Since, the first location is 
empty and used for storing the starting address, therefore content of AR are 
incremented before updating the PC). 

This can be explained with the help of an example. The CPU is currently 
processing the instruction location at 20. Therefore, the current value of PC will 
be 21. While decoding the instruction, it was found that it was a Branch and Save 
instruction. The branching address is given by the address part of the Instruction 
Code i.e. 135. The AR currently stores this address. The starting location of the 
subroutine at 135 is empty. This is used to store the returning address, i.e. 21, 
which is stored in PC. The current content of the PC are written into the first 
location, i.e. 135 of the subroutine. It is followed by updating the PC with 
incremented content of AR i.e. 135+1=136. This could be explained as follows: 

D5T4: M[135] 21, PC 135 + 1 

Now the instruction  located at location 136 i.e.  subroutine starting  address is 
loaded into the memory. The subroutine is executed. The last line of the 
subroutine contains an instruction which unconditionally branch to the starting 
location of the subroutine, i.e. 135. Please note that he mode selection bit I is 1. 
Therefore, it is an indirect addressing mode. Hence, the control returns to location 
number 21. 

 

 

 

 

 

 

 

 

 

Figure 20 : Branch and Save Address 

It is not possible to perform the operation of the BSA instruction in one clock 
cycle when we use the bus system of the basic computer. To use the memory and MCA-105/132



the bus properly, the BSA instruction must be executed with a sequence of two 
microoperations. This is expressed in RTL as follows: 

D5T4:   M[AR] PC,  AR AR + 1 D5T5:   PC AR, SC 0 

Or 

D5T4 : M [135] 21(PC), 136( AR) 135 1 

D5T5 :136(PC) 136( AR), SC 0 

Timing signal T4 initiates a memory write operation, places the content of PC 
onto the bus, and enables the INR input of AR. The memory write operation is 
completed and AR is incremented by the time the next clock transition occurs. 
The bus is used at T5 to transfer the content of AR to PC. 

(vii) ISZ: Increment and Skip-if-Zero 

There are some situations when before branching some condition is to be 
checked. If the condition is true then proceed with branching else fetch the next 
instruction from the sequence. Once such instructions is ISZ, increment and skip 
if zero. At T4, when D6 is set, the data is fetched from the memory from the 
location specified by the AR. The data from memory is transferred to DR. At T5, 
the content of DR is incremented. Now at T6, if after incrementing the content of 
DR, the incremented content of DR becomes zero, then skip the next instruction. 

D6T4:   DR M[AR] D6T5:   DR DR + 1 

D6T6:   M[AR] DR,  if (DR = 0) then (PC PC + 1),  SC 0 

We can skip one instruction by incrementing the PC twice. Once the PC is 
incremented during T1, now if we again increment it at T6, it is equivalent to 
skipping one instruction. Also, the content of DR are saved to main memory and 
the SC is cleared. 

The operation of Memory Reference Instruction could be summarized with the 
help of a flowchart given at  

Figure 21. 

Can you think of a computer which cannot communicate with its environment? 
Most of us will have the same answer, NO. A computer does not have any practical 
application if it cannot intract with its environment via input and output devices. 
The input devices like keyboard, scanner, etc. are used to feed input/data to the 
CPU or memory and the output devices like monitor, printer are used to display 
the processed information. The basic input-output configuration of a computer is 
explaind with the help of Figure 22. 

 
MCA-105/133



 

 

Figure 21: Flowchart of Memory Reference Instruction 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Input-Output Configuration MCA-105/134



The input/output devices receives and transmits data at much slower rate as 
compared to CPU. To compensate this speed mismatch, an input and output 
interfaces are required, which receives and transmit the data at different rates. 
Input devices are attached to input interface, which is connected to INPR register 
of CPU. INPR is able to receive the data from input device serially and when the 
whole of the data item is received, it can transmit it to the CPU parallely. Whenever 
we press an key in the keyboard, it transmit the 8-bit alphanumeric code to 
INPR serially. INPR is attached to a 1-bit status flag FGI. This FGI bit represents 
the status of the INPR, whether it is ready to accept data or not. We can imagine a 
situation when the INPR already holds previous data, which is not yet transferred 
to CPU. If another key in the keyboard is stiked, the alphanumeric bits of the new 
data can currupt the old data. To overcome this situation, FGI status flag is used. 
FGI is set when INPR already holds the data. In case, a new key is pressed, its 
alphanumeric input are not transmitted to INPR until and unless flag FGI is 0, 
which is a signal that the INPR is empty and ready to store new data. Whenever 
the INPR transmits the data to AC, it clears FGI. 

Similarly, output devices are attached to output interface, which is connected to 
OUTR of CPU. OUTR have the capability to receive the data from CPU parallely 
and transmit it to the output devices serially. Status flag FGO in set state is used 
to represent the OUTR is ready to receive data from AC. Once the data from data 
is transmitted from AC to OUTR, FGO is cleared to 0. Now once the data from 
OUTR is transferred to output device, again FGO is set. 

7.11 INPUT-OUTPUT REFERENCE INSTRUCTIONS 

As discussed in the previous unit, we can recognize register reference instructions 
when: D7=1 and the mode selection bit I=1. 

 

 

Figure 23: Input-Output Reference Instruction 

In input-output reference instructions, memory reference is not required since 
the operand is present in the register. Hence, the 12 bits of the address part of 
the instruction code can be used to specify one of the various input-output 
operations. Various input-output reference instructions are shown in the table 11 
below. 

p = D7 IT3     => Input-Output Reference Instruction 

For convenience, D7 IT3 is represented as p. It represent that input-output 
reference instruction occurs when D7 is 1, I is 1 during clock transition T3. B 

donotes ith bit of address part of the instruction code. For instance, 

B6 represents 0000 0010 0000 MCA-105/135



B7 represents 0000 0100 0000 

. 

. 

. 

B11 represents 1000 0000 0000 

The first element in the table 11 is pB11, which can be represented in binary as 

pB11  =>D7 IT3B11   =>  T3: D7 IB11      => 1111 1000 0000 0000 => INP 

INP transfers the content of INPR to AC. After transferring the content, FGI is 
cleared. Likewise there is different register reference instructions operation 
explained in Table 5 below. 

 

Table 5 : Input-Output Instructions 

 

D7 I T3  = p(common to all input-output instructions) IR(i)=Bi(Bit in IR(6-11)
that specifies the instruction) 

 p: SC←0 Clear SC 

INP pB11: AC(0-7) ←INPR, FGI←0 Input Character 

OUT pB10: OUTR←AC(0-7), FGO←0 Output Character

 

 

SKI pB9: If(FGI=1) then (PC←PC+1) Skip on Input flag

SKO pB8: If(FGO=1) then (PC←PC+1) Skip on 

Output flag

ION pB7: IEN←1 Interrupt enable
on 

IOF pB6: IEN←0 Interrupt enable
off 

    
MCA-105/136



Check Your Progress 

1. In reference instructions, memory reference is not required since the 
operand is present in the register. 

2. The input/output devices receives and transmits data at rate as compared 
to CPU. 

3. To compensate the speed mismatch, an input and output are required, 
which receives and transmit the data at different rates. 

4. In ……….. reference instructions, memory reference is not required 
since the operand is present in the register. 

7.12 2  SUMMARY 

Instructions are processed under the direction of the control unit in a step-by-step 
manner. 

There are four fundamental steps in the instruction cycle: 

1. Fetch the instruction 

 The next instruction is fetched from the memory address that is 
currently stored in the Program Counter (PC), and stored in the 
Instruction register (IR). At the end of the fetch operation, the PC 
points to the next instruction that will be read at the next cycle. 

2. Decode the instruction 

 The decoder interprets the instruction. During this cycle the 
instruction inside the IR (instruction register) gets decoded. 

3. Execute 

 The Control Unit of CPU passes the decoded information as a 
sequence of control signals to the relevant function units of the 
CPU to perform the actions required by the instruction such as 
reading values from registers, passing them to the ALU to perform 
mathematical or logic functions on them, and writing the result back 
to a register. If the ALU is involved, it sends a condition signal back 
to the CU. 

4. Store result 

 The result generated by the operation is stored in the main memory, 
or sent to an output device. Based on the condition of any feedback 
from the ALU, Program Counter may be updated to a different 
address from which the next instruction will be fetched. 

MCA-105/137



7.13 ANSWERS TO CHECK YOUR PROGRESS 

1. Program 

2. Program Counter(PC) 

3. Register 

4. Slower 

5. Interfaces 

6. input-output 

7.14 TERMINAL QUESTIONS 

1. What is the difference between a direct and  an  indirect  address instruction? 
How many references to memory are required for each type of instruction 
to bring an operand into a processor register? 

2. What is instruction cycle? What are the sub-phases of an instruction cycle. 

3. Explain ISZ memory reference instruction in detail. 

4. Explain BSA memory reference instruction in detail. 

5. What is an interface? Why is it required? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MCA-105/138



UNIT-8 ADDRESSING TECHNIQUES 

Structure 

8.1 Learning Objectives 

8.2 Introduction 

8.3 Addressing Modes 

8.3.1 Implied Mode 

8.3.2 Immediate Mode 

8.3.3 Register Mode 

8.3.4 Register Indirect Mode 

8.3.5 Auto-increment or Auto-decrement Mode 

8.3.6 Direct Address Mode 

8.3.7 Indirect Address Mode 

8.3.8 Relative Address Mode 

8.3.9 Indexed Addressing Mode 

8.3.10 Base Register Addressing Mode 

8.4 8085 Registers 

8.5 Summary 

8.6 Answers to Check Your Progress 

8.7 Terminal Questions 

8.1 LEARNING OBJECTIVES 

After reading this unit, you will be able to: 

 Explain various addressing modes. 

 Define immediate addressing mode 

 Differentiate between direct and indirect addressing mode. 

 Explain Register mode. 

8.2 INTRODUCTION 

The operation field of an instruction specifies the operation to be performed. MCA-105/139



This operation must be executed on some data stored in computer registers or 
memory words. Computers use addressing mode techniques for the purpose of 
accommodating one or both of thefollowing provisions: 

1. To give programming versatility to the user by providing such facilities as 
pointers to memory, counters for loop control, indexing of data, and 
program relocation. 

2. To reduce the number of bits in the addressing field of the instruction. 

 

 

Figure 24: Instruction Code with Mode Field 

The control unit of a computer is designed to go through an instruction cycle that 
is divided into three major phases: 

1. Fetch the instruction from memory. 

2. Decode the instruction. 

3. Execute the instruction. 

There is one register in the computer called the program counter or PC that keeps 
track of the instructions in the program stored in memory. PC holds the address of 
the instruction to be executed next and is incremented each time an instruction is 
fetched from memory. The mode field is used to locate the operands needed for 
the operation. 

8.3 ADDRESSING MODES 

There are various addressing modes which are discussed in length in the 
following section. 

8.2.1 IMPLIED MODE 

In this mode the operands are specified implicitly in the definition of the 
instruction. For example, the instruction "complement accumulator" is an 
implied-mode instruction because the operand in the accumulator register is 
implied in the definition of the instruction. In fact, all register reference 
instructions that use an accumulator are implied-mode instructions. 

8.2.2 IMMEDIATE MODE 

In  this  mode  the  operand  is  specified  in  the  instruction  itself  i.e.  the address 
part of the instruction code contains the operand itself. 

Instruction Code 

 MCA-105/140



 

 

Figure 25: Immediate mode 

8.2.3 REGISTER MODE 

In this mode the operands are in registers that reside within the CPU. The 
particular register is selected from a register field in the instruction. A k-bit field 

can specify any one of 2k registers. 

 

 

Figure 26: Register Mode 

8.2.4 REGISTER INDIRECT MODE 

In this mode the instruction specifies a register in the CPU whose contents give 
the address of the operand in memory. 

 

 

 

Figure 27: Register Indirect mode 

8.2.5 AUTO-INCREMENT OR AUTO-DECREMENT MODE 

This is similar to the register indirect mode except that the register is 
incremented or decremented after (or before) its value is used to access memory. 
The effective address is defined to be the memory address obtained from the 

  

MCA-105/141



computation dictated by the given addressing mode. 

8.2.6 DIRECT ADDRESS MODE 

In this mode the effective address is equal to the address part of the instruction. The 
operand resides in memory and its address is given directly by the address field of 
the instruction. 

 

 

 

Figure 39: Direct addressing mode 

8.2.7 INDIRECT ADDRESS MODE 

In this mode the address field of the instruction gives the address where the 
effective address is stored in memory.A few addressing modes require that the 
address field of the instruction be added to the content of a specific register in the 
CPU. The effective address in these modes is obtained from the following 
computation: effective address = address part of instruction + content of CPU 
register 

 

 

 

Figure 28: Indirect Address Mode 

8.2.8 RELATIVE ADDRESS MODE 

In this mode the content of the program counter is added to the address part of 
the instruction in order to obtain the effective address. MCA-105/142



8.2.9 INDEXED ADDRESSING MODE 

In this mode the content of an index register is added to the address part of the 
instruction to obtain the effective address. The index register is a special CPU 
register that contains an index value. The address field of the instruction defines 
the beginning address of a data array in memory. 

8.2.10 BASE REGISTER ADDRESSING MODE 

In this mode the content of a base register is added to the address part of the 
instruction to obtain the effective address.  This is similar to the indexed addressing 
mode except that the register is now called a base register instead of an index 
register. 

