School of Science, Assignment Session 2021-22

Course Code: UGMM-06 Course Title: Abstract Algebra Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

- 1. State and Prove fundamental theorem of group homomorphism.
- Let N be a normal subgroups of a group G and H be a subgroup of G then show that:
 (i) H ∩ N is normal subgroup of H (ii) HN is a subgroup of G (iii) N is normal subgroup of HN.
- 3. Prove that if G is abelian then $G|_{Z(G)}$ is cyclic where Z(G) is centre of G.

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.

- 4. Give all sub groups of $(Z_{12}, +)$
- 5. Let $f: G_{11} \to G_2$ be a group homomorphism then show that kernel f is a normal subgroup of G_1 .
- 6. Give an example noncycle group whose all subgroups are cyclic.
- 7. Find all zero divisor elements of $Z/_{20}$.

School of Science, Assignment Session 2021-22

Course Code: UGMM-09 Course Title: Real Analysis Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

1. (a) Evaluate $x \xrightarrow{\ell im} o \frac{(1+x)^{\frac{1}{X}} - e}{x}$

(b) If $y^{1/m} + y^{1+m}2x$, prove that $(x^2 - 1)Yn + 2 + (2n +)XY_{n+1} + (n^2 - m^2)Y_n = 0$, Where Y_n denotes the nth derivative of denotes the nth derivative of Y.

2. (a) Evaluate $x \to a \frac{a^x - x^a}{x^x - a^a}$

(b) If, $y^{1/m} + y^{1+m}2x$, prove that $(x^2 - 1)Yn + 2 + (2n +)XY_{n+1} + (n^2 - m^2)Y_n = 0$, Where Y_n denotes the nth derivative of denotes the nth derivative of Y with respect X.

3. (a) Test the convergence of the series $x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \dots + (x > 0)$ (b) State and prove Cauchy's Mean Value theorem.

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.

4. If f and g are integrable in [a, b] and $f(X) \le g(X) \in X \in [a, b]$, prove that $\int_{a}^{b} f(X) d_{X} \le \int_{a}^{b} g(X) dX$

5. Test for uniform convergence, the sequence {f_n}, where $f_n(x) = \frac{nx}{1+n^2x^2} \forall \times \varepsilon TR$

- 6. Show that $e^x \cos x = 1 1x \frac{2x^2}{3!} \frac{2^2x^4}{4!} \frac{2^2x^5}{5!} \dots \dots \dots$
- 7. Show that arbitrary union of open sets is open.

School of Science, Assignment Session 2021-22

Course Code: UGMM-10 Course Title: Numerical Analysis Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

. Show that Newton-Raphison method has a convergence of order two.

1. Using simplex method solve the problem.

 $Max \ Z = 2x = 2x_1 + 5x_2 + 7x_3.$

Subject to $3x_1 + 2x_2 + 4x_3$ 100

$$X_1 + 4x_2 + 2x_2 \le 100$$

$$X_1 + x_2 + 3x_3 \le 100, x_1 \ge 0, \ x_3 \ge 0.$$

2. Solve the transportation problem.

From	1	2	3	Supply
1	2	7	4	5
2	3	3	1	8
3	5	4	7	7
4	1	6	2	14
Demand	7	9	18	34

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

- Note: Answer each question in 200 to 300 Words. All carry equal marks.
 - 4. Evaluate the integral $\int_{1}^{2.5} e^x dx$ by Simpson's $\frac{1}{2}$ rd rule.
 - 5. Using Lagrange's interpolation formula, find the form of the function from he given

From	0	1	3	4
Y	-12	0	12	24

6. Use Runge-Kutta method to approximate y, when x = 0.1 and x = 0.2 given that x = 0when y = 1 and $\frac{dy}{dn} = x + y$

7. By LU decamp position method Find inverse of the matrix when

$$A = \begin{bmatrix} 2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 1 & -1 \end{bmatrix}$$

School of Science, Assignment Session 2021-22

Course Code: UGMM-11 Course Title: Probability & Statistics Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

		e			
C.I	0-10	10-20	20-30	30-40	40-50
f	12	21	45	30	10

1. Calculate variance from the following data

2. Calculate mean from following data

C.I	0-10	10-20	20-30	30-40	40-50
f	9	14	26	20	12

3. Calculate co-relation co-efficient from given data

Х	68	69	64	59	63	61
У	58	52	56	52	41	49

(Section – B)

(Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.

- 4. Discuss about skewness and kurtosis.
- 5. Write short notes on
 - a. (Level of significance)
 - b. (Types of Hypothesis).
- 6. If $\times \sim B(15,1/2)$ the find mean& variance
- 7. If $\times \sim N(20, 12)$ then find $P(\times \le 5) \& P(\times^3 \ge 10)$

School of Science, Assignment Session 2021-22

Course Code: UGMM-12 Course Title: Linear Programming Maximum Marks : 30

(Section 'A')

(Long Answer Questions)

NOTE: Answer each question in 500 to 800 words. All carry equal marks.

Maximum Marks: 18

1. Using simplex method solve the problem. $Max Z = 2x + 5x_2 + 7x_3.$ $Subject to 3x_1 + 2x_2 + 4x_3 \leq 100$ $X_1 + 4x_2 + 2x_3 \leq 100$

$$X_1 + x_2 + 3x_3 \le 100, x_1 > 0, x_2 > 0.x_3 \ge 0$$

2. Solve the minimal assignment problem

Man-		1	2	3	4	
Job	Ι	12	30	21	15	
¥	п	18	33	9	31	
_	ш	44	25	24	21	_
	IV	23	30	28	14	

3. Solve the cost minimizing assignment where cost matrix is given by

	m_1	m_2	m_3	m_4
J ₁	2	5	7	9
J ₂	4	9	10	1
J ₃	7	3	5	8
J_4	8	2	4	9

(Section – B) (Short Answer Questions)

Maximum Marks: 12

Note: Answer each question in 200 to 300 Words. All carry equal marks.

- 4. Explain Hungnrium method for assignment problem.
- 5. Solve the LPP Problem by graphical method.

$$Max Z = 8x_1 + 7x_2$$

Subject to $3x_1 + x_2 \le 66000$
 $x_1 + x_2 \le 45000$
 $x_2 \le 20000$
 $x_2 \le 40000, x_1 \ge 0, x_1 \ge 0.$

- 6. Write short notes.
 - (i) Feasible solution
 - (ii) Primal and Dual solution
 - (iii) Optimization problem in two variables.
- 7. Show that $S = \{(x, y) : 3x^2 + 2y^2 \le 5\}$ is convex set.