 

 

 

 

 

Figure 29: Displacement addressing diagram2 

Check Your Progress 

1. An ……….  mode instruction has an operand field rather than the 
address field. 

2. In ………. mode, the instruction has the address of the Register where 
the operand is stored. 

3. In ……….. mode, the register contains the address of operand rather 
than the operand itself. 

4. ………. mode is a version of Displacement addressing mode. 

5. ………… mode is most suitable to change the normal sequence of 
execution of instructions. 

8.3 8085 REGISTER 

Microprocessor is a programmable device which reads binary instructions from 
memory, accepts binary data as input and processes the data as per the 
instruction to produce output as a result. The 8085 is an 8 bit microprocessor 
which is used as a basis for studying all microprocessors in  the market. The 
registers in 8085 microprocessor are classified into following categories: 

1. General purpose registers: The general purpose registers are used to 
store temporary data during execution of a program. The 8085 MCA-105/143



microprocessor has 6 general purpose registers to store 8 bit data. These 
registers are called as B, C, D, E, H, and L. These registers can be used in 
an  instruction  if  one  of  the  operands  presents  in  A  register  
(i.e.accumulator register). For example, there is no any instruction to add 
the content of registers B and C. To add the content of B and C registers 
and store the result in B, we need to perform following operations- 

 Move the contents of B register to A. 

 Add the content of A and C registers and store the result back in A. 

 Move the result from register A to register B. 

 These registers can also be combined as a pair to store 16 bit information. 
But, only BC, DE and HL can be used as register pairs. When these 
registers are used as a pair, the left register stores the most significant 
byte and the right register stores the least significant byte. For example, 
in the HL pair resistors, the content of the H register is most significant 
byte and the content of L register is the least significant byte. 

2. Special purpose registers: 

 Accumulator (Register A): The accumulator is an 8 bit register 
which is present in ALU and directly communicates with ALU. It is 
used to store input and output of ALU after performing arithmetic 
or logical operations. 

 Status or Flag Register: The flag register is a 8 bit special purpose 
register which is completely different from other registers in the 
microprocessor. It consists of 8 bits out of which only 5 bits are 
useful, while other 3 bits are left unused. 

 

 

 

Figure 3.3 : Bit position of different flags in the flag register. 

 These 5 bits are called flags which can be set or reset (when flag 
value is 1, it is called as set and when flag value is 0, it is called as 
reset) based on the results in accumulator and other registers. These 
5 flags are as follows: 

i. Sign Flag: It is present at 7th position and most significant position 
(MSB) in the flag register. It helps us to know whether the value 
stored in the accumulator register is positive or negative. This flag 
bit is set to 1 if the number stored in the accumulator is negative. 
Otherwise, it is set to 0 if the number stored in the accumulator 
register is positive. MCA-105/144



ii. Zero Flag: This flag presents at 6th position in the flag register. This 
flag bit is set to 1 if the result of ALU operation which is stored in 
the accumulator register is zero. Otherwise, it is set to 0. This flag 
bit can be useful in checking whether two numbers are equal or not. 
Parity flag: This flag bit is present at 2nd position in the flag register. 
This flag bit tells us whether the number of 1 present in the 
accumulator register is even or odd i.e. even or odd parity. If the 
number of 1 present in the accumulator is even, this flag bit is set to 
1. Otherwise, if the number of 1 present in the accumulator is odd 
then this flag bit is set to 0. 

iii. Carry flag: This flag bit presents at 0th position. When the result of 
ALU computation which is stored in the accumulator gives a carry 
i.e. more than 8 bits, then this flag bit is set to 1. Otherwise, it is set 
to 0. 

iv. Auxiliary carry Flag: This flag presents at 4th position in the flag 
resister. When ALU performs a arithmetic operation and this results 
in a carry flag is generated and passed on to 4th bit, then the auxiliary 
carry Flag bit is set to 1. Otherwise, this flag bit is set to 0. This flag 
bit is used internally for BCD operations. 

3. Memory Registers : 

 The 8085 microprocessor has two memory registers each of 16 bits. These 
registers are used to store 16 bits memory addresses. 

 Program counter: This register holds the address of the next instruction to 
be executed. Once the instruction is fetched from the memory, this register 
is automatically incremented by one to hold the address of the memory 
location of the next instruction to be executed. This way this register is 
used to sequence the execution of instructions. 

 Stack pointer: It is a 16 bits register which holds memory address. This 
register holds the address of the top location of the stack and the register is 
incremented by 2 for every push and pop operation of the stack. In push 
operation of the stack a new address is inserted on the stack and the stack 
pointer decremented by 2. In pop operation, the address present at the top 
of the stack is deleted and the stack pointer is incremented by 2. This way 
the content of the stack pointer gives the top most useful location with the 
smallest memory address present on the stack. 

8.4 SUMMARY 

1. Addressing modes are an aspect of the instruction set architecture in most 
central processing unit (CPU) designs. 

2. The various addressing modes that are defined in a given instruction set 
architecture define how machine language instructions in that architecture 
identify the operand(s) of each instruction. 

3. An addressing mode specifies how to calculate the effective memory MCA-105/145



address of an operand by using information held in registers and/or 
constants contained within a machine instruction or elsewhere. 

4. In immediate mode, the operand is specified in the instruction itself. 

5. In register mode, the operand is stored in the register and this register is 
present in CPU. 

6. In register indirect mode, the instruction specifies the register whose 
contents give us the address of operand which is in memory. 

7. In autoincrement/autodecrement mode, the register is incremented or 
decremented after or before its value is used. 

8. In direct addressing mode, effective address of operand is present in 
instruction itself. 

9. In indirect addressing mode, the address field of instruction gives the 
address where the effective address is stored in memory. 

10. In relative addressing mode, the contents of PC (Program Counter) is added 
to address part of instruction to obtain the effective address. 

11. There are several general purpose registers present in the processor 
referred to as processor registers. These registers are used by the processors 
to perform various operations on the data that is fetched from the memory 
to processor. 

12. Data register holds the data in which the operation is to be performed. 

13. The processor has a register, the Program Counter (PC) that holds the 
memory address of the next instruction to be executed. 

8.5 ANSWERS TO CHECK YOUR PROGRESS 

1. Immediate 

2. Register 

3. Register indirect 

4. Relative addressing 

5. Relative addressing 

8.6 TERMINAL QUESTIONS 

1. What are the three phases of instruction cycle? 

2. What is a difference between register mode and auto-increment/auto-
MCA-105/146



decrement mode? 

3. What is an effective address? How it is computer? 

4. Compare index address mode with base register addressing mode. 

5. Explain the various address modes using an example. 

MCA-105/147



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
MCA-105/148



Master of Computer 
Application 

MCA-105/MCS-106 

/PGDCA-105 

Computer Organization 
 
  
  
BLOCK 

3 
MEMORY AND I/O 

UNIT-9 

Memory 

 

UNIT-10 

I/O System 
 

UNIT-11  

Introduction to 8085 Microprocessor and Microcontrollers 
 
 
 
 
 
 
 
 
 
 
 
 
 

Uttar Pradesh Rajarshi Tandon 
Open University 

 

MCA-105/149



Course Design Committee 

Prof. Ashutosh Gupta Chairman 

Director (In-charge) 

School of Computer and Information Science, UPRTOU Allahabad 

Prof. Suneeta Agarwal Member 

Department of CSE 

MNNIT Allahabad, Prayagraj 

Dr. Upendra Nath Tripathi Member 

Associate Professor, Department of Computer Science 

Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 

Dr. Ashish Khare Member 

Associate Professor, Department of Computer Science 

University of Allahabad, Prayagraj 

Dr. Marisha Member 

Assistant Professor (Computer Science),   

School of Science, UPRTOU Allahabad 

Mr. Manoj Kumar Balwant Member 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad 

Course Preparation Committee 

Mr. Manoj Kumar Balwant  Author Block 1 (Unit 1,2,3,4,5) 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad. 

Dr. JitendraPande    AuthorBlock 2, 3 (Unit 6,7,8,9,10,11) 

Associate Professor 

School of Computer Sciences & Information Technology   

Haldwani, Uttarakhand 263139 

Prof. Ashutosh Gupta                            Editor Block 1 (Unit 1, 2, 3, 4, 5) 

Director (In-Charge)                  

School of Computer & Information Sciences, UPRTOU Allahabad 

Prof. Abhay Saxena            Editor Block 2, 3 (Unit 6, 7, 8, 9, 10, 11) 

Professor and Head, Department of Computer Science  

Dev SanskritiVishwavidyalya, Hardwar, Uttrakhand 

Mr. Manoj Kumar Balwant                                                    Coordinator 

Assistant Professor (computer science),  

School of Sciences, UPRTOU Allahabad.  

 
 
 
 
 
 
 
 
 
 

 

 

©UPRTOU, Prayagraj - 2020 
ISBN :  
 

©All Rights are reserved. No part of this work may be reproduced in any form, by 
mimeograph or any other means, without permission in writing from the Uttar Pradesh 
Rajarshi Tondon Open University, Prayagraj. 
Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh Rajarshi 
Tandon Open University, 2020.  
Printed By : Chandrakala Universal Pvt. 42/7 Jawahar Lal Neharu Road, Prayagraj. MCA-105/150



BLOCK INTRODUCTION 

 
 

This block describes you different types of memory and the various peripheral 
devices of a computer system. The last unit presents you 8085 microprocessor 
along with few examples of instructions to understand addressing techniques. 

Unit-9 concentrates on memory. This unit discusses main memory, cache memory 
and virtual memory. It also describes various mapping techniques in detail. 

Unit-10 discusses different types of peripheral devices, Asynchronous Data 
Transfer and I/O cards of a personal computer. 

Unit-11 is the last unit of this course. This unit focuses on architecture of 8085 
Microprocessor. Instruction set of 8085 Microprocessor is covered in this unit. 

Each unit includes SUMMARY of the unit at the end of the Unit. You will get 
“CHECK YOUR PROGRESS” questions. These have been designed to make you 
self-check your progress of study. It will be helpful for you if you solve the 
problems put in these boxes immediately after you go through the sections of the 
units and then match your answers with “ANSWERS TO CHECK YOUR 
PROGRESS” given at the end of each unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 MCA-105/151



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
MCA-105/152



UNIT-9 MEMORY 

Structure 

9.1 Learning Objectives 

9.2 Introduction 

9.3 Main Memory 

9.3.1 RAM (Random access memory) 

9.3.2 ROM (Read Only Memory) 

9.3.3 Difference between RAM and ROM 

9.3.4 Memory Address Table 

9.4 Cache Memory 

9.4.1 Associative Mapping 

9.4.2 Direct Mapping 

9.4.3 Set-Associative Mapping 

9.4.4 Writing into Cache 

9.4.5 Page Replacement Algorithm 

9.5 Virtual memory 

9.4.1 Address Space and Memory Space 

9.4.2 Address mapping Using Pages 

9.4.3 Associative Memory Page Table 

9.5 Summary 

9.6 Answers to  Check Your Progress 

9.7 Terminal Questions 

9.1 LEARNING OBJECTIVES 

After reading this unit, you will be able to: 

 Explain memory hierarchy. 

 Define Main Memory. 

 Differentiate between RAM and ROM. MCA-105/153



 Define Cache memory. 

 Different mapping techniques in cache memory. 

 Define Virtual memory. 

 Different mapping techniques in virtual memory. 

9.2 INTRODUCTION 

A computer system have various type of memories like CPU registers, cache 
memory, main memory, secondary memory, etc. All the memories have same 
function i.e. to store the data, but they differ in their speed and cost. These 
memories are arranges in hierarchies. The access speed of the expensive memory 
is fast. By using a hierarchy of memories, each with different access speeds and 
storage capacities, a computer system can exhibit performance above what would 
be possible without a combination of the various types. The base types that 
normally constitute the hierarchical memory system include registers, cache, main 
memory, and secondary memory. 

 

 

 

Figure 30 : Memory Hierarchy 

In the top of this hierarchy, there are CPU registers. Their access speed is 
comparable to the speed of CPU. They are used by CPU for storing temporary 
data during calculations. At second level, a very high-speed memory, called a 
cache, is attached to the computer. It is used to store data temporarily that is very 
frequently used from memory locations may. It is connected to main memory, 
which is typically a medium-speed memory. This memory is complemented by a 
very large secondary memory, composed of a hard disk and various removable 
media. By using such a hierarchical scheme, one can improve the effective access 
speed of the memory, using only a small number of fast (and expensive) chips. 
This allows designers to create a computer with acceptable performance at a 
reasonable cost. MCA-105/154



9.3 MAIN MEMORY 

The main memory constitutes of RAM and ROM, is the central storage unit in 
a computer system. It is a temporary storage medium and the data is lost in case 
the power is lost( except in the case of ROM). RAM and ROM are available in a 
variety in size. If the memory needed for the computer is large than the 
capacity of one chip it is necessary to combine a number of chips to obtain the 
required memory size. It is called as main memory because it can be accessed 
directly by the CPU. Now let us discuss the different variants of main memory. 

9.3.1 RAM (RANDOM ACCESS MEMORY) 

It is read write memory. It is just like a page of a notebook, where you can write 
something to or read something from. All the programs are brought into RAM 
just before execution. The block diagram of a RAM can be represented as: 

 

Figure 31 : Block diagram of a RAM 

The functional table of the RAM is shown below: 

Table 6 : Functional Table of RAM 

 

There are many variants of RAM. Some of them are: 

 DRAM (Dynamic RAM): This is the most common type of computer 
memory. It is called dynamic because it must be refreshed, or re- 
energized, hundreds of times each second in order to retain the data in its 
words. Each bit in a word in DRAM is designed around a tiny capacitor 
that can store an electrical charge. A charged capacitor indicates a 1-bit. 
However, the capacitor loses its charge rapidly, which is why DRAM 
must be refreshed. MCA-105/155



 SRAM (Static RAM): This type of memory is about five times faster, twice 
as expensive, and twice as big as a DRAM. SRAM does not need to be 
refreshed like a DRAM. Each bit in SRAM is a flip-flop; a circuit that has 
two stable states. Once placed in a certain state, it stays in that state. Flip- 
flops are faster to read and write than the capacitors of the DRAM, but 
they consume more power. 

9.3.2 ROM (READ ONLY MEMORY) 

It is Nonvolatile memory i.e. the content remains in the memory even if the 
power is switched off. It stores mainly the monitor programs and BIOS (Basic 
Input Output System) Programs. 

 

 

Figure 32 : Bootstrap loader flow chart 

The information stored in ROM can only be read but cannot be modified. The 
contents of ROM can be programmed under special conditions. It is manufacturer 
programmed memory. The block diagram of a ROM can be represented as: 

 

Figure 33: Block Diagram of a ROM 

There are many variants of ROM available in the market. Some of them are: 
 PROM - Programmable Read Only Memory: this is write-once, read-many 

type of memory, which could be programmed after fabrication. The data is MCA-105/156



written to the memory electrically using some special circuitry. 
 EPROM – Erasable Programmable Read Only Memory: this type of ROM 

has multiple read and writes facility. The old data present in the ROM 
can be erased by exposing the ROM chip to UV radiation, after which 
new data can be written into the ROM. 

 EEPROM – Electrically Erasable Programmable Read Only Memory: This 
is the most expensive variant of the ROM and the per-bit storage cost of 
this variant is more as it is less dense than EPROM. It performs Byte- 
level writing, in which any part(s) of the memory can be written at any 
time. 

9.3.3 DIFFERENCE BETWEEN RAM AND ROM 

RAM ROM 

Read- Write Memory Read Only Memory 

Volatile memory i.e. the contents
of the RAM are lost when power
is turned off 

Non-volatile memory i.e. the contents of the
ROM are not lost when power is turned off 

Temporary storage medium Permanent storage medium 

The data can be read and written The data can only be read, but the data cannot
be written

The programs are brought into
RAM just before execution 

BIOS and monitor programs are stored 

9.3.4 MEMORY ADDRESS TABLE 

While designing a computer system, the designer of the system must foresee in 
advance, the total memory required by the system and the type of memory 
that will be required for that application. For example, for permanent programs, 
ROM is an ideal choice. In practical, both the types of memory is used in designing 
a system. Based on the type of application, the designer of the system must 
calculate the amount of memory required for the particular application and assign 
it to either RAM or ROM. The interconnection between memory and processor is 
then established from knowledge of the size of memory needed and the type of 
RAM and ROM chips available. The addressing of memory can be established 
by means of a table that specifies the memory address assigned to each chip. 
The table, called a memory address map, is a pictorial representation of assigned 
address space for each chip in the system. 

Now let us demonstrate the above situation using an example. Suppose a 
computer uses RAM chips of 128x8 and ROM chips of 512 x 8. The memory 
address map with the chips needed for constructing system memory with 512x8 
RAM and 512x8 ROM can be represented as in Table 7. We need 4 RAM and 1 
ROM memory address map is: MCA-105/157



Table 7 : Memory Address Table 

 

The above memory connection to the CPU can be designed as shown in 

Figure 34. 

 

Figure 34 : Memory Connections to the CPU 

9.3 CACHE MEMORY 

The CPU processing speed is very fast as compared to the time taken by a memory-
access. The speed of the CPU to perform an operation is limited by the memory-
access time. If, by any mechanism, the memory access can be limited, the speed 
of the CPU to perform an operation can be increased considerably. Moreover, 
it has been found after analyzing a large number of programs that the references 
to memory at any given interval of time tend to be confined within a few 
localized areas in memory. This phenomenon is known as the property of 
locality of reference. If the content of these “local” areas of the memory are 
brought closer to CPU i.e. placed in a memory whose access time is comparable 
to CPU speed, the CPU performance can increase to many folds. For this purpose, 
a fast small memory is referred to as a cache memory is employed. The cache 
memory access time is less than the access time of main memory by a factor of 5 MCA-105/158



to 10. The cache is the fastest component in the memory hierarchy and 
approaches the speed of CPU components. 

As the cache is the amongst the topmost element of the memory hierarchy, 
its cost per bit storage is also very high. Due to economics, it is only a small 
fraction of the size of main memory. Therefore, the data from the main memory 
must be exchanged frequently to keep the frequently and most accessed data in 
the cache. The transformation of data from main memory to cache memory is 
referred to as a mapping process. Three types of mapping procedures are of 
practical interest when considering the organization of cache memory: 

 Associative mapping. 
 Direct mapping. 
 Set-associative mapping. 

9.3.1 ASSOCIATIVE MAPPING 

This is one of the optimal cache organization which employees associative 
memory for searching, and thus making the mapping process very fast. The 
associated mapping can be explained using Figure 35. The associative memory 
stores both the address and content (data) of the memory word. This permits any 
location in cache to store any word from main memory. The diagram shows three 
words presently stored in the cache. The address value of15 bits is shown as a 
five-digit octal number and its corresponding 12-bit word is shown as a four-digit 
octal number. A CPU address of 15 bits is placed in the argument register and the 
associative memory is searched for a matching address. 

 

Figure 35 : Associative Mapping 

9.3.2 DIRECT MAPPING 

Direct mapping can be implemented using random access memory as shown below 
in Figure. Consider a main memory of size 32K X l2 and cache of size 512 X 12. 
15 bits address is required to access each location uniquely. The 15- bit address 

part is divided into two part. The 9 least significant bits (29=512) are required to 
address each location of cache of size 512 X 12 uniquly. Remaining 15-9= 6 bits 
are used for tag field. 

MCA-105/159



The Figure shows that main memory needs an address that includes both the tag 
and the index bits. 

 

Figure 48 : Direct Mapping 

The direct mapping cache organization uses the n-bits address to access the 
main memory and the k-bits index to access the cache. The internal organization 
of the words in the cache memory is as shown in Figure. Each word in cache 
consists of the data word and its associated tag. When a new word is first 
brought into the cache, the tag bits are stored alongside the data bits. When 
the CPU generates a memory request, the index field is used for the address to 
access the cache. The tag field of the CPU address is compared with the tag in 
the word read from the cache. If the two tags match, there is a hit and the desired 
data word is in the cache. If there is no match, there is a miss and the required 
word is read from main memory. It is then stored in the cache together with the 
new tag, replacing the previous value. 

The direct mapping technique has one disadvantage. The hit ratio can drop 
considerably if two or more words whose addresses have the same index but 
different tags are accessed repeatedly. However, this possibility is minimized by 
the fact that such words are relatively far apart in the address range (multiples of 
512 locations in this example.). 

 

 

 
MCA-105/160



 

 

Figure 49 : Direct Mapping Example 

9.3.3 SET-ASSOCIATIVE MAPPING 

To overcome the limitation of direct mapping i.e. each word of cache cannot 
store two or more words of memory under the same index address, a new mapping 
technique named as set-associative mapping is introduced. In this mapping 
technique, each word of cache can store two or more words of memory under the 
same index address. This can be explained using Figure 36. 

 

Figure 36 : Set-Associative Mapping 
MCA-105/161



Each data word is stored together with its tag and the number of tag-data items 
in one word of cache is said to form a set. Each index address refers to two data 
words and their associated tags. For a main memory of size 32K X l2 and cache 
memory of size 512 X 12, each tag requires six bits and each data word has 12 
bits, so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can 
accommodate 512 words. Thus the size of cache memory is512 X 36. It can 
accommodate 1024 words of main memory since each word of cache contains 
two data words. In general, a set-associative cache of set size k will accommodate 
k words of main memory in each word of cache. 

9.3.4 WRITING INTO CACHE 

The very idea of using cache memory is to limit memory-access so that the 
operation can be performed at a much faster speed. If there is a data read 
request, this problem of frequent data access could be easily resolved as the data 
is residing in the cache. But if there is a data write request, we cannot deny 
memory access.  The main memory is updated with every memory write operation; 
with cache memory being updated in parallel if it contains the word at the 
specified address. This is called the write-through method. This method has the 
advantage that main memory always contains the same data as the cache. This 
characteristic is important in systems with direct memory access transfers. It 
ensures that the data residing in main memory are valid at all times so that an I/O 
device communicating through DMA would receive the most recent updated data. 

However, there are some techniques by which the frequency at which the memory 
is accessed can be controlled through a procedure called the write-back method. 
In this method, only the cache location is updated during a write operation. The 
location is then marked by a flag so that later when the word is removed from 
the cache it is copied into main memory. The reason for the write- back method 
is that during the time a word resides in the cache, it may be updated several times; 
however, as long as the word remains in the cache, it does not matter whether 
the copy in main memory is out of date, since requests from the word are filled 
from the cache. 

9.3.5 PAGE REPLACEMENT ALGORITHM 

When a miss occurs in a Cache memory and the Cache is full, it is necessary to 
replace one word with a new word from main memory. The most common 
replacement algorithms are: 

 Random Replacement: Select the item randomly. 

 FIFO  (First-In  First-Out):  Select  the  item  has  been  in  the  Cache  the 
longest. 

 LRU (Least Recently Used): Select the item that has been least recent 
used by the CPU. 

 

 MCA-105/162



Check Your Progress 

1. The last on the hierarchy scale of memory devices is ……….…  

2. The effectiveness of the cache memory is based on the property of 
……… 

3. The correspondence between the main memory blocks and those in the 
cache is given by ………. . 

4. The algorithm to remove and place new contents into the cache is called 
……….. . 

5. The bit used to signify that the cache location is updated is ……….. 

6. In ………… protocol the information is directly written into main 
memory. 

7. The method of mapping the consecutive memory blocks to consecutive 
cache blocks is called ……….. . 

8. While using the direct mapping technique, in a 16 bit system the higher 
order 5 bits is used for ……… . 

9. The technique of searching for a block by going through all the tags is 
……….. search. 

10. A control bit called ……….. set-associative. bit has to be provided to 
each block in 

11. The bit used to indicate whether the block was recently used or not is 
………… bit. 

9.4 VIRTUAL MEMORY 

Initially the program resides in the secondary storage device like hard disk. 
Whenever the program is executed, a copy of that program is brought into main 
memory. When a program is large enough to fit into the main memory in one 
go, the operating system need to move program and data constantly between main 
memory and secondary storage. This gives an illusion to the programmer that 
has a very large main memory at his disposal. This concept is that automatically 
swaps programmed data blocks between main memory and secondary storage 
device are called virtual memory. 

This concept used in some large computer systems that permit the user to construct 
programs as though a large memory space were available, equal to the totality 
of auxiliary memory. Each address that is referenced by the CPU goes through 
an address mapping from the so called virtual address to a physical address in main 
memory. A virtual memory system provides a mechanism for translating 
program-generated addresses into correct main memory locations. This is done 
dynamically, while programs are being executed in the CPU. The translation or 
mapping is handled automatically by the hardware by means of a mapping table. MCA-105/163



9.4.1 ADDRESS SPACE AND MEMORY SPACE 

Let us start our discussion by defining address space and memory space. 

 Virtual Address : An address used by a programmer is called virtual 
address. 

 Address Space : Set of virtual address is known as address space. It is the 
set of addresses generated by programs as they reference instructions and 
data. 

 Physical Address : Address of main memory is known as Physical 
Address. 

 Physical Space : Set of main memory addresses is know as Physical Space. 
It is the memory space consists of the actual main memory locations 
directly addressable for processing. 

The virtual address is used by programmers who have the illusion that he have a 
very large main memory, equal to the size of secondary memory, at his disposal. 
Therefore, the computers with virtual memory have address space greater than 
memory space. This can be further clerified using an example. If we have an 
auxiliary memory of size 1024K and main memory of size 32K. 

Number of bits required to specify a virtual address uniquly will be 1024K= 1024 

X 1024= 210 X 210= 220 

Therefore, 20 bits are required to specify any location in virtual space uniquly. 
Simillerly, number of bits required to specify a physical address will be 32K=32 

X 1024 = 25 X 210= 215 

Therefore, 15 bits are required to specify any location in physical space uniquly. 
But the instruction code is designed with address feld of 20 bits and the main 
memory address is of 15 bits only. Hence, a mapping logic is required to map 
these 20 bits generated by the programmer to 15 bits main memory address. A 
table, know as mapping table, is used to map the virtual addresses to physical 
address. This mapping need to be stored in the computer for translation to take 
place. There are three alternatives to store this table, with each alternative having 
its own merits and demerits. 

(a) A separate memory is used to store the mapping table. This will require 
an additional memory as well as an additional access to this memory 
for address translation. This increases the cost as well as it decreses the 
performance as two accesses to memory is required. 

(b) The mapping table is stored in the main memory. This does not increases 
the cost but, descreses the performance because this alternative also 
requires two accesses to the main memory. 

(c) Associative memory is used for storing the mapping table. In this case, the MCA-105/164



speed of the operation increases considerable as the associative memory 
facilitates the search operation. However, associate memory is one of the 
costliest memory therefore, the cost also increases. 

The emorysy to  store Figure 37 below explains the address translation process in 
the virtual m stem  when  an  additional  memory  as  explained  in  (a)  is  employed 
apping table. 

 

Figure 37: Virtual memory address translation 

9.4.2 ADDRESS MAPPING USING PAGES 

To facilitates the storing and reference the data, the memory is further 
divided into small groups. In the case of address space, these equal-sized group 
of memory is known as pages. And in the case of memory, these equal size 
group of memory is known as block. The address translation process is greatly 
facilitated if the size of the block and the page is same. For example: Consider a 
computer with an address space of 8K and a memory space of 4K. If we divide 
the address space and memory space into blocks and pages with size 1K i.e., the 
block size and page size is same(1K). This is shown in the Figure 38 below: 

 

Figure 38 : Address and Memory Space 

Since the address space is 8K, therefore we have 8 pages of 1K each. Similarly, 
memory space is of 4K therefore, we have 4 blocks of 1K each. Since the page 
and block size is the same, with this arrangement, at any point of time, the 
memory space can accommodate 4 out of 8 pages in any of its 4 blocks. Now we MCA-105/165



will observe how the equal size of block and page facilitates the mapping 
process. The page and block size is 1K i.e. there are 1024 address locations 
ranging from 0 to 1023. Therefore, if we transfer any page from address space to 
memory space and we want to refer that page in the memory space, we need to 
map only the corresponding block number where the page is stored. 

The 20-bit virtual address is divided into two parts. The first part specifies the 
page number and the second part denotes the word within the page (0 to1023). 
If a page is transferred to memory space in the block, we need to map the page 
with the associated block. The word need not to be mapped since the block and 

the page size are equal. 4th word of the 2nd page, if transferred to the 3rd block 

in the memory space, it will be the same 4th word in the 3rd block. Mapping 

is required only for the 2nd page to 4th block i.e., the only mapping required is 
from a page number to a block number. This is explained in Figure 39 below: 

 

 

 

Figure 39 : Memory table in paged system 

In the above figure, an auxiliary memory of 8K and main memory of 4K is 
considered. The 13-bit virtual address generated by the programmer, is divided 
into two parts, page number and line number. Page number consists of 3 bits 
which are used to denote one of the 8 pages. 

The page table consists of eight locations ranging from 000 to 111. Since the 
memory space is of 4K therefore, only 4 pages can be accommodated by the 
main memory at any point of time. Therefore, the address of the block numbers 
corresponding to the pages that are transferred to those blocks are written in 
adjacent to the page numbers.  The table shows that pages 1, 2, 5, and 6 are now 
available in main memory in blocks 3, 0, 1, and 2, respectively. A presence bit in 
each location indicates whether the page has been transferred from auxiliary 
memory into main memory. Using this scheme, the virtual address can be used to 
generate the main memory address. 

MCA-105/166



9.4.3 ASSOCIATIVE MEMORY PAGE TABLE 

The above implementation is useful when the size of address space and the memory 
space is small. As the size increases, the random-access memory page table is 
inefficient with respect to storage utilization. In the example cited above, when 
the address space and the memory space is 8K and 4 K respectively, we have 
clearly seen that eight words of memory are needed, one for each page, but at 
least four words will always be marked empty because main memory cannot 
accommodate more than four blocks. But if we consider an address space of 
1024K words and memory space of 32K words with page and block size equal to 
1K, the number of pages is 1024 and the number of blocks 32. The capacity of 
the memory-page table must be 1024 words and only 32 locations may have a 
presence bit equal to 1. At any given time, at least 992 locations will be empty 
and not -in use, which is clearly a wastage of memory. 

The above problem could be overcome, if the associative memory is used to store 
the page table as shown in Figure 40. 

 

Figure 40 : Page table stored in associative memory 

In this case, the size of the memory is chosen according to the block size of the 
memory space, in contrast to the example in section 13.2.2, where the page table 
was selected according to the number of the pages in the address space. This will 
reduce the size of the page table considerably. 

In associative memory, each block number is stored along with the associated 
page in the address space. Since the associated memory facilitates the content 
search, the page field ineach word is compared with the page number in the 
virtual address. If a match occurs, the word is read from memory and its 
corresponding block number is extracted. 

Check Your Progress 

1. The techniques which move the program blocks to or from the physical 
memory is called as ………. . 

2. The binary address issued to data or instructions are called as ………… 
address. 

MCA-105/167



3. …………. is used to implement virtual memory organisation. 

4. …………. translates logical address into physical address. 

5. The virtual memory basically stores the next segment of data 

6. to be executed on the ………….. 

7. The asscociatively mapped virtual memory makes use of ………. 

9.5 SUMMARY 

1. A computer system have various type of memories like CPU registers, 
cache memory, main memory, secondary memory, etc. 

2. All the momories have same function i.e. to store the data, but they differ 
in their speed and cost. 

3. The base types that normally constitute the hierarchical memory system 
include registers, cache, main memory, and secondary memory. 

4. The main memory constitutes of RAM and ROM, is the central storage 
unit in a computer system. 

5. The CPU processing speed is very fast as compared to the time taken by a 
memory-access. 

6. It has been found after analyzing a large number of programs that the 
references to memory at any given interval of time tend to be confined 
within a few localized areas in memory. This phenomenon is known as the 
property of locality of reference. 

9.6 ANSWERS TO CHECK YOUR PROGRESS 

1. Secondary memory 

2. Locality of reference 

3. Mapping function 

4. Replacement algorithm 

5. Dirty bit 

6. Write through 

7. Direct 

8. Tag 

9. Associative 

10. Valid 

11. Dirty 
MCA-105/168



12. Virtual memory organization 

13. Logical 

14. Memory Management Unit(MMU) 

15. Memory Management Unit(MMU) 

16. Secondary storage 

17. TBL 

9.7 TERMINAL QUESTIONS 

1. What is principle of locality of reference? 

2. What is memory hierarchy? Why hierarchy concept is used in memory? 

3. What is an address space and the memory space? 

4. Explain hit ratio and miss ratio. 

5. Explain associative mapping in cache organization. 

6. Explain direct mapping in cache organization. 

7. Explain set-associative mapping in cache organization. 

8. How the cache is initialized? 

9. Explain the difference between the write-through and write-back method in 
cache. 

10. What is virtual memory? 

11. Explain virtual address mapping process using a diagram. 

(a) An address space is specified by 24 bits and the corresponding 
memory space by 16 bits. 

(b) How many words are there in the address space? 

(c) How many words are there in the memory space? 

(d) If a page consists of 2K words, how many pages and block are 
there in the system? 

 

 

 

 

 

 

 MCA-105/169



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
MCA-105/170



UNIT-10 I/O SYSTEM 

Structure 

10.1 Learning Objectives 

10.2 Introduction 

10.3 Peripheral Devices 

10.3.1 Keyboard 

10.3.2 Magnetic Tape 

10.3.3 Display System 

10.4 Input/Output Interface 

10.5 Asynchronous Data Transfer 

10.6 I/O cards in personal computers 

10.6.1 Graphic card 

10.6.2 Sound Card 

10.6.3 Network Interface Card (NIC) 

10.7 Summary 

10.8 Answers to Check Your Progress 

10.9 Terminal Questions 

10.1 LEARNING OBJECTIVES 

After reading this unit, you will be able to: 

 Define peripheral devices. 

 Understand the necessity of an interface. 

 Define synchronous data transfer. 

 Define asynchronous data transfer. 

 Identify various peripheral devices. 

10.2 INTRODUCTION 

A CPU is referred to as the brain of the computer. For any processing on data, 
the data need to be brought inside the CPU. The data is transferred inside the CPU MCA-105/171



via input devices and the processed information is displayed via output devices. 
These input/output devices like, printer, keyboard, mouse, monitor, etc. are 
collectively known as Peripheral devices. At times the information is stored in the 
secondary storage devices for future reference. Clearly, the CPU needs to 
communicate with memory and peripheral devices. Therefore, the CPU requires 
some path, known as bus, through which it can communicate to these devices. 
Figure 41 shows how CPU is connected to these devices. 

 

Figure 41 : Processor Interconnection with Peripheral Devices 

In the figure above, the peripheral devices are connected to CPU via interface. 
There are many differences in the implementation of CPU and the peripherals 
devices, some of the major differences are listed below: 

1. CPU is an electronic device whereas the peripheral devices are 
electromechanical (like printer, which have mechanical motors for page 
movement) and electromagnetic devices (like secondary memory). 
Therefore, the technology behind these two entities and the manner of 
operation is different. 

2. CPU transmits and processes the data at very fast rate whereas the data 
transfer rate of peripheral devices is comparatively very slow. Moreover, 
CPU transmits the data in parallel whereas peripheral devices usually 
transmit data serially. 

3. Data codes and formats in peripherals differ from the word format in the 
CPU and memory. 

To overcome these mismatches, a special hardware, known as interface is 
connected between CPU and these peripherals device to take care of all the above 
issues and to supervise and synchronize all input and output transfers. These 
components are called interface. 

CPU needs to communicate with memory and other peripherals devices. There 
are many peripheral devices attached to a computer, so to locate a specific device, 
an address need to be specified. Similarly, to read/write data from/to memory, an 
address need to be specified. Also, CPU need to specify the control information 
i.e., what operation is to be performed. Like in case of memory, CPU needs to 
specify whether it is a read operation or a write operation. After specifying the 
address and the control information, the data need to be transferred between CPU 
and peripheral devices/memory. For this purpose, bus is required. Bus is a MCA-105/172



conducting path that connects the CPU with other devices. Based on the purpose 
for which the bus is used, it is categorized into three categories. 

a. Address Bus: An address bus is used by the CPU to transmit the address of 
the peripherals/memory location. Since, it is used by CPU only, this bus is 
unidirectional. 

b. Control Bus: It is used by the CPU to control and regulate the various 
devices attached to it. This bus is bidirectional. 

c. Data Bus: It is used by CPU and the devices attached to the CPU to 
transfer data. This Bus is bidirectional. 

Apart from peripheral devices, the CPU is also connected to main memory and 
needs to frequently communicate with it. So bus is also required to connect the 
CPU with memory also. There are three possible architectures to connect the CPU 
with memory and peripheral devices. 

Different set of address, data and control buses are used to connect memory and 
other Peripheral Devices (PD), as shown in. Figure 42. In this case a separate 
Input/Output processor (IOP) is required to control the peripheral devices. The 
memory communicates with CPU and IOP using memory bus whereas the IOP 
communicates with its separate address data and control bus. 

 

 

 

Figure 42 : Interconnection of Peripheral Devices and Memory using different set 
of Buses. The second alternative is to connect CPU to memory and peripheral 
is using different set of control buses but data and address buses are common. 

 MCA-105/173



Figure 43 : Interconnection of CPU and Peripheral Devices using Common 
Address & Data Bus and different Control Buses. The same is shown in Figure 43. 
When CPU needs to communicate with memory or I/O device, it places the data 
in the data bus and specifies the address using address bus. The distinction 
between I/O device and memory is made via control lines. If CPU wants to 
interact with memory, it will use the control lines dedicated for memory. This 
will isolate all the I/O devices and the memory will clearly recognize that the 
address is directed to memory, not I/O devices. Similarly, if CPU wants to 
interact with I/O devices, it will use the control lines dedicated for I/O devices. 
Whenever the CPU communicates with memory, the I/O device remains isolated 
and when CPU communicates with I/O devices, memory becomes isolated. 
Therefore this configuration is also known as Isolated I/O method. 

The third alternative is to use all the busses i.e., data, addresses and control bus 
to connect the CPU with peripheral and memory. The same is shown below in 9 
Figure. 

In this case, some of the address range of the main memory is reserved to 
peripheral devices. This configuration is known as memory-mapped I/O. In this 
case, the CPU does not make any distinction between memory and peripheral 
devices and use the same set of read and write signals for both memory-read/ 
peripheral-read and memory write/peripheral-write operations as the interface of 
the peripheral devices are treated similar to memory address (refer Figure). Thus, 
this reduces the number of instructions in the instruction set of the computer as 
the same instructions can be used for memory as well as peripheral devices. The 
drawback of this scheme is, the memory cannot be fully utilized as some of the 
address from the address range of memory is reserved for peripheral address. 

 

Figure 58 : Interconnection of CPU and Peripheral Devices using Common 
Address, Data Bus Control Bus  Address 

 

 
MCA-105/174



 

000000 

 

000001 

 

000010 

 

. 

. 

. 

. 110111 

. 

. 

. 

. 

 

111100 

 

. 

. 

. 

. 

 

111111 

 

Figure 59 : Address Range in Memory-Mapped I/O Configuration 

10.3 PERIPHERAL DEVICES 

The CPU of a computer interacts with the outer world using Input/ Output devices, 
which are attached to the computer and are commonly known as peripheral 
devices. Some of the most commonly used peripherals devices are keyboard, 
printer, magnetic tapes, magnetic disks, display unit, etc. Now let us discuss 
some of these I/O and peripheral devices in detail. 

Instructions 

Data 

Address range reserved to Interface
address of peripheral devices 

MCA-105/175



10.2.1 KEYBOARD 

The CPU needs data for processing. Depending on the type of data to be 
processed, there are several ways in which the data can be transmitted to CPU. If 
the data is an image which is to be processed, then the preferred input devices 
would be camera, scanner, etc. If an audio is to be processed, then microphone 
would be an idle choice. However, in most of the cases the input data is text and a 
keyboard is used to input the alphanumeric information into computer. Figure 44 
below shows a normal keyboard of a computer. 

 

 

 

 

 

Figure 44: A keyboard 

There are many variant of a computer available in the market nowadays and 
most of them have between 80-110 keys which consists of set of alphabet 
keys, numeric keys, function keys, control keys, arrow keys and operator keys. 
The keys of the typewriter are laid out on the same pattern as typewriter. This 
pattern is know as QWERTY, which is the first six alphabets of the top row 
from left to right. The logic behind this arrangement was to avoid colliding and 
jamming the metal arms of the typewriter while typing. There are several other 
varients of the keyboards like ADCBS, XpeRT, QWERTZ, AZERTY etc. 

10.2.2 MAGNETIC TAPE 

After the data is processeds by the CPU, the information may be stored for future 
reuse. For this purpose, a computer have a variety of internal and external memory 
elements. Some of the popular options for external storage are magnetic disks 
and megnetic tapes. The per bit storage cost of magnetic disk is higher than the 
magnetic tape. But Megnetic disks have less access time (faster) as compared to 
magnetic tapes. Generally these are used for system backup. 

10.2.3 DISPLAY SYSTEM 

When the information is generated by the CPU, we need to confirm whether the 
information generated is correct and relevent. For this purpose, variety of display 
devices are used. For example, monitor, printer, plotter, etc. 

As discussed earlier, these peripheral devices are implemented using different 
technologies, varies in speed and operation. Therefore, an interface, which acts as a 
mediator is required between the CPU and the peripheral device to communicate 
effectively. Now let us discuss the operation and architecture of an interface unit 
in detail. 

MCA-105/176



10.3 INPUT/OUTPUT INTERFACE 

The importance of interface unit is already pointed out in the introduction section. 
Now let us discuss an example of an interface device to bring more clarity 
on the working of an interface unit. 

Figure-45 shown below explains the block diagram of interface unit. The right 
side of the Interface unit is connected to peripheral devices. It consists of four 
register namely, Port A register, Port B register, Control register and Status 
register. These registers can communicate with the peripheral device attached to 
it. Port A and Port B are bi-directional registers used for sending and receiving 
data. Control register is used by the CPU to send the control information to the 
peripheral device. Status register is used by the CPU to check the status of the 
device or the data transfer that is currently taking place. The left side of the I/O 
interface unit consists of timing and control unit which receives the signals from 
CPU. The timing and control unit consists of a chip select(CS) signal, which is 
used by the CPU to select the interface of a particular device. This chip select 
logic is generally connected to the address bus of the CPU via decoded. Whenever 
the CPU generate the address of the device, it place the address of that device in 
the address bus. The decoded attached to the Chip select logic continuously 
monitors the address line and as soon as the address in the address bus of the CPU 
matches the address of a device the decoder attached to the chip select logic 
enables CS signal and the interface is selected and available to the CPU for further 
orders. 

 

Figure 45 : Block diagram of an I/O interface 

The CPU communicates to the device via interface registers. If CPU wants to send 
the control information, it will use control register. Similarly, if the CPU wants 
to check the status of the device, it will check the bits of status register. In case, 
the data is to be transmitted/received, CPU uses port A and port B for this 
purpose. Now the question arises, how the CPU select a particular registers among 
the four registers. The Answer to this question is, CPU uses two register select 
lines, RS0 and RS1 to select between the four register. The Table 8 show how 
the register select lines are used to select a particular register. MCA-105/177



Table 8 : Chip and Register Selection Logic 

 

CS RS1 RS0 Selected Register 

0 X X None: as the chip is not selected 

1 0 0 Port A 

1 0 1 Port B 

1 1 0 Control Register 

1 1 1 Status Register 

When the chip select logic is 0, the data bus is in high-impedance state. When 
the address bus contains the address of a particular device, the decoder attached 
to the chip select logic of the device enables the CS logic and one of the register 
can be selected using the RS1 and RS0 line. There are two additional lines RD 
and WR to differentiate between the read and write operation. 

10.4 ASYNCHRONOUS DATA TRANSFER 

A  computer is  a  digital system which  is composed  of  variety  of sub- systems  
like  CPU, memory, I/O units. The operations of these units are synchronized by a 
clock pulses, which are generated by a common pulse generator. If the CPU and 
the interface unit shares a common clock then these two unit are said to be 
synchronous to each other. Whereas if the two units have its own private clock, 
the two units are said to be asynchronus to each other. Whenever two 
asynhcronous units communicate with each other, some control signals are 
needed to be sent along with the data signals. These control signals consists of 
the time information at which the data is being transmitted. One of the mechanism 
to achieve this is by sending a strobe pulse from the source, which consists of 
the information for the destination unit regarding the time of data transfer. 

 

Figure 46 : Source-initiated strobe for data transfer 

The strobe may be activated by either source or the destination unit. The Strobe 
signal is disabled indicates that the data bus does not contain valid data. New 
valid data will be available only after the strobe is enabled again. 

MCA-105/178



 

Figure 47: Destination-initiated strobe for data transfer 

But this technique have a serious drawback. The source does not have any 
mechanism to know whether the data sent to the destination is received by the 
destination unit, and if yes, when? To overcome this problem, another technique, 
known as handshaking is used. In this method, whenever a  source  need  to transmit 
data, it sends a strobe signal to the destination unit which is a signal for the 
destination unit that the data bus now contains valid data. After this, the data is 
placed in the data bus by the source. Once the data is received by the destination, 
the destination returns the acknowledgement signal which is a signal to the source 
that the destination unit has received data successfully. 

 

Figure 48: Source-initiated transfer using handshaking 

 

Figure 49: Destination-initiated transfer using handshaking 

10.5 I/O CARDS IN PERSONAL COMPUTERS 

Personal Computer is built on open architecture i.e. it can be expanded in future, 
if need arises. The expansion can be done using expansion slots, which are the 
sockets present in the motherboard of the computer wherein expansion cards, also 
known as interface cards, plug-in boards, or adapter cards can be plugged-in. 
Graphic card, sound card, network interface card etc are some of the popular I/O 
cards that are popularly known. These expansion cards are connected to the buses 
of the motherboard so that the device attached to the expansion card can MCA-105/179



communicate with the CPU. As we already know that the bus that connects the 
CPU with the main memory is known as system bus. The bus that connects the 
CPU with the expansion slot is known as expansion bus. Some of the well-known 
expansion buses are ISA (Industry Standard Architecture), PCI(Peripheral 
Component Interconnect), and AGP(Accelerated Graphic Port). Now we will 
discuss some of the popular I/O cards used in PC. 

10.5.1 GRAPHIC CARD 

Graphic card is already chipped in the motherboard of the personal computer. It 
is a card through with the monitor of the computer is connected. It is also known 
as video card or video adapter. Its function is to convert the signals received 
from the CPU into video signals or image so that it can be displayed in an output 
device like monitor. It comes in the variety of configuration like 8 MB, 16 MB or 
32 MB. 

 

Figure 50: Graphic card 

As shown in Figure 50, like CPU, the graphic cards have its own processor, 
BIOS, and RAM and are designed for performing complex mathematical and 
geometric calculation necessary for graphics rendering. 

10.5.2 SOUND CARD 

Like Graphic cards, the sound cards are also preinstalled  in  the motherboard of 
PC nowadays and it is used to transmit the digital sound through speakers and 
headphones. 

 

Figure 51: Sound card The basic function of a sound card is to convert digital 
data into analog information and analog information to digital data. This can 
be accomplished either by using separate A to D (Analog to Digital ) and D to 
A(Digital to Analog) convertor or a single CODEC(coder/decoder) chip which MCA-105/180



can perform both the functions. Music is produced by sound card using a 
process called wavetable synthesis. It is a method of creating music based on wave 
table, which is a collection of digitalized sound samples taken from recording of 
actual instruments. A sound card converts analog information it has received 
through one of its inputs into digital data by taking precise measurements of 
an analog sound wave at a rate of thousands of times per second. These sound 
samples are mixed and stored on the sound card. When the user wants to create 
sound/music from computer, the sound card reproduces analog sound waves from 
those digital measurements. 

10.5.3 NETWORK INTERFACE CARD (NIC) 

This card is also pre-installed now-a-days on the motherboard of a computer and 
its basic purpose is to provide a physical and logical link for a PC to a network. 

 

Figure 68 : NIC card 

Networks transmit data in a serial data format (1 bit at a time), and the data 
bus of the PC moves data in a parallel format (8 bits at a time). The NIC acts as 
an interface between the PC and the network and its primary task is to convert the 
signal from serial to parallel format or from parallel to serial format, depending 
on its direction. The NIC also formats the data as required by the network 
architecture. 

Check Your Progress 

1. The input/output devices like, printer, keyboard, mouse, monitor, etc. 
are collectively known as ………. devices. 

2. If the CPU and the interface unit shares a common clock then these two 
unit are said to be ……… to each other. 

3. ISA stands for ………. . 

4. PCI stands for ………. . 

5. AGP stands for………. . 

6. CODEC stands for………. . 

7. NIC stands for………. . 

10.6 SUMMARY 

1. A CPU is referred to as the brain of the computer. For any processing on MCA-105/181



data, the data need to be brought inside the CPU. 

2. The data is transferred inside the CPU via input devices and the processed 
information is displayed via output devices. 

3. CPU needs to communicate with memory and other peripherals devices. 
There are many peripheral devices attached to a computer, so to locate a 
specific device, an address need to be specified. 

4. Apart from peripheral devices, the CPU is also connected to main memory 
and needs to frequently communicate with it. 

5. In this case, some of the address range of the main memory is reserved to 
peripheral devices. This configuration is known as memory-mapped I/O. 

6. The CPU of a computer interacts with the outer world using Input/ Output 
devices, which are attached to the computer and are commonly known as 
peripheral devices. 

7. Some of the most commonly used peripherals devices are keyboard, 
printer, magnetic tapes, magnetic disks, display unit, etc. 

8. A computer is a digital system which is composed of variety of sub- 
systems like CPU, memory, I/O units. The operations of these units are 
synchronized by a clock pulses, which are generated by a common pulse 
generator. 

10.7 ANSWERS TO CHECK YOUR PROGRESS 

1. Peripheral 

2. Synchronous 

3. Industry Standard Architecture 

4. Peripheral Component Interconnect 

5. Accelerated Graphic Port 

6. coder/decoder 

7. Network Interface Card 

10.8 TERMINAL QUESTIONS 

1. What are the three possible architecture to connect the CPU with memory 
and peripheral devices? Explain in details using diagram. 

2. What is wavetable synthesis? 

3. What is isolated I/O method? 

4. What is memory mapped method? 

5. How isolated I/O method is different from memory mapped method. 
MCA-105/182



6. What is the purpose of using interface unit? 

7. Explain the working of I/O interface using a diagram. 

8. Discuss some of the popularly used I/O cards in personal computers. 

9. What is asynchronous data transfer? 

10. What is Handshaking? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
MCA-105/183



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
MCA-105/184



UNIT-11 INTRODUCTION TO 8085 
MICROPROCESSOR AND 
MICROCONTROLLERS  

Structure 

11.1 Learning Objectives 

11.2 Introduction 

11.3 Architecture of Microprocessor 

11.3.1 8085 Microprocessor 

11.3.2 The Internal Architecture of 8085 

11.3. Instruction Set of 8085 Microprocessor 

11.3.1 Data Transfer Group 

11.3.2 Arithmetic Group 

11.3.3 Logical Group 

11.3.4 Branch Control Group 

11.3.5 I/O and Machine Control Group 

11.4 Summary 

11.5 Answers to Check Your Progress 

11.6 Terminal Questions 

11.1 LEARNING OBJECTIVES 

After reading this unit, you will be able to: 

 Define a Microprocessor. 
 Explain the pin diagram of a 8085 microprocessor. 
 Understand the instruction set of 8085 microprocessor. 

11.2 INTRODUCTION 

A microprocessor (µp) is an electronic device that is used by the computer to its 
processing. The term CPU and microprocessor are often used interchangeably, 
but there is a difference. The CPU of a computer consists of Arithmetic Logic 
Unit (ALU) and Control Unit (CU). In the earlier days, when the chip fabrication 
technology was in its initial phase, it was not possible to integrate the ALU and MCA-105/185



CU into the same chip. The ALU and CU were connected to each other and the 
combined unit was known as CPU. With the advent of LSI, VLSI and VVLSI 
technologies, it was possible to fabricate both ALU and CU into the same chip. 
When the ALU and CU were fabricating into the same chip, it is known as a 
microprocessor. So a microprocessor, similar to a CPU, performs the basic 
arithmetical, logical, and input/output operations of the system. Unlike, PC which 
is designed to be a general purpose machine, a microprocessor can be designed 
for both general purpose and specific purpose. Almost all of your automatic home 
appliances like an automatic washing machine, dishwasher, digital set-top box, 
music system, air conditioners, etc. Even it finds place in your car, motorcycle and 
scooter. This small magical device has affected our day-to- day life to such an 
extent that today we cannot think of our life without it. Be it our public 
transportation infrastructure, where it find place in traffic lights, railways, 
transport and fright management. Medical sciences’ sophisticated equipments 
and automatic patient monitoring systems are designed using microprocessors. 
Most of the communication and handheld devices like smartphones, GPS 
systems, etc. have a microprocessor inside it. Now in the next section, we will 
take a closer look at the working and functionality of a microprocessor. 

11.3 ARCHITECTURE OF MICROPROCESSOR 

A microprocessor is a programmable device which can perform different sets of 
operations on the data it receives as an input depending on the sequence of 
instructions supplied in the given program. 

The processing power of a microprocessor depends on its instruction set. Like a 
CPU, a microprocessor can perform only those operations for which it is 
designed. The collection of all such instructions for which the operations are 
defined is called an instruction set. Larger the number of instructions in the 
instruction set, better is the execution power of a microprocessor.  A 
microprocessor primarily consists of three units: 

 The Arithmetic/Logic Unit (ALU) 
 The Control Unit. 
 Internal Register Set 

Depending on the width of the data bus of a microprocessor, it can be 
categorized into 8-bit, 16-bit, 32-bit or 64-bit microprocessor. The width of the 
data bus signifies the number of data bits a microprocessor can process 
simultaneously. Our aim here is to introduce with the basics of microprocessor 
and its internal working, therefore we will discuss a simple 8-bit microprocessor. 

There are variety of microprocessors available in the market manufactured by 
different companies like from Motorola 6800, ZiLOG Z80 and Intel 8085. We 
will discuss the most popular one i.e., Intel 8085 in detail. 

11.2.1 8085 MICROPROCESSOR 

Intel launched its first 8-bit microprocessor in 1972 and names it Intel 8008. 
Soon after, it improved version, Intel 8080 was launched. Finally, Intel MCA-105/186



launched 8085 in 1977, which was much powerful then its two earlier versions. 
Intel 8085 is a 8-bit general purpose microprocessor capable of addressing 64K 
memory. It has 40 pins and runs on +5 V power supply. It operates with 3 MHz 
clock. In 8085, the 8-bit data bus was multiplexed with the lower part of 16-bit 
address bus so that the number of pins are limited to 40. It has a 16-bit address 

bus, hence it is capable of addressing 216= 64 KB memory. 

It consists of: 

 Control unit : control microprocessor operations. 

 ALU : performs data processing function. 

 Registers : provide storage internal to CPU. 

 Interrupts 

 Internal data bus 

The pin diagram of Intel 8085 is shown in fig. 97. The pins on the chip can be 
grouped into 6 groups: 

 Address Bus. 

 Data Bus. 

 Control and Status Signals. 

 Power supply and frequency. 

 Externally Initiated Signals. 

 Serial I/O ports. 

 
 

Figure 69: Pin Diagram of Intel 80853 MCA-105/187



1. Address and Data Signals: The address bus has 8 signal lines A8 – A15 
which are unidirectional. The other 8 address bits are multiplexed (time 
shared) with the 8 data bits. The bits AD0 – AD7 are bi-directional and 
serve as A0 – A7 and D0 – D7 at the same time. During the execution of 
the instruction, these lines carry the address bits during the early part, then 
during the late parts of the execution, they carry the 8 data bits. In order to 
separate the address from the data, we use a latch to save the value before 
the function of the bits changes. 

2. Control and Status Signals: There are 4 main control and status signals. 
These are: 

a. ALE(pin 30): Address Latch Enable. This signal is a pulse that 
become 1 when the AD0 – AD7 lines have an address on them. It 
becomes 0 after that. This signal can be used to enable a latch to 
save the address bits from the AD lines. 

b. RD(pin 32): Read (Active low). WR(pin 31): Write(Active low). 

c. IO/M(pin 34): This signal specifies whether the operation is a 
memory operation (IO/M=0) or an I/O operation (IO/M=1). 

d. S1(pin 33) and S0(pin 29) : Status signals to specify the kind of 
operation being performed. Usually not used in small systems. 

 

Figure 52: Multiplexed Data and Address Bus in Intel 80854 

 

 

3 Image adopted from:  

https://commons.wikimedia.org/wiki/File:Anschlussbelegung_8085.gif MCA-105/188



 

3. Power Supply and Frequency: There are 3 important pins in the frequency 
control group. 

a. X1(pin 1) and X2(pin 2) are the inputs from the crystal or clock 
generating circuit. The frequency is internally divided by 2. So, to 
run the microprocessor at 3 MHz, a clock running at 6 MHz should 
be connected to the X1 and X2 pins. 

b. CLK (OUT)(Pin 37): An output clock pin to drive the clock of the 
rest of the system. 

4. Interrupts and Externally initiated signals: 

a. INTR(pin 10): Input Request. This signal is used as a general- 
purpose interrupt. 

b. INTA(Active Low)(pin 11): Interrupt Acknowledge. This signal is 
used to acknowledge an interrupt. 

��RST7.5(pin7)�� 

Restart Interrupts. These are vectored interrupts 

��RST6.5�pin8��� 

c. RST5.5(pin9) that transfer the control of the program to specified memory 
locations. 

d. TRAP(pin 6): This is a non-maskable interrupt and has a highest priority. 

e. HOLD(pin 39): Whenever a peripheral device, such as DMA want the 
hold of the address and the data bus, this signal is initiated by the 
peripheral device. 

f. HLDA(pin 38): Hold Acknowledge. This signal acknowledges the HOLD 
request. 

g. READY(pin 35): This signal is used to delay the microprocessor Read 
or Write cycles until a slow peripheral device is ready to send or receive 
data. When this signal is low, the microprocessor waits for a integral 
number of clock cycles until it goes high. 

There are two kinds of RESET signals in 8085: 

h. RESET IN(pin 36): an active low input signal, Program Counter (PC) 
will be set to 0 and thus MPU will reset. 

i. RESET OUT(pin 3): an output reset signal to indicate that the μp was 
reset (i.e. RESET IN=0). It also used to reset  external devices. 

 

 

4 Image adopted from: 
https://commons.wikimedia.org/w/index.php?title=File:8085_microprocessor
_Presentation.pdf&p age=2 MCA-105/189



5. Serial I/O Ports: 

a. SID (Input)(pin5): Serial input data line The data on this line is 
loaded into accumulator bit 7 whenever a RIM instruction is 
executed. 

b. SOD (output)(pin 4): Serial output data line. The output SOD is set 
or reset as specified by the SIM instruction. 

There are two more pins left: 

a. Vcc(pin 40): +5 volt supply. 

b. Vss(pin 20): Ground Reference. 

The signal groups of Intel 8085 microprocessor is shown in Figure 53. 

 

Figure 53: Signal Groups of Intel 8085 

11.2.2 THE INTERNAL ARCHITECTURE OF 8085 

Now let discuss the internal architecture of the 8085 microprocessor in detail. 

Figure 54 explains the internal architecture of the 8085. 

 

Figure 54 : Internal Architecture of 8085 Microprocessor 
MCA-105/190



The ALU consists of arithmetic and logic circuits to perform arithmetic and logic 
operations. It also consists of register set to perform these operations on the data. 
The details of these registers are discussed below. 

The 8085 microprocessor contains seven 8-bit register which are directly 
accessible to the programmer. These registers are named as A, B, C, D, E, H, and 
L. 

 

Figure 55 : Register Set of 8085 Microprocessor 

A is the 8-bit accumulator where all the operation on data takes place. The other 
six registers can be used as 8- bit register or a 16-bit register pair to manipulate 16-
bit data. The register pair is as follows: BC, DE, and HL. In case a operation on a 
16-bit data is to be performed, the HL pair can be used as a 16-bit accumulator. 
Apart from that, it also consists of two 16-bit registers. PC, program counter, 
controls the sequencing of the execution of instructions and is used to store the 
address of the next instruction to be executed. And SP, stack pointer, is used to 
point the address of the top-most element of the stack. The register set is shown 
in Figure 55. 

It register set also contains 8-bit status register. Each bit of this status register 
contains a flag, which is a 1–bit flip-flop. These status flags are affected by the 
arithmetic and logic operations before or after the operation. There are six status 
flags in the status register and these are S (sign flag), Z (zero flag), AC 
(auxiliary carry flag), P (parity flag) & CY (carry flag). 

 

D7 D6 D5 D4 D3 D2 D1 D0 

S Z  AC  P  CY 

Figure 56: Status Flags The use of these flags is explained below: 

A Status Register

B C 

D E 

H L 

Program Counter 

Stack Pointer 

MCA-105/191



a. S(sign flag): The sign flag is set if bit D7 of the accumulator is set after an 
arithmetic or logic operation. 

b. Z(zero flag): Set if the result of the ALU operation is 0. Otherwise is reset. 
This flag is affected by operations on the accumulator as well as other 
registers. (DCR B). 

c. AC(Auxiliary Carry): This flag is set when a carry is generated from bit 
D3 and passed to D4 . This flag is used only internally for BCD 
operations. 

d. P(Parity flag): After an ALU operation, if the result has an even # of 1s, 
the p-flag is set. Otherwise it is cleared. So, the flag  can  be  used  to indicate 
even parity. 

e. CY(carry flag): This flag is set when a carry is generated from bit D7 after 
an unsigned operation. 

f. OV(Overflow flag): This flag is set when an overflow  occurs  after  a 
signed operation. 

Whenever an Instruction from the memory is fetched, the instruction is placed 
inside a 8-bit register, known as Instruction Register (IR). A decoder is attached to 
the Instruction Register which enables the CPU to decode the instruction and take 
appropriate action. Suppose, after decoding the instruction, it was found that it 
was an addition instruction, the CPU will generate necessary control signals to 
initialize the adder and fetch the operand either from the memory or the input 
device. 

The 8085 microprocessor has 8-bit data bus and 16-bit address bus. The address 
bus has 8 signal lines A8 –A15 which are unidirectional. The other lower order 8 
address bits are multiplexed (time-shared) with the 8 data bits. So, the bits AD0 – 
AD7 are bi-directional and serve as A0–A7and D0 –D7at the same time. During 
the execution of the instruction, these lines carry the address bits during the early 
part, and then during the late parts of the execution, they carry the 8 data bits. In 
order to separate the address from the data, we can use a latch to save the value 
before the function of the bits changes. 

Now let us discuss how the demultiplexing of AD7-AD0 is done to serve the dual 
purpose i.e. the same line are used as address lines and data lines. The high order 
bits of the address remain on the bus for three clock periods. However, the low 
order bits remain for only one clock period and they would be lost if they are not 
saved externally. Therefore, an external latch is used to save the value of AD7– 
AD0 when the lines are carrying the address bits. Address Latch Enable(ALE) 
signal is used to enable the latch. Whenever AD7- AD0 is to be used for the data 
bus, the ALE goes low. 

Direct Memory Access (DMA) technique is used when a fast speed I/O device 
want to transmit the data to memory at high speed and the speed of CPU limits the 
speed of transfer. In this case, the CPU is bypassed and the control of the data and 
address buses is given to the transmitting device. Once the transfer is complete, 
the control of Data and Address bus is relinquished to the CPU. To facilitate 
DMA transfer, HOLD and HLDA signals are used. Whenever an I/O device request MCA-105/192



for DMA transfer, it enables the HOLD line. As soon as the HOLD line is enabled, 
the microprocessor data and the address bus of the CPU are placed in the high 
impedance state and the control of the buses is transferred to I/O device. After 
this, the HLDA signal is initialized by the CPU which is a signal for the I/O device 
to start the transfer of data. Once the data transfer is complete, the HOLD signal 
is disabled and the control of buses is returned to CPU. 

An Interrupt is a mechanism by which an I/O or an instruction can suspend the 
normal execution of processor and get itself serviced. 8085 microprocessor has 
few maskable and non-maskable Interrupts. 

There are four hardware interrupts in 8085: 

 TRAP 

 RST 7.5 

 RST6.5 

 RST5.5 

Interrupts are generally used to stop the normal execution sequence of the 
instructions by the CPU and address a higher priority task first. This usually 
happens when the peripheral device want to transmit data to either to memory or 
CPU. The device which seeks CPU attention sends an interrupt signal INTR to 
CPU. The CPU holds the operation which it was performing, save the 
intermediate data and the registers value so that it could resume the task later. The 
CPU sends the interrupt acknowledgment INTA to the device, which is a signal 
that the CPU is now ready to serve the request of the device which initiated the 
interrupt and the vectored address, the address of the Interrupt Service Routine to 
handle the interrupts is stored in the Program Counter(PC). After this the CPU 
executes the Interrupt Service Routine(ISR), which is a small program/routine to 
service the corresponding interrupting source. The interrupts  are  of  two 
categories, maskable and non-maskable. 

a. Maskable interrupts: these are the class of interrupts which a CPU can 
ignore if it is servicing an important task. TRAP is an example of a non- 
maskable interrupt. 

b. Non-maskable interrupts: these are the class of interrupts which the CPU 
cannot afford to ignore and has to be serviced immediately, come what 
may. Typically this category of interrupts is used for critical condition. 
RST 7.5, RST 6.5 and RST 5.5 are the examples of maskable interrupt. 

The priority order of the interrupts is as follows: TRAP > RST 7.5 > RST 6.5> 
RST5.5> INTR 

11.3 INSTRUCTION SET OF 8085 MICROPROCESSOR  

A computer can perform all the operations for which it is designed i.e. perform 
operations that are defined in its instruction set. To perform a specific task, a 
program, which is a sequence of instructions, is written and through this sequence 
of instructions we instruct the computer to perform what operation is to be MCA-105/193



performed, on what data and in which sequence. The programmer can write a 
program in assembly language using these instructions. These instructions have 
been classified into the following groups: 

 Data Transfer Group 

 Arithmetic Group 

 Logical Group 

 Branch Control Group 

 I/O and Machine Control Group 

11.3.1 DATA TRANSFER GROUP 

This category of instructions are used to transfer the content of source register 
to another destination register and after the transfer of  the  data,  the content of 
the source remains unaltered. It is similar to copy command, where the selected 
contents from the source are transferred to destination without the affecting of 
content at the source. The example of this category instructions are MOV, MVI, 
LDA, LXI, STA, etc. 

Example #1: MOV R1, R2 

This instruction moves/copies the content of the source register R2 to Destination 
register R1. 

MOV [Destination Register], [Source Register] 

Suppose before the execution of the above instruction, the content of register R1 
and R2 are 20 and 30 respectively. 

Destination Register R1 Source Register R2 
 

 
 

After the execution of the statement MOV R1, R2, the content of R1= 30 and 
R2=30 i.e. the content of the source register remains same even after the 
execution of the instruction. Only the content of destination register is altered. 

Destination Register R1 Source Register R2 
 

 
 

Example #2: LDA 1000 

This instruction load the content of the memory location, as specified in the 
instruction to the accumulator register and the after the execution of the 

 
20 

 
30 

 
30 

 
30 

MCA-105/194



instruction, the content of the memory location remains intact. 

 

LDA [Address of Memory Location] 

In the above example, after the LDA 1000 instruction is executed, the content of 
location 1000 is transferred to Accumulator register and after the transfer; the 
content at memory location remains unchanged. 

The list of instructions which falls in this category is: 

 MOV r1, r2 (Move Data; Move the content of the one register to another). 
[r1] ← [r2] 

 MOV r, m (Move the content of memory register). r ← [M] 

 MOV M, r. (Move the content of register to memory). M ← [r] 

 MVI r, data. (Move immediate data to register). [r] ← data. 

 MVI M, data. (Move immediate data to memory). M ← data. 

 LXI rp, data 16. (Load register pair immediate). [rp] ← data 16 bits, [rh] 
← 8 LSBs of data. 

 LDA addr. (Load Accumulator direct). [A] ← [addr]. 

 STA addr. (Store accumulator direct). [addr] ← [A]. 

 LHLD addr. (Load H-L pair direct). [L] ← [addr], [H] ← [addr+1]. 

 SHLD addr. (Store H-L pair direct) [addr] ← [L], [addr+1] ← [H]. 

 LDAX rp. (LOAD accumulator indirect) [A] ← [[rp]] 

 STAX rp. (Store accumulator indirect) [[rp]] ← [A]. 

 XCHG. (Exchange the contents of H-L with D-E pair) [H-L] ↔  [D-E]. 

11.3.2 ARITHMETIC GROUP 

All the arithmetic operations like addition, subtraction; increment or decrement 
comes under this category. 

MCA-105/195



Example #1: 

DAA (Decimal adjust accumulator)- The instruction DAA is used in the program 
after ADD, ADI, ACI, ADC, etc instructions. After the execution of ADD, ADC, 
etc instructions the result is in hexadecimal and it is placed in the accumulator. 
The DAA instruction operates on this result and gives the final  result in the 
decimal system. It uses carry and auxiliary carry for decimal adjustment. 6 is 
added to 4 LSBs of the content of the accumulator if their value lies in between A 
and F or the AC flag is set to 1. Similarly, 6 is also added to 4 MSBs of the 
content of the accumulator if their value lies in between A and F or the CS flag is 
set to 1. All status flags are affected. When DAA is used data should be in 
decimal numbers. 

The example of this category instructions are: 

 ADD r. (Add register to accumulator) [A] ← [A] + [r]. 

 ADD M. (Add memory to accumulator) [A] ← [A] + [[H-L]]. 

 ADC r. (Add register with carry to accumulator). [A] ← [A] + [r] + [CS]. 

 ADC M. (Add memory with carry to accumulator) [A] ← [A] + [[H-L]] 
[CS]. 

 ADI data (Add immediate data to accumulator) [A] ← [A] + data. 

 ACI data (Add with carry immediate data to accumulator) [A] ← [A] + 
data + [CS]. 

 DAD rp. (Add register paid to H-L pair) [H-L] ← [H-L] + [rp]. 

 SUB r. (Subtract register from accumulator) [A] ← [A] – [r]. 

 SUB M. (Subtract memory from accumulator) [A] ← [A] – [[H-L]]. 

 SBB r. (Subtract register from accumulator with borrow) [A] ← [A] – [r] 
– [CS]. 

 SBB M. (Subtract memory from accumulator with borrow) [A] ← [A] – 
[[H-L]] – [CS]. 

 SUI data. (Subtract immediate data from accumulator) [A] ← [A] – data. 

 SBI data. (Subtract immediate data from accumulator with borrow). [A] ← 
[A] – data – [CS]. 

 INR r (Increment register content) [r] ← [r] +1. 

 INR M. (Increment memory content) [[H-L]] ← [[H-L]] + 1. 

 DCR r. (Decrement register content). [r] ← [r] – 1. 

 DCR M. (Decrement memory content) [[H-L]] ← [[H-L]] – 1. 

 INX rp. (Increment register pair) [rp] ← [rp] – 1. 

 DCX rp (Decrement register pair) [rp] ← [rp] -1. 
MCA-105/196



11.3.3 LOGICAL GROUP 

All the instructions related to logical operations like AND, OR, compare, etc. in 
data are grouped under logic group instructions. 

The example of this category instructions are: 

 ANA r. (AND register with accumulator) [A] ← [A] ^ [r]. 

 ANA M. (AND memory with accumulator). [A] ← [A] ^ [[H-L]]. 

 ANI data. (AND immediate data with accumulator) [A] ← [A] ^ data. 

 ORA r. (OR register with accumulator) [A] ← [A] v [r]. 

 ORA M. (OR memory with accumulator) [A] ← [A] v [[H-L]] 

 ORI data. (OR immediate data with accumulator) [A] ← [A] v data. 

 XRA r. (EXCLUSIVE – OR register with accumulator) [A] ← [A] v   [r] 

 XRA M. (EXCLUSIVE-OR memory with accumulator) [A] ← [A] v  [[H-
L]] 

 XRI data. (EXCLUSIVE-OR immediate data with accumulator) [A] ← [A] 

 CMA. (Complement the accumulator) [A] ← [A] 

 CMC. (Complement the carry status) [CS] ← [CS] 

 STC. (Set carry status) [CS] ← 1. 

 CMP r. (Compare register with accumulator) [A] – [r] 

 CMP M. (Compare memory with accumulator) [A] – [[H-L]] 

 CPI data. (Compare immediate data with accumulator) [A] – data. 

The 2nd byte of the instruction is data, and it is  subtracted  from  the content 
of the accumulator. The status flags are set according to the result of 
subtraction. But the result is discarded. The content of the accumulator 
remains unchanged. 

 RLC (Rotate accumulator left) [An+1] ← [An], [A0] ← [A7],[CS] ← [A7]. 

The content of the accumulator is rotated left by one bit. The seventh bit 
of the accumulator is moved to carry bit as well as to the zero bit of the 
accumulator. Only CS flag is affected. 

 RRC. (Rotate accumulator right) [A7] ← [A0], [CS] ← [A0], [An] ← 
[An+1]. 

MCA-105/197



The content of the accumulator is rotated right by one bit. The zero bit of 
the accumulator is moved to the seventh bit as well as to carry bit. Only 
CS flag is affected. 

 RAL. (Rotate accumulator left through carry) [An+1] ← [An], [CS] ← 
[A7], [A0] ← [CS]. 

 RAR. (Rotate accumulator right through carry) [An] ← [An+1], [CS] ← 
[A0], [A7] ← [CS] 

11.3.4 BRANCH CONTROL GROUP 

Normally the order of execution of the instructions of the program is sequential. 
Often we encounter a situation in real world programming where we want the 
control of the program jump to some location as specified by the instruction. For 
which, a condition is tested. If the condition holds true, the instruction at the 
location specified in the instruction is executed, else the instruction in the next 
sequential location is executed. This is known as a conditional jump. At times, 
we encounter a situation where we want to execute an instruction which is not 
located at the next sequential location at any cost and we don’t want any condition 
to hold true for that. This is an unconditional jump. And such situation arises when 
the CPU is executing a program and an urgent operating system related subroutine 
needs to be executed, or an interrupt occurs. Branch control group contains such 
instructions which are used for conditional and unconditional jump, subroutine 
call and return, and restart purposes. 

This group includes the instructions. Examples are: 

 JMP addr (label)- (Unconditional jump: jump to the instruction specified 
by the address). [PC] ←Label. 

 Conditional Jump addr (label)- After the execution of the conditional jump 
instruction the program jumps to the instruction specified by the address 
(label) if the specified condition is fulfilled. The program proceeds further 
in the normal sequence if the specified condition is not fulfilled. If the 
condition is true and program jumps to the specified label, the execution 
of a conditional jump takes 3 machine cycles: 10 states. If condition is not 
true, only 2 machine cycles; 7 states are required for the execution of the 
instruction. 

 JZ addr (label)- (Jump if the result is zero) 

 JNZ addr (label)- (Jump if the result is not zero) 

 JC addr (label)- (Jump if there is a carry) 

 JNC addr (label)- (Jump if there is no carry) 

 JP addr (label)- (Jump if the result is plus) 

 JM addr (label)- (Jump if the result is minus) MCA-105/198



 JPE addr (label)- (Jump if even parity) 

 JPO addr (label)- (Jump if odd parity) 

 CALL  addr  (label)-  (Unconditional  CALL:  call  the  subroutine 
identified by the operand) 

 CALL instruction is used to call a subroutine- Before the control is 
transferred to the subroutine, the address of the next instruction of the 
main program is saved in the stack. The content of the stack pointer is 
decremented by two to indicate the new stack top. Then the program jumps 
to subroutine starting at address specified by the label. 

 RET (Return from subroutine) 

 RST n (Restart)- Restart is a one-word CALL instruction. The content of 
the program counter is saved in the stack. The program jumps to the 
instruction starting at restart location. 

11.3.5 I/O AND MACHINE CONTROL GROUP 

This group includes the instructions for input/output ports, stack and machine 
control. 

The example of this category instructions are: 

 IN port-address. (Input to accumulator from I/O port) [A] ← [Port] 

 OUT port-address (Output from accumulator to I/O port) [Port] ← [A] 

 PUSH rp (Push the content of register pair to stack) 

 PUSH PSW (PUSH Processor Status Word) 

 POP rp (Pop the content of register pair, which was saved, from the stack) 

 POP PSW (Pop Processor Status Word) 

 HLT (Halt) 

 XTHL (Exchange stack-top with H-L) 

 SPHL (Move the contents of H-L pair to stack pointer) 

 EI (Enable Interrupts) 

 DI (Disable Interrupts) 

 SIM (Set Interrupt Masks) 

 RIM (Read Interrupt Masks) 

 NOP (No Operation) 
MCA-105/199



Check Your Progress 

1. The ALU and CU were connected to each other and the combined unit 
was known as ……….. 

2. Depending on the ……….. of the data bus of a microprocessor, it can be 
categorized into 8-bit, 16-bit, 32-bit or 64-bit microprocessor. 

3. 8085 operates with ……….. MHz clock. 

4. ALE stands for ………… 

5. Whenever an Instruction from the memory is fetched, the instruction is 
placed inside a 8-bit register, known as ………….. 

6. The 8085 microprocessor has 8-bit data bus and  ……… bit address bus.

11.4 MICROCONTROLLER 

Microcontroller is a small computer fabricated on a single IC which consists of a 
processor, RAM, ROM and I/O pins. The microcontroller is used in an embedded 
system and it is a key component. A microcontroller is specially designed for 
a specific task which runs one specific program. The program is stored on 
ROM which cannot be changed. A microcontroller has an input device and often 
has a LCD display for output. For example, the microcontroller inside a tv system 
takes input from remote control and displays output in tv screen. 

 

Figure-75: A microcontroller chip. 

Difference between microprocessor and microcontroller : 

1. Microprocessors are bulky due to the presence of external peripheral 
devices. While microcontrollers are compact with only RAM, ROM and 
EEPROM are embedded on a single chip. Microprocessors are more 
expensive than microcontrollers. 

2. Microprocessors work faster than microcontrollers. A typical processing 
speed of a microprocessor above 1GHz. The processing speed of 
microcontrollers is generally upto 60 MHz. MCA-105/200



3. Microprocessors consume more power as compared to microcontrollers. 
Microcontrollers are power efficient and consume less power. 

4. Microprocessors are generally designed for personal computers while 
microcontrollers are generally designed for embedded systems. 
Microprocessors are generally used in software development, game 
development, websites and other heavy computation intensive 
applications. While, microcontrollers are used in embedded systems such 
as washing machines, microwave ovens, cameras and speedometers. 

5. Microprocessors are based on von Neumann architecture where code 
memory and data memory are stored at the same memory. While, 
microcontrollers are based on Harvard architecture where code and data 
memory are stored separately. 

11.4 SUMMARY 

1. A microprocessor (µp) is an electronic device that is used by the computer 
to its processing. 

2. A microprocessor is a programmable device which can perform different 
sets of operations on the data it receives as an input depending on the 
sequence of instructions supplied in the given program. 

3. The processing power of a microprocessor depends on its instruction set. 

4. The width of the data bus signifies the number of data bits  a microprocessor 
can process simultaneously. 

5. Intel launched its first 8-bit microprocessor in 1972 and names it Intel 
8008. 

6. Intel 8985 is an 8-bit general purpose microprocessor capable of addressing 
64K memory. 

7. 8085 has 40 pins and runs on +5 V power supply. 

8. In 8085, the 8-bit data bus was multiplexed with the lower part of 16-bit 
address bus so that the number of pins are limited to 40. 

9. It has a 16-bit address bus, hence it is capable of addressing 216= 64 KB 
memory. 

10. The address bus has 8 signal lines A8 – A15 which are unidirectional. 

11. There are 4 main control and status signals. 

12. An  Interrupt  is  a  mechanism  by  which  an  I/O  or  an  instruction  can 
suspend the normal execution of processor and get itself serviced. 

11.5 ANSWERS TO CHECK YOUR PROGRESS 

1. CPU 
MCA-105/201



2. Width 

3. 3 

4. Address Latch Enable 

5. Instruction Register(IR)  

6. 16 

11.6 TERMINAL QUESTIONS 

1. What is a microprocessor? What is a difference between a microprocessor 
and CPU? 

2. Draw and explain the pin-diagram of 8085 microprocessor. 

3. Explain the classification of the instructions of 8085 microprocessor. 

4. What is conditional and unconditional jump. 

5. What is an interrupt? What is the order of priority of these interrupts? 

6. Explain the MOV and LDA instruction with the help of diagram. 

7. Explain JMP instruction. 

8. What is an interrupt? 

9. What is the different between a maskable and non-maskable interrupt? 
What is the priority of various interrupts? 

REFERENCES 

(s.j.). Onttrek Dec. 15, 2015 uit http://www.cs.umd.edu 

(s.j.).Onttrek Dec. 15, 2015 uit 
http://www.technicalsymposium.com/MICROPROCESSOR_Instruction_Set_of_ 
Intel_8085.doc 

(s.j.). Onttrek Dec. 15, 2015 uit https://en.wikipedia.org/wiki/Astable 

(s.j.). Onttrek Dec. 15, 2015 uit http://mcqquestion.blogspot.in/2012/08/computer- 
system-architecture_6.html 

Anand, A. (2012, Nov.). Memory Organization. Onttrek Dec. 15, 2015 uit 
http://www.slideshare.net/rashcommuz/memory-organization-16934580 

Arivazhagan, S. S. (2012). Digital Circuits and Design. S.Chand & Company. 

AspenCore. (2016). Bipolar Transistor. Onttrek Oct. 29, 2017 uit 
http://www.electronics-tutorials.ws/transistor/tran_1.html 

Astable Multivibrator. (s.j.). Onttrek Dec. 15, 2015 uit 
http://evalidate.in/lab1/pages/IC555/AstableMultivibrator/AstableMultivibrator_I. 
html 

MCA-105/202



Basheer, N. (2011). ZENER DIODE. Onttrek Oct. 29, 2017 uit 
https://mediatoget.blogspot.in/2011/10/zener-diode.html available under Creative 
Commons Attribution 3.0 Unported License. 

Belurkar, V. (2012, Dec. 07). Lithium-ion Battery. Onttrek Dec. 15, 2015 uit 
http://simpleelectronic-project.blogspot.com/ 

Burke, T. (2006). Resistor Codes. Onttrek Oct. 29, 2017 uit 
https://commons.wikimedia.org/wiki/File:Resistor-Codes.svg available under the 
Creative Commons Attribution-Share Alike 2.5 Generic, 2.0 Generic and 1.0 
Generic license. 

Community, E. e. (2014). Diode Charachteristics. Onttrek Oct. 29, 2017 uit 
http://engineering.electrical-equipment.org/electrical-
distribution/
 
diode- characteristics.html available under Creative Commons By Attribution 
License. 

Dutt, S. (2012). An introduction to Microprocess Architecture using Intel 8085 as 
a classical processor. Onttrek Dec. 15, 2015 uit Slideshare: 
http://www.slideshare.net/sdutt36/8085-14257924 

Elcap. (2012). Ceramic disc capacitor. Onttrek Oct. 29, 2017 uit 
https://commons.wikimedia.org/wiki/File:Ceramic_disc_capacitor.png available 
under Creative Commons CC0 1.0 Universal Public Domain Dedication. 

ETHW. (2017). Integrated Circuits. Onttrek Oct. 30, 2017 uit 
http://ethw.org/Integrated_Circuits?gclid=EAIaIQobChMIjaXJ36KX1wIV0hFoC 
h0IPwUAEAAYAyAAEgLj3PD_BwE available under Creative Commons 
Attribution-ShareAlike License. 

Find a Tech Definition. (s.j.). Onttrek Dec. 15, 2015 uit http://whatis. 
techtarget.com/ 

Gao, Y. (s.j.). Review of Flip Flops. Onttrek Dec. 15, 2015 uit http://www. 
readbag.com/maxwell-ict-griffith-au-yg-teaching-dns-dns-module3-p1 

Halfwave rectifier. (2005). Onttrek Oct. 29, 2017 uit https://simple. 
wikipedia.org/wiki/File:Halfwave.rectifier.en.png available under Public Domain 
License. 

Hamacher. (2011). Computer Organization. Tata McGraw Hill. 

Instruction Seti of Intel 8085. (s.j.). Onttrek Dec. 15, 2015 uit 
http://www.daenotes.com/electronics/digital-electronics/instruction-set-intel-8085 

Learning, L.  (2012). The Central Processing Unit. Onttrek Oct.  30, 2017 uit 
Introductionj to Computer Applications and Concepts: 
https://courses.lumenlearning.com/zeliite115/chapter/reading-the-central- 
processing-unit/   available   under   Creativr   Commons   Attribution-
ShareAlike License. 

LibreTexts. (2016). Bipolar Junction Transistor. Onttrek Oct. 29, 2017 uit 
https://eng.libretexts.org/Core/Materials_Science/Materials_and_Devices/Bipolar MCA-105/203



_Junction_Transistor available under Creative Commons Attribution- 
Noncommercial-Share Alike 3.0 United States License. 

LOGIC CIRCUIT AND SWITCHING THEORY. (2010, Feb. 05). Onttrek Dec. 
15, 

2015 uit Sequential Logic Basics: http://logicckt.blogspot. in/2010/02/week- 
5.html 

Mano, M. M. (2008). Computer System Architecture. Pearson. Mano, M. M. 
(2008). Digital Logic and Computer Design. Pearson. 

Multivibrator. (2014, Jan. 11). Onttrek Dec. 15, 2015 uit Slideshare: 
http://www.slideshare.net/nakulrtm/multivibrators-including-monostable-astable- 
and-bistable 

Omegatron. (2006). Diode symbol. Onttrek Oct. 29, 2017 uit Wikibooks: 
https://commons.wikimedia.org/wiki/File:Diode_symbol.svg available under 
Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 
Generic and 1.0 Generic license. 

Omegatron. (2015). Zener Diode Figure. Onttrek Oct. 29, 2017 uit 
https://commons.wikimedia.org/wiki/File:Zener_diode_symbol.svg    available 
under Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 
Generic and 1.0 Generic license. 

Peripitus. (2007). Toroidal inductor. Onttrek Oct. 29, 2017 uit 
https://commons.wikimedia.org/wiki/File:Toroidal_inductor.jpg available under 
Creative Commons Attribution-Share Alike 4.0 International, 3.0 Unported, 2.5 
Generic, 2.0 Generic and 1.0 Generic license. 

Powley, R.  (2011). Introduction to Computers. Onttrek Oct. 30, 2017 uit 
http://doer.col.org/bitstream/123456789/8192/1/2011_VUSSC_Intro- 
Computers.pdf avaialble under CC-BY-SA license. 

Storr, W. (2015, Dec.). Basic Electronics Tutorials. Onttrek Dec. 10, 2015 uit 
http://www.electronics-tutorials.ws/ 

Storr, W. (2015, Dec. 13). Multivibrators. Onttrek Dec. 15, 2015 uit Electronics 
Tutorials:  http://www.electronics-tutorials.ws/sequential/seq_3.html 

TES. (2017). Explain the machine instruction cycle. Onttrek Oct. 31, 2017 uit 
https://compsci2014.wikispaces.com/2.1.4+Explain+the+machine+instruction+cy 
cle available under Creative Commons Attribution License. 

Types of capacitor. (2014). Onttrek Oct. 29, 2017 uit https:// 
commons.wikimedia.org/wiki/File:Types_of_capacitor.svg available under 
Creative Commons CC0 1.0 Universal Public Domain Dedication. 

What is a computer? (2017). Onttrek Oct. 30, 2017 uit https://en. 
wikiversity.org/wiki/What_is_a_computer%3F available under Creative 
Commons Attribution-ShareAlike License. 

Wikibooks. (2017, Aug. 16). Electronics Handbook/Components/ Diodes/Photo. 
Onttrek Oct. 28, 2017 uit MCA-105/204



https://en.wikibooks. org/wiki/Electronics_Handbook/Components/Diodes/Photo 
available under the Creative Commons Attribution-ShareAlike License. 

Wikibooks. (2017). Transistor Basics. Onttrek Oct. 29, 2017 uit 
https://en.wikibooks.org/wiki/Digital_Circuits/Transistor_Basics available under 
Creative Commons Attribution-ShareAlike License. 

Wikipedia. (2017). Diode. Onttrek Oct. 29, 2017 uit 
http://sciencewise.info/resource/Diode/Diode_by_Wikipedia available under 
Creative Commons Attribution-ShareAlike License. 

Wikipedia. (2017). Optical isolator. Onttrek Oct. 29, 2017 uit 
https://en.wikipedia.org/wiki/Optical_isolator avaialble under Creative Commons 
Attribution-ShareAlike License. 

Wikispaces. (s.j.). Computer Architecture. Onttrek Oct. 31,  2017 uit 
https://isscs.wikispaces.com/3.2+-+Computer+Architecture available  under 
Creative Commons Attriution license. 

Wikiversity.   (2017).   Field-Effect   Transistors.   Onttrek   Oct.   29,   2017   
uit https://en.wikiversity.org/wiki/Fundamental_Physics/Electronics/Field- 
Effect_Transistors available under Creative Commons Attribution-ShareAlike 
License. 

Yewale, J. (2011). Diode Clamping Circuit. Onttrek Oct. 29, 2017 uit 
http://todayscircuits.blogspot.com/2011/06/diode-clamping-circuits.html available 
under Creative Commons Attribution-ShareAlike 2.5 India License. 

Yewale, J. (2011). Diode Clippers – A study of various Clipping Circuits. Onttrek 
Oct.        29,        2017        uit        http://todayscircuits.blogspot.com:        
http://todayscircuits.blogspot.com/2011/06/diode-clippers-overview-of-
clipping.html available under Creative Commons Attribution-ShareAlike 2.5 
India License. 

Zener Diode. (2009). Onttrek Oct. 29, 2017 uit https://en.wikibooks. 
org/wiki/Semiconductors/Zener_Diode available under Creative Commons 
Attribution-ShareAlike License. 

(n.d.). Retrieved Dec. 15, 2015, from http://www.cs.umd.edu 

(n.d.). Retrieved Dec. 15, 2015, from http://www.technicalsymposium. 
com/MICROPROCESSOR_Instruction_Set_of_Intel_8085.doc 

(n.d.). Retrieved Dec. 15, 2015, from https://en.wikipedia.org/wiki/Astable 

(n.d.). Retrieved Dec. 15, 2015, from http://mcqquestion.blogspot.in/ 
2012/08/computer-system-architecture_6.html 

Anand, A. (2012, Nov.). Memory Organization. Retrieved Dec. 15, 2015, 
from http://www.slideshare.net/rashcommuz/memory-organization-16934580 

Arivazhagan, S. S. (2012). Digital Circuits and Design. S.Chand & Company . 

Astable Multivibrator. (n.d.). Retrieved Dec. 15, 2015, from http:// 
evalidate.in/lab1/pages/IC555/AstableMultivibrator/AstableMultivibrator_I.html MCA-105/205



Belurkar, V. (2012, Dec. 07). Lithium-ion Battery. Retrieved Dec. 15, 2015, 
from http://simpleelectronic-project.blogspot.com/ 

Dutt, S. (2012). An introduction to Microprocess Architecture using Intel 8085 as 
a classical processor. Retrieved Dec. 15, 2015, from Slideshare: 
http://www.slideshare.net/sdutt36/8085-14257924 

Find a Tech Definition. (n.d.). Retrieved Dec. 15, 2015, from 
http://whatis.techtarget.com/ 

Gao,   Y.   (n.d.).   Review   of   Flip   Flops.   Retrieved   Dec.   15,   2015,   
from http://www.readbag.com/maxwell-ict-griffith-au-yg-teaching-dns-dns-
module3- p1 

Hamacher. (2011). Computer Organization. Tata McGraw Hill. 

Instruction Seti of Intel 8085. (n.d.). Retrieved Dec. 15, 2015, from 
http://www.daenotes.com/electronics/digital-electronics/instruction-set-intel-8085 

LOGIC CIRCUIT AND SWITCHING THEORY. (2010, Feb. 05). Retrieved 
Dec. 

15, 2015, from Sequential Logic Basics: http://logicckt.blogspot.in/2010/02/week- 
5.html 

Mano, M. M. (2008). Computer System Architecture. Pearson. Mano, M. M. 
(2008). Digital Logic and Computer Design. Pearson. 

Multivibrator. (2014, Jan.  11). Retrieved Dec. 15, 2015, from Slideshare: 
http://www.slideshare.net/nakulrtm/multivibrators-including-monostable-astable- 
and-bistable 

Storr, W. (2015, Dec.). Basic Electronics Tutorials. Retrieved Dec. 10, 2015, 
from http://www.electronics-tutorials.ws/ 

Storr, W. (2015, Dec. 13). Multivibrators. Retrieved Dec. 15, 2015, from 
Electronics Tutorials: http://www.electronics-tutorials.ws/sequential/seq_ 3.html 

Wikibooks. (2017, Aug. 16). Electronics Handbook/Components/ Diodes/Photo. 
Retrieved Oct. 28, 2017, from 
https://en.wikibooks. org/wiki/Electronics_Handbook/Components/Diodes/Photo 
available under the Creative Commons Attribution-ShareAlike License. 

MCA-105/206



ROUGH WORK

MCA-105/207



ROUGH WORK

MCA-105/208


	Blank Page
	Blank Page



